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Berry phase and topology in ultrastrongly coupled quantum light-matter systems
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Strong coupling between matter and quantized electromagnetic fields in a cavity has emerged as a possible
route toward controlling the phase of matter in the absence of an external drive. We develop a faithful and
efficient theoretical framework to analyze quantum geometry and topology in materials ultrastrongly coupled to
cavity electromagnetic fields in two dimensions. The formalism allows us to accurately evaluate geometrical and
topological quantities, such as Berry phase and Chern number, in ultrastrong and deep strong-coupling regimes.
We apply our general framework to analyze a concrete model of massive Dirac fermions coupled to a circularly
polarized cavity mode. Surprisingly, in addition to an ordinary transition to the topological phase, our analysis
reveals a unique feature in deep strong-coupling regimes, namely the emergence of a reentrant transition to the
topologically trivial phase. We also demonstrate its intuitive understanding by showing the unitary mapping
between the low-energy effective theory of strongly coupled light-matter systems and the Haldane honeycomb

model.
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I. INTRODUCTION

The Berry phase plays a central role in modern condensed-
matter physics [1-3]. It lies at the heart of a wide variety
of intriguing phenomena, including electric polarization of
crystalline insulators [3,4], the anomalous Hall effect [5-9],
and electromagnetic responses [10-14]. In particular, the past
few decades have witnessed significant advances in our under-
standing of the intimate connection between the Berry phase
and topological phases of matter [ 15-23]. In addition, ongoing
experimental developments in ultracold atoms [24-32] and
photonics [33—40] have allowed us to study these rich phe-
nomena in a highly controllable way.

On another front, recent developments have made it possi-
ble to realize strong interactions between matter and quantized
electromagnetic fields inside a cavity [41-52]. In particu-
lar, the emergent field of cavity quantum electrodynamics
(QED) materials has attracted significant attention as a pos-
sible platform for controlling the phase of matter in the
absence of an external drive [53-57]. So far, the effects of
cavity confinement on chemical reactions [58-72] and such
diverse phenomena as superconductivity [73-78], ferroelec-
tricity [79-82], and the quantum Hall effect [83—87] have been
experimentally and theoretically investigated [88—126].

To further explore the potential of cavity QED engineer-
ing, the time is ripe to examine how strong light-matter
interactions can influence the quantum geometrical and
topological properties of matter. While related problems were
often addressed by resorting to simplified phenomenological
descriptions, such as Peierls substitution or minimally cou-
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pled effective Hamiltonians, the validity of these conventional
approaches becomes questionable [56] in ultrastrong coupling
(USC) and deep strong coupling (DSC) regimes, which are
within reach of recent experiments [41-52,87,90-92]. Thus,
the lack of a faithful and efficient theoretical approach to study
quantum geometry and topology in ultrastrongly coupled sys-
tems remains a major current issue.

The aim of this paper is to develop a theoretical framework
to accurately analyze geometrical and topological properties
of matter coupled to cavity electromagnetic fields. To this end,
we start from a general single-electron Hamiltonian with a
single cavity mode [see Eq. (1) below]. After employing the
asymptotically decoupling (AD) unitary transformation, we
derive an expression of Berry curvature [Eq. (12)] that allows
for its efficient evaluation at arbitrary coupling strengths on
the basis of a simple tight-binding description. Our formal-
ism thus provides a faithful and efficient way to evaluate
the Berry phase and related topological numbers in generic
two-dimensional cavity QED materials.

To demonstrate the advantage of the present formalism,
we apply it to a concrete model of massive Dirac fermions
on a honeycomb lattice potential, which can exhibit a cavity-
induced topological phase transition (TPT). Figure 1 shows
the phase diagram determined by the Chern number C of the
lowest electron-polariton band. In the absence of the light-
matter interaction (g = 0), a nonzero on-site energy difference
A breaks the inversion symmetry, leading to the gap opening
at the Dirac points and the trivial phase with C = 0 (see also
Fig. 2 below). As the coupling strength g is increased, the tran-
sition to the topological phase with C = 1 can occur due to the
time-reversal-symmetry (TRS) breaking inherent to the circu-
larly polarized cavity mode. Interestingly, when the coupling
g is further increased, the system exhibits the topological-to-
trivial reentrant behavior in DSC regimes g/w. = 1. We show
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FIG. 1. Phase diagram of massive Dirac fermions coupled to
circularly polarized cavity photons [cf. Eq. (1) with the honeycomb
lattice potential (14)]. The phase boundary is determined by the
Chern number C of the lowest electron-polariton band. At a small
on-site energy difference A, the light-matter coupling g first gives
rise to a transition from the trivial phase (C = 0) to the topological
phase (C = 1), and then exhibits the reentrant behavior in DSC
regimes (g/w. > 1). We compare the phase boundaries obtained
from different methods, including the exact analysis of Eq. (8) (blue),
the tight-binding model (11) constructed in the AD frame (red),
the tight-binding model with Peierls substitution (green), and the
minimally coupled Dirac Hamiltonian (orange). The inset shows
the corresponding Chern numbers at A = 0.15. We take the unit of
i = q = a = 1 throughout this paper. Parameters are m =5, w, =
4, Vo =1.5.

that this nonmonotonic behavior can be understood from the
connection between the low-energy effective theory of the
present light-matter Hamiltonian and the Haldane honeycomb
model [18].

