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Enhancing superconductivity with resonant antishielding and topological plasmon-polarons
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By employing ab initio Migdal-Eliashberg calculations, we predict a fourfold enhancement of the supercon-
ducting critical temperature of MgB2 when proximity-coupled to the topological crystal Bi2Se3. We support this
result with calculations using the general Leavens scaling method. We show that this effect is a result of dynamic
resonant antishielding of Cooper pairs by plasmon-polarons of Dirac electrons in the topological crystal. Our
calculations show that such superconductivity enhancement varies strongly with Coulomb coupling between
plasmon- polarons and Cooper pairs, with a pronounced maximum of Tc at a critical value of the coupling
parameter. This feature is universal, and so can occur in other superconductor-topological crystal combinations,
including with nonphonon mediated superconductors. We discuss methods to experimentally optimize the key
coupling parameter.
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I. INTRODUCTION

Increasing the critical temperature Tc of superconductivity
toward room temperature has been a type of holy grail of
physics. Discovery of the cuprate superconductors in the late
1980s, with Tc up to 92 K, rekindled the field, and raised
hopes that room temperature could be in sight. Cuprate Tc was
increased to 133 K [1] by 1993, but has since stalled there.
Despite intense effort, similar sluggish progress has been
made on the theoretical front, with the origin of cuprate su-
perconductivity remaining insufficiently clear still today. Even
though carrier bosonization remains a key concept, the pairing
mechanism seems more subtle than the Bardeen-Cooper-
Schrieffer (BCS) electron-phonon-electron interaction. In an
early paper, Ginzburg and Kirzhnits [2] argued that there are
no physical limits to prevent room temperature operation of
BCS superconductors.

Separately, following an early reformulation of BCS theory
in terms of an effective dielectric function [2,3,4], metallic
metamaterials have been proposed to increase Tc by control-
ling the dielectric environment [5,6]. These can customize
a dielectric response to obtain exotic optical properties [7],
and were engineered to produce a small effective dielectric
function, potentially capable of Cooper pair enhancement
via antishielding. However, due to the locality of metamate-
rial dielectric response, only marginal Tc enhancements were
observed [5,6]. Here, we demonstrate theoretically that dra-
matic Tc enhancements are possible via resonant antishielding
(RAS), induced in the plasmon-polaron mode of the Dirac
electrons on the surface of a topological crystal (TX) coupled
to a superconductor, as sketched in Fig. 1.

*Corresponding author: kempa@bc.edu

II. RESONANT ANTISHIELDING

To illustrate the basic physics of antishielding, we begin
with the standard model of a dressed electron-electron in-
teraction in a jellium metal [8], containing the basics of the
Migdal-Eliashberg theory:

Vq

ε
+

∣∣∣∣gq

ε

∣∣∣∣
2 2ωq(

ω2 − ω2
q

) + iδ
= Vq

εeff
, (1)

where Vq = 4πe2/q2 is the bare electrostatic potential, ε the
dielectric function of the environment, gq the matrix element
for electron-phonon scattering, averaged over all electronic
states, ωq the phonon dispersion, and iδ a small constant loss
factor. The first term in is the screened electron-electron inter-
action, and the second, Fröhlich term is the electron-electron
interaction mediated by phonons with frequency ωq. Cooper
pairing can occur at frequency ω ≈ ωq, with the wave vector q
of the order of kF (Fermi). Eq. (1) also shows that pairing can
be strengthened by making |ε| < 1, i.e., antishielding, which
represents enhancement, rather than suppression (shielding)
of the interactions. RAS can occur if |ε| � 1. For a typical
superconductor, ε > 1 and thus, antishielding is impossible
without some additional mechanism. Similarly, conventional
metamaterial structures cannot provide a RAS effect since,
while vanishing of ε at ω ≈ ωq is possible, achieving this
at q ∼ kF is exceedingly difficult, as this would require the
smallest structured feature sizes to be of the order of 1/kF [9].
Only surface roughness could provide such a minute corru-
gation. Also, the screening is much stronger for the Fröhlich
term in Eq. (1); any more realistic treatment would require
spectral averaging which, as a result of ε changing sign about
the vanishing point, would lead to cancellations in the first
term ∼ 1/ε, and accumulations for the second, which goes as
1/|ε|2. The same holds for antishielding, including RAS.
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FIG. 1. (a) Superconductor (SC)-topological crystal (TX) su-
perlattice structure designed to exploit the proposed resonant
antishielding (RAS) effect produced by a surface plasmon-polaron.
(b) Expanded view of the superlattice, also indicating the de-
caying amplitudes of the electric field (dashed lines) produced
by the plasmon-polaron mode propagating (yellow arrows) along
each interface. (c) Alternate structure containing additional phonon-
modifier films. Note that, due to the topological proximity effect,
plasmon-polaron modes occur at the interfaces of the modifiers with
the superconductor.

