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Anomalous coherence length of Majorana zero modes at vortices
in superconducting topological insulators
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The coherence length of two Majorana zero-energy modes in a p-wave topological superconductor is inversely
proportional to the superconducting order parameter. We studied the finite size effect of the Majorana zero
modes at vortices in a topological insulator/superconductor heterostructure in the presence of a vortex and
found that the coherence length of the two zero-energy modes at the terminals of a vortex line is independent of
the superconducting order parameter and determined by the intrinsic properties of the topological insulator. This
anomalous property illustrates that the superconducting topological insulator is topologically distinct, contrary
to a p-wave topological superconductor.
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I. INTRODUCTION

The search for Majorana zero modes in topological phases
has generated extensive interest in condensed matter physics
and material science [1–8]. The Majorana zero modes in
a topological superconductor carry zero energy and obey
non-Abelian statistics. Their occupancy can form the topo-
logical degeneracy of the ground states of the system, which
are expected to have potential application for fault tolerant
topological quantum computation [9–11]. In their pioneer-
ing work, Fu and Kane [12] proposed that the proximity
effect between an s-wave superconductor and the surface
electrons of a strong topological insulator leads to a time-
invariant superconducting state resembling a spinless px ± ipy

superconductor. They proposed that this interface supports
Majorana bound modes at vortices. Over the past decade, this
proposal has attracted significant attention and become one
of the main prototypes to construct and to engineer a phys-
ical system to host the topological excitations [13–22] and
to understand the zero-energy modes observed in iron-based
superconductors [23–35]. However, the search for Majorana
zero modes is meeting great difficulty and challenge espe-
cially in experiments.

The time-reversal-invariant superconductor with spin-orbit
coupling belongs to symmetry class DIII and in two dimen-
sions is characterized by a Z2 topological invariant [36–38].
The topologically nontrivial phase hosts a pair of helical Ma-
jorana modes on its edge [39–42]. Theoretically, it can be
realized by considering the spin-triplet superconducting pair-
ing with odd-parity or extended-s-wave pairing which flips
its sign when it evolves across the Brillouin zone. Based on
the odd-parity superconductivity criterion [40,43], the strong
topological insulator in contact with an s-wave supercon-
ductor is topologically trivial without edge modes, which is
distinctly different from the chiral p-wave topological super-
conductor [44,45]. The existence of the zero-energy vortex
mode in this system is associated with the Atiyah-Singer
index theorem which clarifies the correspondence between
the vorticity of the vortex and the number of the localized

zero-energy modes for the surface states [46–48]. It heavily
relies on the validity of the topological insulator’s surface
states and the presence of the chiral symmetry. Furthermore,
the chemical potential enters into the Bogoliubov–de Gennes
(BdG) equation in a nontrivial way and breaks the chiral
symmetry explicitly that the index theorem does not apply
here. There arises the question of how the tunneling between
two surfaces lifts the degeneracy of the Majorana modes in a
thin film for a finite chemical potential.

In the present work, we investigate the finite size ef-
fect of the Majorana zero-energy modes in vortices in the
topological insulator/superconductor (TI/SC) heterostructure
depicted as Fig. 1(a). In the presence of the superconducting
vortex the two Majorana modes are present and connected
through the bulk topological insulator along the vortex when
the chemical potential μ is lower than a critical value μ <

μc. The energy splitting of the two modes decays expo-
nentially with the thickness and the coherence length only
depends on the intrinsic properties of the topological insulator
and is independent of the superconducting order parameter.
As a comparison, we also present the results for the semi-
magnetic topological insulator/superconductor (SMTI/SC)
heterostructure depicted as Fig. 2(a), which is equivalent to a
p-wave topological superconductor when the chemical poten-
tial locates within the magnetic gap of the top surface states.
The two Majorana modes reside at the vortex core and at
the boundary separately and their coherence length is equal
to the superconducting coherence length, which is a typi-
cal signature of a p-wave topological superconductor. Thus
the anomalous coherence length in the TI/SC heterostruc-
ture indicates that the pair of the zero-energy modes at the
vortex core is attributed to the winding number of the su-
perconducting order parameter, not to the p-wave topological
superconductivity.