The rest of the paper is organized as follows. In Sec. II, we
start from the cavity QED Hamiltonian in the Coulomb gauge
and construct the effective model in the AD frame. Then, in
Sec. III, we provide the exact expression of Berry curvature in
the AD frame (12) and its useful approximation. In Sec. IV,
we apply our formalism to a concrete model of Dirac elec-
trons coupled to a circularly polarized cavity mode, and we
discuss the topological phase transitions in this system. We
also perform thorough comparative analyses of geometrical
and topological quantities, demonstrating the reliability of our
approach compared to the commonly used methods in the
literature (see Figs. 3 and 4). Section V summarizes the results
and discusses the qualitative understandings of the topological
phase transitions. Some technical details are discussed in the
Appendixes.

II. MODEL DESCRIPTION

To illustrate our formalism in a simple yet experimentally
relevant setup where Berry curvature can be nontrivial, we
consider an electron interacting with a cavity mode in two
dimensions, while the following discussions can be gener-
alized to systems with multiple cavity modes in arbitrary
dimensions. For the sake of simplicity, we neglect the electron
spin degrees of freedom. We also assume that the photon
loss is sufficiently small and consider the Hamiltonian under

the long-wavelength approximation, which is given in the
Coulomb gauge as [127,128]

5 242
He = M+V(r)+hwc(fmw1), (1
2m 2
A =Ay(fa+ frah), feC 2)

Here, m and g are the mass and the charge of an electron, re-
spectively, V(r) = Y ¢ Ve'®" is an arbitrary two-dimensional
periodic potential, and & is the annihilation (creation) oper-
ator of cavity photons with frequency w.. An electron couples
to cavity photons through the vector potential A in Eq. (2),
where Ay is the mode amplitude, and f is an arbitrary polar-
ization vector that satisfies |f| = 1. The coupling strength of
this light-matter interaction is characterized by

W,
g=qAo,[ —- 3
mh

It is the common convention that the system is said to be
in ultrastrong-coupling regimes for 0.1 < g/w, < 1 and deep
strong-coupling regimes for g/w, > 1. We note that the cavity
QED Hamiltonian (1) possesses TRS if and only if there exists
6 € R such that the polarization vector f satisfies f = e’ f*.
To examine the physically interesting case with broken TRS,
we set f as a circularly polarized vector e = (1, —i)" /+/2 in
the following. See Appendixes A and B for the generalization
to systems with arbitrary polarization or multiple electromag-
netic modes. We expect that TRS-breaking cavity modes can
be realized in chiral [54,55] or gyrotropic cavities [95,129].

The Hamiltonian (1) possesses the discrete translational
symmetry of V(r), which allows us to label its eigenstate
as a Bloch state |1pnck) with band index n and Bloch wave
vector k. In strong-coupling regimes, |1//5{) is in general a
highly entangled electron-photon state. A wide variety of ex-
perimental observables, including electromagnetic responses
and transport coefficients, can be related to Berry curvature of
these Bloch states:

BE (k) =1i ((3& “Sk | ak,v "‘Sk) - (8;()_ “fk | O, “Sk)) ’ “)

where |urclk) is the periodic part of the Bloch state defined
by |ugk) = ¢ kr |1ﬁnck). We again emphasize that |ugk) is not
a mere electron state but an entangled wave function on the
Hilbert space spanned by the product of electron and photon
states.

In USC and DSC regimes, the calculation of Berry cur-
vature (4) by the exact diagonalization of Eq. (1) becomes
eventually intractable due to the need to include increasingly
many electron-photon states in this frame. Instead, previous
studies often resort to phenomenological descriptions such as
Peierls substitution or minimally coupled effective Hamiltoni-
ans (see, e.g., Refs. [93,96,97]). However, as detailed below,
these simplified methods become invalid at strong light-matter
couplings. To accurately evaluate Berry curvature (4) and
related topological numbers in an efficient way, we thus need
to compress the dimension of the relevant Hilbert space while
keeping nontrivial effects of light-matter interactions without
making ambiguous simplifications.
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To achieve this, we perform the AD transformation [98]

U = exp (—iél—}; -ft), ®)]
ho. g

= _— 6

&=, P B (6)

ft = —ieq + ie*a’. (7)

The transformation U acts on the creation operator a' and
the position operator r via UTa'U =a" +&p-e/h and U'rU =
r+Er+E2pxe./(2h), respectively. We then obtain the trans-
formed Hamiltonian AV = UTHU as

v P £2 o1
H"Y = V T+ -——p . aQla'a+ =
2meff+ <r+§n+2hpxe&)+ <a a+2),

®)
mm=n<yké) Q:w(k%%) ©)
w w

c c
Here, m.s is the effective mass dressed by cavity photons, and

Q2 is the renormalized cavity frequency due to the A’-term in
the Coulomb gauge (1). In this frame, the light-matter interac-
tion is expressed as the shift of the electron coordinate r, and
its effective strength is characterized by the parameter £ de-
fined in Eq. (6). Because & behaves as & o g at small g/w, and
£ o« g~! atlarge g/w,, light and matter degrees of freedom are
asymptotically decoupled in the weak- and strong-coupling
limits. One can thus well approximate the low-energy eigen-
states simply by the product state of an electron wave function
and the photon vacuum |0). This feature allows us to construct
a useful low-energy effective description in the following way.