Another strategy to achieve RAS lies in the fact that
Maxwell’s equations allow for the existence of longitudinal
plasmon modes for which ε(q, ω) = 0. However, conven-
tional plasmon modes occur in a sector of phase space far
from the required ω ≈ ωq with q of the order of kF . Recently,
an unusual plasmonic α mode” was observed in the topo-

logical crystal Bi2Se3 [10], in that required phase space.
The dispersion curve for this mode is close to linear, ω ∝ q
[Fig. 2(a)] and is clearly not a pure phonon mode, since it
crosses the Brillouin zone (BZ) edge without any momentum
Umklapp [10]. The most striking observation was that this
mode remains strong and extremely weakly damped, with
damping rate and intensity almost constant for 2kF < q < 6kF

[11]. All other known plasmon modes are unobservable in that
range. An interesting observation was that in the nontopologi-
cal form of Bi2Se3, this α mode disappears and is replaced by
a conventional, transverse acoustic phonon mode [Fig. 2(a)].
The new acoustic phonon mode has a standard dispersion,
close to that of the α mode in the first BZ [10].

A recent theoretical study [11] is consistent with these dis-
coveries. It shows that the α mode is a plasmon-polaron [12],
a hybrid of plasmon excitations of Dirac surface electrons,
and a transverse acoustic phonon mode. This α mode has
topological character, with collective spin-charge fluctuations
of the topological two-dimensional (2D) Dirac band states at
the surface. Reference [11] demonstrated that the α mode has
near perfect suppression of forward and backward scattering,
resulting in ultralow damping, and an absence of Umklapp
scattering at the BZ boundary. This α mode is similar to
the phonon-polariton mode, a hybrid of photon and phonon
excitations. To obtain the dispersion relation for the polariton
[13], one starts with the dispersion relation for photons, ω =
qc/

√
ε, and replaces ε with the Lyddane-Sachs-Teller phonon

formula [14], ε = εeff = ω2
LO−ω2

ω2
T O−ω2 . By analogy, one can derive

the dispersion for the plasmon-polaron by starting with the
dispersion for the topological 2D Dirac plasmon [11], which
contains Vq = Vq/ ε. We assume that ε = εeff , except now
εeff is given by Eq. (1), with ε = ε̄ (background dielectric
constant). In the limit of interest in this work (q∼kF and
ω∼ωq), one gets

εT I (q, ω) ≈ 1 + κ|gq|2 2ωq(
ω2 − ω2

q

) + iδ2
≈

(
ω2 − ω̄2

q

)
(
ω2 − ω2

q

) + iδ2

(2)

FIG. 2. (a) Collective modes of the 2D Dirac electron gas on the surface of a topological crystal Be2Se3 (interpolated from experimental
data of Ref. [10]): α− mode (blue line), acoustic phonon mode (red line). BZ - Brillouin zone. (b) Calculated dielectric function of the 2D
Dirac electron gas using Eq. (3) with a step model of α2F , and assuming κ = 1. Solid line: real part, dashed line: imaginary part.
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with dimensionless parameter (of order 1) κ ∼ kF /ε̄ 2 > 0,
where kF is the Fermi wave vector of the surface electrons
in Bi2Se3, and the plasmon-polaron frequency is given by
ω̄2

q ≈ ω2
q−2κ|gq|2ωq, and so ω̄q < ωq. This frequency is

confirmed by experiment [11] and theory [12]: the plasmon-
polaron mode is negatively depolarization-shifted, i.e., it
follows the phonon mode in the first BZ, but always at fre-
quencies lower than the phonon mode [see Fig. 2(a)].

III. MODEL AND CALCULATIONS OF Tc

Consider now a superconductor film sandwiched between
two TX slabs, as sketched in Fig. 1. We assume that the
superconductor is sufficiently thin (tsup < 1/q ∼ 1/kF ), so
that RAS is uniformly extended throughout the superconduc-
tor. The topological proximity effect, discussed below, can
significantly relax this requirement [15]. Then, the effective
dielectric function experienced by electrons in the supercon-
ductor is given by ε̄sup(q, ω) ≈ εsup + [εT I (q, ω) − 1], where
εsup is ε of the bulk superconductor, of order 1 in the required
domain of phase space, and the term in the square parenthe-
ses is the polarizability of the Dirac surface electrons of the
topological Bi2Se3.

Phonons of the superconductor control the behavior of
the plasmon-polaron, and we generalize Eq. (2) by relaxing
the jellium assumption and by including all relevant phonon
bands. Then, with εk the electron energy, gkk′ν the general-
ized matrix element for scattering between electronic states
k and k′ through a phonon with q = (k

′ − k, ωqv) in phonon
branch v, and δ → 0+, ε̄sup becomes

ε̄sup(ω)

εsup
= ε̃sup(ω) = 1 − κ

{
α2F (ω)ln

∣∣∣∣ωmax − ω

ωmin − ω
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+

∫ ωmax

ωmin

[
α2F (ω̄) − α2F (ω)

ω̄ − ω
+ α2F (ω)

ω̄ + ω

]
dω̄

+ iπα2F (ω)

}
, (3)

where we use the renormalized, dimensionless Eliashberg
function α2F (ω).

We can estimate the expected value of κ from experi-
ment, by considering Bi2Se3 interfacing vacuum, in which
case the phonon spectrum of Bi2Se3 controls the physics of
the plasmon-polaron. Here, we model the Eliashberg func-
tion with a single dominant peak as a rectangle of height
α2F (ω) = 1 in the range ωmin < ω < ωmax, and α2F (ω) =
0 otherwise. Then, using Eq. (3), we obtain the result
in Fig. 2(b) by assuming that κ = 1. This is in quan-
titative agreement with the experimental result shown in
Fig. 2(a) at q = 0.53 Å−1, which represents the maximum
observed frequency difference, with 
 = ωq−ω̄q

ωq
≈ 20%.

Since κ can be varied, we use it as an adjustable param-
eter in our present calculations. The Eliashberg function
is screened, as is the generalized matrix element |gkk′ν |2,
i.e., α2F (ω) = α2F (ω)/|ε̃sup(ω)|2. As mentioned, RAS oc-
curs for |ε̄sup(ω)| � 1, and it strongly enhances the screened
Eliashberg function. This is the main effect of RAS, and the
next step is to calculate Tc from this screening-renormalized
Eliashberg function. We first employ the ab initio solver

based on a direct solution of the coupled Eliashberg equations
[16,17]. To calculate Tc, we solve directly the Eliashberg
equations in Ref. [18]. The electron-phonon coupling function
λ is computed from α2F . Above the transition temperature,

 vanishes. For the isotropic solver, we could choose to
shield or to anti-shield α2F . In principle, the same can
be done for the anisotropic case. However, while only the
anisotropic theory correctly predicts the observed two-gap
superconductivity in MgB2, it is also known to overestimate
Tc in the absence of screening. Since the isotropic solver
underestimates Tc by about the same fraction, we conserva-
tively chose this solver for studying antishielding, and the
fully anisotropic solver only to validate our code. Thus, our
calculation with screening/RAS is expected to lead also to an
underestimation of Tc, and consequently the ratio of Tc, with
and without screening, is a rational way to quantify the super-
conductivity enhancement. Further details can be found in the
Supplemental Material.

To support our ab initio calculations, we apply also the
Leavens scaling method [19]. In contrast to many others
(see [16]), this method is valid (as is ab initio) for arbitrary
strength λ = ∫ ∞

0
α2F (ω)

ω
dω, required while dealing with RAS.