First, we construct Wannier orbitals |w;) from the matter
part of HY:

52

202 . 2
av =<0|HU|0>=2p +3 Vgem T GUERR (10)
G

mat

Meff

where |0) is the photon vacuum, and Vg is the Fourier com-
ponent of the periodic potential V (r) defined via V(r) =
Y6 Vge ¢ Secondly, we project the continuum Hamilto-
nian AY onto the manifold spanned by these Wannier orbitals,
obtaining the following tight-binding Hamiltonian:

Al = (i + fuj)lw) (w;l, (11)
(ij)
where #;; = (wi|1-7fr{at|w ;) is an effective hopping amplitude,
and fu;; = (wi|(HY — HY,)lw;) represents electromagnetic
fluctuations.

In the newly obtained tight-binding Hamiltonian (11), the
underlying Wannier orbitals |w;) already incorporate light-
matter interactions in a nonperturbative manner through the
renormalized mass and potential in Eq. (10). The hopping
amplitudes #;; play the dominant role while the residual
terms fi;; are typically negligible and do not qualitatively
alter the results, as shown in Appendix D. We note that our
construction of the tight-binding model makes a sharp con-
trast with usual phenomenological methods; for instance, in
Peierls substitution, one starts from a tight-binding Hamil-
tonian _ . #5y|w) (w?| with the bare Wannier orbitals |w;)

in the absence of light-matter interactions and then replaces
the hopping amplitudes tioj by ti(} expli(q/h) fr’] dr -A] with

0 0
ri = <wi |r|wi)-

III. BERRY CURVATURE IN THE TRANSFORMED FRAME

We recall that physical observables can be related to Berry
curvature (4), which is originally defined in the Coulomb
gauge. To derive the exact expression of Berry curvature
(4) after the unitary transformation, we note that the dis-
crete translational symmetry remains intact in the transformed
Hamiltonian (8), i.e., eigenstates in this frame are also Bloch
states |4) = e*|uY,) and can be related to their Coulomb-
gauge counterparts by |ul}) = exp[%(ﬁ + hk)-#]|uS,). We
can then rewrite Eq. (4) in terms of the transformed eigen-
states as

B (k) = i (0, i | On, 15 ) — (O, 10y | Ok, 45 )

2
e[V (Wt lvill, — 5V Wilolvid)
(12)

where the latter two terms originate from the k-dependence
of the unitary transformation between [uS,) and |uY). See
Appendix C for derivations.

The dominant contribution in Eq. (12) comes from the
terms in the first line, while the other terms can be neglected
due to the asymptote £ ocg™! at large g. Together with the fact
that the electromagnetic fluctuations fi;; in Eq. (11) can also
be neglected, the analysis of Berry phase in the transformed
frame can be significantly simplified as follows:

BS () = (O, iy | O, i) — (O, iy | Ok i), (13)

where |ﬁfl]k) is an electron eigenstate of Z(z’j) tijlwi) (w;l,
which only contains the matter part of the tight-binding
Hamiltonian (11). One can thus accurately and efficiently
evaluate Berry curvature of ultrastrongly coupled systems
simply by Eq. (13) without photon degrees of freedom. In-
stead, it is also possible to include higher-order terms to
systematically improve quantitative accuracy when necessary.
The same strategy is applicable to calculations of other ge-
ometric quantities such as Berry connection and quantum
metric as described in Appendix C.

IV. HONEYCOMB MODEL

To be concrete, we consider a model of massive Dirac
fermions on honeycomb lattice potential, that is, the light-
matter Hamiltonian (1) with the following potential:

A
V() = Voo (r) + 3<;>(r _ay ‘2), (14)

3 3
$(r) = >

exp(iG - r), (15)
G=xb,+b,,+(b)—by)

where a; = (a,0) and a; = (—a/2, «/§a/2) are the primi-
tive lattice vectors with their reciprocal counterparts b; =
Q2 /a,2m/+/3a) and b, = (0,47 /~/3a). As shown in
Fig. 2(a), the minima of this potential are aligned on the
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FIG. 2. (a) Honeycomb lattice potential V (r) in Eq. (14). The
inset shows the potential along the yellow dashed line, where A
corresponds to the energy difference between the two sublattices.
(b) Two lowest energy bands in the absence of cavity fields. Nonzero
A opens an energy gap in the Dirac cones, where the lowest band is
trivial with the Chern number C = 0.

honeycomb lattice, and the on-site energy difference between
the two sublattices is given by A.

Figure 2(b) shows the two lowest energy bands in the
absence of cavity electromagnetic fields. A nonzero A breaks
the inversion symmetry and opens an energy gap ~A in
the Dirac cones [130], resulting in the topologically trivial
lowest energy band with the Chern number C = 0. When
the light-matter coupling is included, the TRS-breaking by
the circularly polarized cavity mode is expected to trigger the
eventual gap closing and the transition to the topologically
nontrivial phase with C = £1. While such a cavity-induced
TPT was previously explored within a minimally coupled
Dirac Hamiltonian [96,97], this simplified analysis can be jus-
tified only in perturbative regimes g/w. < 1 as demonstrated
below.

We now examine the low-energy properties of the present
model on the basis of our formalism; hereafter we take the
unit of i = g = a = 1. To construct the effective tight-binding
model (11), we use the maximally localized Wannier orbitals
|w;) of Eq. (10) [131-134] and consider up to the next-
nearest-neighbor hoppings on the honeycomb lattice. We then
analyze the behavior of Berry curvature, Chern number, and
the corresponding energy spectrum with a varying coupling g,
and we compare the results with the ones obtained from other
methods. For instance, the results of a minimally coupled
Dirac Hamiltonian are obtained with Eq. (E4). These results
are compared to the exact results obtained by the exact diago-
nalization of the full continuum Hamiltonian (8) and using the
exact expression of Berry curvature (F6), which is equivalent
to Eq. (12). We note that the exact analyses in general require
high computational costs, and it is crucial to develop an effec-
tive description to efficiently evaluate expectation values of
physical observables as done here. See Appendixes E and F
for further details.

Figure 1 shows the obtained phase diagram whose phase
boundary is determined by the Chern number C of the lowest
electron-polariton band, i.e., C = (27)~! fBZ d*k Bg(k). (As
for the minimally coupled Dirac Hamiltonian, we determine
the phase boundary by locating g at which the band gap
closes.) At a small energy difference A < 0.2, TPTs from
the trivial phase (C = 0) to the topological phase (C = 1) can
occur in USC regimes. Surprisingly, the system also exhibits

@ A=0 ©) A=015
10 — 10" —m -
i B i
2 ol W Y
10} 10 \ —
= \\ S \
S 1 1 e \
Umo 10 10 \
— — exact N\
] - AD(TB)|
--- Peierls N
4 Dirac 4 N\
10 10
0.4 0.8 1.2 1.6 0 0.4 0.8 1.2 1.6
g/we g/we

FIG. 3. (a),(b) Absolute value of the Berry curvature of the
lowest electron-polariton band at the Dirac point at different A in
Eq. (14). We compare the results obtained from the exact Hamil-
tonian (8) with Eq. (F6), which is equivalent to Eq. (12) (blue),
the electron-only tight-binding model with Eq. (13) (red), the tight-
binding model with Peierls substitution (green), and the minimally
coupled Dirac Hamiltonian (E4) (orange). Parameters are m =
5, w.=4, Vo=15 A=0.

the reentrant transition to the trivial phase in DSC regimes
g/w. 2 1, whose interpretation will be given below. It is also
worthwhile to emphasize that TPTs no longer exist at a suf-
ficiently large A. The minimally coupled Dirac Hamiltonian
(orange curve) fails to capture these intriguing features and,
more importantly, it even gives an unquantized Chern number
(see the inset). Peierls substitution also fails to give quanti-
tatively accurate results once the USC regime g/w. = 0.1 is
reached. In contrast, our tight-binding model (11) (red curve)
remains valid over the whole parameter region at both quali-
tative and quantitative levels.

To make further comparisons, we plot the absolute value
of the Berry curvature of the lowest electron-polariton band at
the K-point, i.e., k = b;/3 + b, /3, with a varying coupling g
(Fig. 3). We note that the Berry curvature at the K-point takes
a positive (negative) value in the topological (topologically
trivial) phase. Again, our results (red curve) obtained from the
formula (13) associated with the electron-only tight-binding
model, Y ij) li jlw;)(w;|, agree well with the exact results
(blue curve) at arbitrary coupling strengths, while our results
slightly deviate from the exact ones in the vicinity of the
band-gap closing points [Fig. 3(b)]. Meanwhile, the other
conventional descriptions dramatically fail in USC and DSC
regimes, where Berry curvature is either under- or overesti-
mated by orders of magnitude.

In Fig. 4, we also show the low-energy spectra at different
coupling strengths. When the coupling g is increased, the
Wannier orbitals in the AD frame become tightly localized
around each potential minima due to the enhancement of the
effective mass meg in Eq. (10). Thus, effective hopping ampli-
tudes #;; between different Wannier orbitals are exponentially
suppressed, leading to the flattening of energy bands (blue and
red curves). Peierls substitution (green curves) tends to over-
estimate this flattening behavior especially in DSC regimes.
We note that the upward shift of the entire energy spectrum is
caused by the increase of the zero-point energy 72/2 of cavity
photons with the renormalized frequency €2, which cannot be
captured by Peierls substitution. Similar behaviors can also be
found at nonzero A.
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FIG. 4. Low-energy spectra at different coupling strengths obtained from the exact analysis of Eq. (8) (blue), the tight-binding model (11)
in the AD frame (red), and the tight-binding model with Peierls substitution (green). K and K’ denote the two Dirac points. Parameters are

m=35, wo.=4, V=15 A=0.

We note that the minimally coupled Dirac Hamiltonian can
be obtained by expanding the tight-binding Hamiltonian with
Peierls substitutions around K and K’ points. Thus, around
these representative points, the low-energy spectrum evalu-
ated from the minimally coupled Dirac Hamiltonian shows
similar behaviors as in the result of the Peierls substitution
as far as we consider a weak coupling g/w. < 1. However,
at large g, these two results disagree with each other, and, in
particular, the minimally coupled Dirac Hamiltonian fails to
reproduce the gap closing at the K-point, which corresponds
to the reentrant topological phase transition shown in Fig. 1.