The scaling method estimates not Tc, but its upper limit, i.e.,
T max

c = c(μ∗)
∫ ∞

0 α2F (ω)dω. The term c(x) is a monotoni-
cally decreasing function of x (see Ref. [19]) and the Coulomb
pseudopotential is

μ∗ ≈ N (μ)U

1 + N (μ)U ln
(

εF
h̄ω̄q

) , (4)

where εF is the Fermi energy, and U is the double Fermi sur-
face average of the screened Coulomb potential. Here,ln( εF

h̄ω̄q
)

typically ranges from 5 to 10, and N (μ)U � μ∗. Thus, one
can approximate Eq. (4) with μ∗ ≈ μ∗ ≈ 1

ln( εF
h̄ω̄q

)
, i.e., inde-

pendent of ε̃sup(ω). The general formula for T max
c including

antishielding, is given in this method by

T max
c = c(μ∗)

∫ ∞

0
α2F (ω)dω = c(μ∗)

∫ ∞

0

α2F (ω)

|ε̃sup(ω)|2 dω

= c(μ∗)

κπ

∫ ∞

0
Im

(
1

ε̃sup(ω)

)
dω. (5)

IV. APPLICATION TO MgB2

We apply both calculational methods to MgB2, the ac-
knowledged highest Tc BCS-type superconductor (at ambient
pressure), interfaced with Bi2Se3. We assume that phonons
of MgB2 control also the plasmon-polaron, and employ the
ab initio-calculated α2F (ω), with μ∗ = 0.16 [18,19]. Fig-
ure 3(a) shows the resulting Tc versus κ (red-solid circles),
calculated by ab initio solving the Eliashberg equations, and
assuming a uniform field of the plasmon-polaron Bi2Se3

inside MgB2 (sufficiently thin film of MgB2). For κ = 0
(absence of screening), the calculated Tc of 23 K is substan-
tially lower than the experimental result of Tc = 39 K. The
anisotropic calculation yields Tc = 54 K (open circle), i.e.,
substantially larger than experiment. Tc steadily increases with
increasing κ , for κ = 1.3 has its maximum of ∼ 100 K, and
after that, rapidly decays. At the maximum, there is about
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FIG. 3. (a) Calculated superconducting critical temperature Tc vs coupling parameter κ using the isotropic ab initio Eliashberg equations
solution method for MgB2, proximity coupled to Bi2Se3 (solid circles). Lines represent T max

c vs κ obtained from the Leavens scaling method,
for different quenching parameters ζ : 0 (blue line), 0.005 (red line), 0.008 (green line), and 0.01 (black-line). Open circle at κ = 0 is for
the anisotropic case (see text). Arrow indicates experimental Tc. (b) T max

c vs κ obtained from Leavens scaling for the YBCO- Bi2Se3 -MgB2

structure, for different quenching parameters ζ = 0.01 (dashed-red line), 0.05 (purple line), 0.1 (blue line), 0.15 (red line), 0.2 (black line), and
0.25 (green line).

fourfold enhancement of Tc, as compared to the case without
screening (κ = 0).

Figure 3(a) shows also the T max
c versus κ result (solid

lines) obtained from Eq. (5), i.e., employing Leavens scaling.
Surprisingly, T max

c = 43K at κ = 0, is much closer to the
experimental result than the ab initio result, but the overall,
qualitative shapes of all the scaling curves are the same.
In fact, these curves are quite close to the ab initio result,
with a significant departure only at the critical κ = 1.3 [see
Fig. 3(a)]. This divergence results from the fact that at the
RAS condition, ε̃sup(ω) nearly vanishes, which can lead to a
near singular behavior of the screened Eliashberg function.
While the ab initio calculations seem unaffected by the prob-
lem, the scaling is affected. To remedy this, a small residual
imaginary contribution iζ (e.g., impurity scattering) can be
added to ε̃sup(ω), given by Eq. (3). The solid lines in Fig. 3(a)
are calculated by varying ζ . Clearly, the main effect of this
correction is to soften the divergence, and to drive the T max

c
curves closer to the ab initio result. The overall qualitative be-
havior of the curves in Fig. 3 can be understood analytically by
using a toy model which employs εT I (q, ω) given by Eq. (2)
as ε̃sup(ω) in the very last part of Eq. (5). The resulting ap-

proximate formula is T max
c ∼ [(ω2

q−κ )2 + δ4]
−1/4

. For κ = 0,

it gives a finite result, at κ = ω2
q it reaches a sharp maximum,

and for κ → ∞, it vanishes. These are the characteristics of
all curves shown in Fig. 3.