V. DISCUSSIONS AND CONCLUSIONS

We point out that our formalism reveals an intimate
connection between quantum light-matter systems and the
celebrated Haldane honeycomb model [18], which allows us
to develop a simple understanding of the present results. To
see this, we first recall that low-energy physics of the present
light-matter systems can be well captured by the tight-binding
Hamiltonian, Z(z’j) tijlw;) (w;|, which only contains electron
degrees of freedom. Here, as inferred from the TRS-breaking
term &2pxe./(2h) in Eq. (10), the effective hopping am-
plitudes #;; are in general complex-valued. In particular, the
next-nearest-neighbor hopping amplitudes #, in the present
model acquire phase factors, and the resulting tight-binding
Hamiltonian becomes equivalent to the Haldane honeycomb
model. This analogy gives a simple interpretation of the reen-
trant TPT emerging in DSC regimes (Fig. 1). On the one hand,
it is known in the Haldane model that reentrant transition to
the trivial phase can occur when an imaginary part of #, falls
below the on-site energy difference ~A. On the other hand, in
DSC regimes of the present light-matter model, the effective
coupling & (mass meg) decreases (increases) as the coupling
g is increased, resulting in the suppression of the imaginary
part of #,. Since the on-site energy difference always remains
to be ~A, the reentrant transition is expected to occur in DSC
regimes as found in Fig. 1.

We expect that our analyses should be of relevance
to recent experiments realizing strong light-matter interac-
tions between low-dimensional materials and cavity photons
[42,43,73,87-90,92]. In addition to condensed-matter sys-
tems, our consideration is also relevant to circuit QED ar-

chitectures, which can simulate single-electron Hamiltonians
with periodic potentials [135,136]. We expect that geometrical
and topological phenomena revealed by the present analyses
can be explored by coupling these experimental systems to a
chiral cavity/resonator or waveguide [54,55].

In summary, we developed a faithful and efficient the-
oretical framework to analyze geometry and topology in
ultrastrongly coupled quantum light-matter systems. We ap-
plied our general approach to the concrete model of massive
Dirac fermions on honeycomb lattice potential and revealed
its complete phase diagram (Fig. 1), featuring the cavity-
induced topological phase transition and its reentrant behavior
in genuinely nonperturbative regimes. The suppression of the
topological phase in deep strong-coupling regimes originates
from intrinsic renormalizations of the electron mass and the
effective coupling strength, and it should be a general feature
of cavity QED materials. We expect that our results are of
relevance to a wide range of systems not only in cavity QED
materials, but also in circuit QED [137,138] and waveguide
QED [139].

ACKNOWLEDGMENTS

We acknowledge support from the Japan Society for
the Promotion of Science through Grant No. JP19K23424
and from JST FOREST Program (Grant No. JPMJFR222U,
Japan).

APPENDIX A: DERIVATION OF THE TRANSFORMED
HAMILTONIAN FOR A SINGLE CAVITY MODE
WITH ARBITRARY POLARIZATION

We provide here the derivation of the Hamiltonian (8)
obtained after the asymptotically decoupling (AD) unitary
transformation in the case of a single cavity mode with ar-
bitrary polarization. Specifically, we start from the general
two-dimensional cavity QED Hamiltonian in the Coulomb
gauge (1):

. p—qgA)? |
Ae=P=9AY v e (atat L), D
2m 2
A = Aol(ue + ve*)a + (u*e* + v¥e)a'l, (A2)
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where we expand the polarization vector f in Eq. (1) by
the circular polarization vectors e = (1, —i)T/ V2 and e* =
(1, )T / V2. Here, u and v are arbitrary complex numbers that
satisfy |u|?> + |v|?> = 1. We can take « and v to be real numbers
without loss of generality; this is always possible by using
a certain spatial rotation, py(,) —> Px(y) €086 +(—)pyx) sin b,
and a U (1) gauge transformation, & +— ¢**a. We note that the
case of the circular polarization discussed in the main text
corresponds to the choice of u = 1, v = 0.

To derive the expression of the transformed Hamiltonian,
we first diagonalize the quadratic part, ¢>A”/2m + hw.(ata +
1/2), via the Bogoliubov transformation and rewrite the
Hamiltonian (A1) as

~2
N )4 .
He=—+V@r)+hrQbb+ -
2m 2

qu qu\/W(bT +b)

. , A3
u v o/ ( T b) ( )
wac = (1 = 2uv)wa + o, (A4)
Q = V(o1 + 0 — Quvwy)?, (AS)
2A2
wp = 20, (A6)
mh
where b7 is a squeezed annihilation (creation) operator de-
fined by
pe 7 Q .
b+ b= @ +a, (A7)
WA
b —b= =@ . (A8)
We then use the unitary transformation U defined by
A b
U =exp <—sz£ . p), (A9)
h
Y A10
XQ e (A10)
N 2, il=b
A~ Px +
p= ( ) _ b{ (A11)
py —)\ b+b +b
=
N wa(1 £ 2uv) W+ ) (A12)
= sgn(u = v).
* ws(1 £2uv) + w, &

This unitary transformation U acts on the electron position
operator r and the annihilation operator b via

RPN hwsy 5, , P Xxe;

U0 = ; _HPX% (Ar3
r r+x9p+m92(u v7) T (A13)

OD0 = b+ 2 (hy p + in_py), (A14)

V2h

where the last term on the RHS of Eq. (A13) originates
from the noncommutativity between p, and py, i.e., [0x, Py] =
i(wa/)(u* — v?). Using these relations, we finally arrive at

the following transformed Hamiltonian AV = UTHU:

N H> 1
R S s —l—hQ(bTb—Ir )
2My et 2Myeff

o, oy
+VIr+xep+ ?(

Myeff wa(1 4+ 2uv) + w, Myeff wa(1 = 2uv) + w,

’ ’

m W m W

D xe;
— ], Al5
—v7) T > (A15)

(A16)

which gives a generalization of Eq. (8) in the main text. We
note that the Hamiltonian in the AD frame (A15) has a similar
structure to Eq. (8). Thus, our formalism of evaluating phys-
ical observables and understanding of topological properties
can also be applied to this case.

APPENDIX B: ASYMPTOTICALLY DECOUPLING
UNITARY TRANSFORMATION FOR MULTIPLE
CIRCULARLY POLARIZED CAVITY MODES

We extend here the AD unitary transformation in the main
text to the system with multiple circularly polarized cavity
modes, which is described by the following Coulomb-gauge
Hamiltonian:

M
A (p—qA) At A
Ac = 2—+V()+Zﬁw,a‘a,+2hvjb;bj,
i=1 j=1
(B1)
N M
A= Zfi(e&,- +e'al)+ Zgj(e*bj +eb?). (B2)

i=1 j=1

where e = (1, —i)T / «/5, and &l(.f) and b'" are the annihilation
(creation) operators for the left and right circularly polarized
modes with mode amplitudes f;, g; € R, respectively.

To diagonalize the quadratic part, ﬁquad =gq 247 /2m +
>, hwidl a; + > hv jb b;, we introduce the following con-
jugate pairs of Varlables

o alj;' (l=1,...,N)7
- (B3)
H\,ﬁlw (i=N+1,...,N+M),
q’\' l’\}zl (lzl, ..,N)a (B4)
L) LB —bi .
I%ZN ([:N+1,,N+M)

In this representation, the quadratic part can be expressed as

N Ry . hp .
Hquad = M AF + =9 qu (BS)
2 2
pe
A= "—ww! +diag(w,..., o5, v1,...,0), (B6)
mh
e
B = —hwzwg—i—diag(wl,...,wN,vl,...,vM), B7)
m
where # and § denote (71, ..., Fypa)" and (41, ..., Gnan)’s
respectively. Here, we define the (N + M)-dimensional

vectors w; and w, by w; =(f1,..., fv,81..-,8u) and
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wy = (f1,..., fn,—81...,—8&m). Since A and B are both
symmetric and positive-definite, there exists an (N + M)-
dimensional real matrix P that satisfies PTAP = P~'BP~T =
diag(€2y, ..., Qy+m). One can confirm this by decomposing
P into P = B%OD, where O is an orthogonal matrix that
diagonalizes B2ABz, and D is a diagonal matrix defined by
D = (OTB2AB20)~4. After replacing the conjugate pairs of
variables via # = P# and § = P~7¢/, and introducing the
corresponding annihilation (creation) operators 6[(»” =[P+
(—)ig:] /\/5, we arrive at the following expression of the
Coulomb gauge Hamiltonian (B1):

" NAM
N p2 qA

3 N e
He = %_;.p+v(r)+;h§2,cicl, (B8)
N+M
A=Y e + vie")e + (e +vie)e]l,  (B9)

i=1

where u; and v; are defined by (uy, ..., uy )" = %(PTwl +
P~'wy) and (vi, ..., vy4n)" = 2(PTw; — P7'w,). We in-
troduce the AD transformation U by

p N
U=exp|—iz- o], B10
p ( i ; p,) (B10)
~ q N A~/
p; = —(w;ft; + viry), (B11)
in
where #; = —ieé; + ie*¢] and ft; = —ie*¢; + ieéj. Using the

above relations, we finally obtain the following transformed
Hamiltonian HY = UTA:U:

2 N+M
AY = + ) héle
2mese ;
N+M
Vir 0: xe,|, B12
- (+;p1+2h1) z) (B12)
2 N 2 M gZ
q i J
off = 1+ — = =11, B13
mey =m| 1+ ;w;w (B13)
N 2 M &
q2 Zl:lw_llz_zjzlv_%
n=-"> - (B14)
m 2 #

Again, the Hamiltonian in the AD frame (B12) has a similar
structure as Eq. (8), and our formalism and understandings of
topological properties can be similarly applied.

APPENDIX C: DERIVATION OF THE EXPRESSIONS
FOR QUANTUM GEOMETRICAL QUANTITIES
IN THE TRANSFORMED FRAME

We next derive the expressions of quantum geometrical
quantities, including Berry curvature [see Eq. (12) in the main
text], Berry connection, and quantum metric in the frame of

reference after the AD unitary transformation. To this end, we
first recall that the Bloch states in the Coulomb gauge can be
related to the AD-frame counterparts by |¢'G) = UlyY) with
U= exp(—ié%’ - 7). Thus, the periodic parts of these Bloch

states, |u5,§U)> = kr |1pan(U)), satisfy the following equality:

p+hk
- -n> ul). (C1)

|ufk> = e_ik’Ueik'|uZ() = exp (—ié

To take the derivatives of Eq. (C1) with respect to k, or k,,
we must pay attention to the fact that the operators 7, and 7,
do not commute with each other, but satisfy [7,, #,] =i. It
is thus useful to first employ the Baker-Campbell-Hausdorff
formula and bring the term containing k. (or k) to the right of
Eq. (C1) as

o pytiky o pthke o 062 ! !
UC) = o T i S A S (k) U )
(C2)
y Ky A L 2
it ik o it ik m.e;ﬁ(l’#hh)(l?ﬁﬁkv) ul )
nk
(C3)

We can now take the derivatives of Eq. (C1) with respect
to k. and k, as follows:

hk
ufk) = exp (—iép—; . ﬁ')

.