Analysis of the above calculations indicates that further
increasing of Tc by RAS is possible, if the superconductor
phonon spectrum is not simultaneously controlling the Cooper
pairing and the plasmon- polaron. This dominance of MgB2

phonons forces (by the Kramers-Kronig relations) the near
vanishing of ε̃sup(ω) into the spectral domain of the nearly
vanishing Eliashberg function. One intriguing possibility to
avoid that would be to sandwich a TX (e.g., Bi2Se3) with
a nonphonon mediated superconductor (e.g., YBCO) on one

side, and a phonon robust material (e.g., MgB2) on the other.
We consider such a case by: (a) using an experimentally-
retrieved Eliashberg function for YBa2Cu3O7−δ (YBCO) [20]
with c(μ∗) = 0.2; (b) by calculating the dielectric response
from the ab initio-calculated Eliashberg function for MgB2

[using Eq. (3)]; and (c) by applying Leavens scaling. Sur-
prisingly again, for κ = 0, T max

c ≈ 80 K, close to the
92 K experimental value for YBCO, even though c(μ∗) =
0.17 was chosen from the typical BCS range. As expected,
the scaling method predicts diverging T max

c at the critical point
(again, near κ = 1.3), and to quench it, we use (as before)
iζ . Figure 3(b) shows T max

c vs. κ for this case, with each
line calculated for a different ζ . The T max

c divergence, clearly
visible on the curve for ζ = 0.01, is strongly damped for
ζ = 0.05, and completely disappears for ζ � 0.1. By analogy
to Fig. 3(a), one might expect the line for ζ = 0.1 is not far
from the Tc vs κ line and therefore [based on Fig. 3(b)], this
structure might provide superconductivity at Tc > 300 K.

V. DISCUSSION AND CONCLUSION

The dimensionless coupling parameter κ can be controlled,
e.g., through kF (by adjusting the doping level in the plasmon-
polaron host) and/or through ε̄ (by changing the superlattice
materials and/or dimensions). In addition, such Tc engineering
might benefit from the topological proximity effect [15], at the
surface of the TX TlBiSe3 coated with superconducting Pb. It
was shown that the topological state of the crystal extends up
to 20 monolayers into the superconductor, without any admix-
ing. This effect is expected to improve the plasmon-polaron
penetration into the superconductor films of the superlattice,
as well as could increase the efficiency of the phonon modifier
layers.

Further possible architectures include natural or engi-
neered bulk SC-TX layered materials, wherein the properties
of the superconductor are modulated by the properties of
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the proximate TX. For example, the cuprates consist of
hole- or electron-doped CuO2 layers sandwiched by non-
conducting layers (e.g., yttrium- or bismuth- oxide). One
could consider synthesizing cuprate systems modified to
incorporate known TX layers (e.g., chalcogenides). Simi-
larly, many organic superconductors are comprised of 2D
superconducting layers sandwiched by nonconducting lay-
ers, the latter of which might be engineered to have
TX character. The same in situ strategy could be applied
to MgB2, a BCS superconductor with very large, relevant
phonon frequencies. Such incorporated topological modifica-
tions could produce atomic/molecular layers functioning as
charge reservoirs as well as providing the Tc-enhancing RAS
effect. These kinds of systems could facilitate high tempera-
ture superconductivity in multiple physical forms, from single

crystalline to nanocrystalline / ceramic, so long as the core
TX−superconductor−TX character was preserved.

In conclusion, we have demonstrated that a plasmon-
polaron residing at the surface of a topological crystal
interfaced with a superconductor can resonantly antishield
Cooper pairs in the superconductor. This antishielding occurs
regardless of the pairing mechanism, and leads to multifold
enhancement of Tc.
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