[ &7 |
X | =&, — E(py + hky) + O, |urlzjk>’

p+ ik A)
Rt

(C4

8k‘_|ufk) =exp (—ié

B Iy5) -

l
x —iéﬁy—i-f—h(px—i-hkx)—i-akv %), (C5)

The resulting expressions of Berry connection Af(k) =
i(u,|ViuS,) and Berry curvature are

2
AL () = il [Viate) 8 (e | ] ,52>+§—h(wn%|ﬁ x ;).

(C6)
BS (k) = i((0k, ul | Ok, ulge) — (9, by |0k 1))
2
FE[Vax (W1, — 5 Ve (W lplvl)

€N

For the sake of completeness, we also provide the expression
of the quantum geometric tensor & (k) defined by

&) = (D | [1 = [oe e [1]9,05) G j = . 9).

(C8)
We note that the quantum metric gSJ- j(k) is given by the

real part of the quantum geometric tensor. Using Eqgs. (C4)
and (C5), we can rewrite the quantum geometric tensor (C8)
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(@) 0) 1000
0.4}
C=0 —e— exact —e— exact
0.3 -e- AD (TB) 100 -o-AD (TB, electron) |
L —=— AD (TB, electron) — -2 AD (TB)
3
<Jo0.2} )
2]
10
0.1t C=1
o 0.5 10 15 2.0 1602 04 06 08 10 12 14 16 18
coupling strength g/wc coupling strength  g/we
(C) 9/we= 0.1 (d) 9/we=0.7 (e) g/lwe=1.4
45 ‘ ‘ 4.0 5.0
aoh " exact P . / )
' \\ AD (TB, electron) // 3.5 \ / 4.81\ 2
3.5 \_ AD (TB) /A \\\ // \\\ ///
>80 | 80 \\ Jo1 48t \ /o
5 25 3\ 25 N . //// 1 4.4} \\: R /
% 2.0 : N N </
15 20 =N | 42 NN
100 15 N 4o S N
05~ : 1 10 ] 3.8 ]
r K K r r K K r r K K r

FIG. 5. (a)—(e) Comparisons of the results obtained from the electron-photon tight-binding model in the transformed frame [Eq. (11) in the
main text] and its electron-part Hamiltonian (D1). Each panel corresponds to (a) the phase boundary, (b) Berry curvature, and (c)-(e) energy
spectra of the honeycomb model considered in the main text. Parameters are the same as in Figs. 1, 3, and 4 in the main text.

in terms of the AD-frame Bloch states as

)
0100 = (s 1 = o)1 )+ o (s S+ )11 = o)

A

ol 1 = )i

122
+ (Mgk‘ <i§fri + %[(}7 + hk) x eZ]i> <_

§

&2 2
) <i§ﬁ,~ 4 ) x ez][) pArA <_igﬁ,. S+ b x ez]j) )

In Egs. (C6), (C7), and (C9), the first term in each equa-
tion gives the dominant contribution which can be efficiently
evaluated by employing the electron-only tight-binding de-
scription (13). Nevertheless, we emphasize that it is also
possible to include higher-order terms to systematically im-
prove quantitative accuracy when necessary.

APPENDIX D: EFFECTS OF ELECTROMAGNETIC
FLUCTUATIONS IN THE TIGHT-BINDING MODEL

We examine here the effects of electromagnetic fluctua-
tions fi;; in the transformed frame by comparing the results
of the electron-photon tight-binding Hamiltonian [Eq. (11) in
the main text] and its electron-only part,

A e = ) tijlwi) (wj]. (D1)

(ij)

i£? U
= ﬁ[(p + fik) x ez]j) |uy)

L. 8 U
R — ﬁ[(]’"‘ lik) x ez]j)’unk)

(€9

(

Figure 5 compares the results obtained from these two tight-
binding Hamiltonians. Each panel corresponds to (a) the phase
boundary, (b) Berry curvature, and (c)—(e) energy spectra of
the honeycomb model, respectively. The parameters are cho-
sen in the same manner as in Figs. 1, 3, and 4 in the main
text. These comparisons demonstrate that the electromagnetic
fluctuations in the transformed frame only lead to minor mod-
ifications, and qualitative features in the low-energy physics
can be well captured simply by its electron-part Hamiltonian
(D1), where the photon degrees of freedom are completely
eliminated.

APPENDIX E: DETAILS OF THE CONVENTIONAL
ANALYSIS USING THE MINIMALLY COUPLED DIRAC
HAMILTONIAN

We provide the technical details about the conventional
analysis using the minimally coupled Dirac Hamiltonian
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o A site
o B site

a=1

FIG. 6. Honeycomb tight-binding model in Eq. (E1). Solid and
open points represent A- and B-sublattice sites, respectively. Here,
ea) 1s the on-site energy of each sublattice A (B), and ¢ is the
hopping amplitude to the nearest neighbors.

considered in the main text. To derive the Dirac Hamiltonian,
we start from the following honeycomb tight-binding model
constructed from H = p?/2m + V (r) with the potential (14)
in the main text:

A= Z (ealw? s f(wia| + es|w p)wi's|)

i

o

1st nearest neighbors

t(Jwfafw]g| + [whg)wia]), (ED

where [}, ) denotes the Wannier orbital localized at the
sublattice A (B) in the ith unit cell. Here, e4(g) is the on-site
energy of the sublattice A (B), and ¢ is the hopping amplitude
to the first nearest neighbors (see also Fig. 6 below). In the ba-
sis of two-component spinors (|¥.4), |k 5)) corresponding
to the Bloch states on the two sublattices, this tight-binding
Hamiltonian becomes

Ak) = A ;831} 4 ;83@
+ Y lcos(k - 7))6, —sin(k - 1)6,],  (E2)
i=1,2,3

where 6; (i = x, y, z) are the Pauli matrices and 7; (i = 1, 2, 3)
are the three displacement vectors from an A site to its three
nearest-neighbor B sites. By expanding Eq. (E2) around the
two Dirac points [K = £(b,/3 + b,/3)], we obtain the fol-
lowing massive Dirac Hamiltonians:

EAt+EB, €A —EB

HDirac (k) ) 12 + ) 62

ﬁ(k 6, + kyby). (E3)

The minimally coupled Dirac Hamiltonian A, Dlr (k) can then
be obtained after replacing the wave vector k in Eq. (E3) by
— (q/MA:

Rk e
Dlrac(k) 2 D) BI2+ A BO'z‘i‘ha)cCl a
3t A, A
f . 94 k _qhy 5|,
2 h h
(E4)

where A is the vector potential operator defined by Eq. (2) in
the main text. In the phase diagram of the honeycomb model
(Fig. 1 in the main text), we determine the phase boundary of
the minimally coupled Dirac Hamiltonian (E4) by locating the
coupling g at which the energy gap above the lowest electron-
polariton band closes. We also evaluate the Chern number
(inset of Fig. 1 in the main text) by integrating Berry curvature
of the lowest electron-polariton band over a sufficiently large
area and summing up the contributions from the two Dirac
points.

APPENDIX F: DETAILS OF THE EXACT ANALYSIS

We provide here the technical details about the exact anal-
ysis performed in the main text. To obtain exact results at
ultrastrong coupling strengths, we use the continuum Hamil-
tonian in the AD frame (8) as

~2
. L
L +m<a'a+—)

Zmeff 2
g2 . -
4 Z VGeiGre%GﬁXezElSGJ[. (Fl)
G

The matrix elements of HY = e * AV e* with respect to
|[K®n), which is the tensor product of the plane wave with
wave vector K € Zb; + Zb, and photon number eigenstate
|n), are given by

(K®nH K ®@n')
_ (K +k)?

1
Sk + 11+ = )6
2Meft KK+ <l’l + 2)

L3y, L IGxK+h)): g Gy 150}
E Ge? K.K'+G X (n|e n’).  (F2)
G

We can perform the exact diagonalization of I-?,gj to obtain its
spectrum and eigenstate |u,’{k) at the expense of high compu-
tational costs.

To evaluate the Berry curvature (12), we start with the
equivalent expression (4) in the Coulomb gauge. We first
rewrite it as

BS(k)=—21Im Z
m#n

<”Sk ‘ Ok, ﬁkc ’”gm)(“ik ’ O, ﬁkc ’ ”5k>
(8nk - Emk)z

. (F3)

where g, is the nth eigenvalue of HE =e * Hce*r. Since
|u$,) and [uY) are related via Eq. (Cl), we can Tewrite
(S, IVHE[u€, ) in Eq. (F3) in terms of Bloch states in the AD
frame as

. p+ ik — gA
vl =l (PN

- h(u;fk\<”+hk - ﬁ) Yy, (F5)

Meff m

With Egs. (F3) and (F5), we obtain the following expression
of Berry curvature BS (k), which is used in evaluating the exact
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Berry curvature in Fig. 3:

Prtliky

- %)|”%k>(”%k|(% -

%) |url1]k)

C 2 (Mll’ljk| < Mefr
BS(k) = —2h*Im Z
m##n

Finally, we compare the computational cost of the exact
diagonalization (ED) method with our effective description
based on the tight-binding model. In practice, to implement
the numerical ED with the matrix elements (F2), we have
to introduce a cutoff N°”’ € Z_ for the electron (photon)
states and consider the Hilbert space spanned by |K ® n) =
Imiby + maby, ® n') with —N? < m; < N¢ and 0 < n < N/
The dimension of the Hilbert space in the ED is then given
by D = 2N; + 1)? x N?, and the computational cost of each
ED scales as O(D?). Meanwhile, the dimension of the Hilbert

F6
(Snk — Emk )2 ( )

(

space D' in our effective model (11) is do, x NY, where dog, is
the number of tight-binding orbitals in the unit cell. Since D’
is much smaller than D, our framework allows one to signifi-
cantly compress the relevant Hilbert space and to numerically
evaluate physical quantities in a much more efficient way
than the ED. For instance, in the massive honeycomb model
explained in the main text, we can confirm the convergence
of the energy spectra in the ED by choosing N¢ = 7, N/ = 4
corresponding to D = 900, while in our effective model, it
suffices to choose doyp, = 2, NY = 4 corresponding to D’ = 8.
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