II. TI/SC HETEROSTRUCTURE

We start with a minimal bulk model for a three dimen-
sional topological insulator Hk which supports gapless surface
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FIG. 1. TI/SC heterostructure in the presence of a superconducting vortex. (a) Schematic with two zero-energy modes bound to a vortex
line. Lz denotes the thickness of the sample. (b) Z2 topological invariant as a function of μ. (c) The dispersions of a quasi-1D system at different
values of μ. The blue-to-red color gradient indicates the radial probability distribution for each band with the vortex line at the origin. The blue
colored bands correspond to the dispersions for the vortex bound states. (d) Energy spectrum and the wave function for the zero-energy modes
for open boundary conditions. (e) Plot of the finite size induced gap between the surface states at kx = ky = 0 as a function of the thickness
Lz = Nza with a as the lattice constant. (f) For μ = 0, the evolution of the energy of the vortex bound states with respect to the thickness Nz. (g)
The energies of the vortex states as a function of μ. For Nz = 8, Nx = Ny = 50 and for Nz = 9, 10, Nx = Ny = 40. Parameters are � = 0.05,
h̄v = 0.4, B = 0.5, and m = 0.28.

states [3]. The numerical calculation is based on a tight-
binding model on a cubic lattice and the analytical study is
based on the continuum model in the long wavelength ap-
proximation that the lattice Hamiltonian is expanded in terms
of the wave vector k to the second order around � point,
Hk = vρxk · σ + M(k)ρz − μ, where M(k) = m − Bk2, the
Pauli matrices σ and ρ are acting on spin and orbit space,
respectively [3,5,49], v, m, B are the material parameters, and
μ is the chemical potential. In proximity to an s-wave su-
perconductor, a finite superconducting pairing � is induced
in the three-dimensional topological insulator, which leads to
the BdG Hamiltonian HBdG

k . Based on the odd-parity super-
conductivity criterion, HBdG

k is topologically trivial without
gapless edge modes around the system [40]. In the presence
of a vortex in z direction, � → �(r)eiθ , with (r, θ ) as the
in-plane polar coordinates with respect to the vortex core, the
translational invariance along z direction persists, and kz is still
a good quantum number. The problem becomes classifying
the gapped phases in quasi-1D whose unit cell consists of
all the sites in xy plane. Due to the lack of time reversal
symmetry, it belongs to symmetry class D and is characterized
by a Z2 invariant ν, which is defined as the product of signs
of Pfaffians of the antisymmetric and real BdG Hamiltonians
in the Majorana representation at two time reversal invariant
momenta kz = 0, π [37,50]. With increasing μ, the quasi-1D
system transitions into the trivial phase via a quantum critical
point μ = μc � v

√m
B at which ν changes from −1 to +1 as

shown in Fig. 1(b). In Fig. 1(c), we also present the numerical
results of the evolution of the dispersion under the variation of

μ. The results reveal that the vortex line is fully gapped except
at μ = μc, where a vortex phase transition takes place [51].
For ν = −1 (μ < μc), the quasi-1D system is topological
nontrivial and there exists a single 0D zero mode at each
end of the termination along z direction [51,52] as shown
in Fig. 1(d). In order to estimate the energy splitting of two
vortex line end states for finite thickness Lz, we derive the
effective Hamiltonian for the vortex line. By projecting onto
the two states centered at the vortex line which is denoted by
the darkest of blue color in Fig. 1(c), we obtain the effective
dispersions (see Appendix B)

Heff = −F
(
k2

F ξ 2
)[(

m̃ − Bk2
z

)
νz + vkzνy

]
, (1)

where m̃ = m − Bk2
F − B

ξ 2 is the renormalized mass with kF =
μ/v and ξ = v/�, νi are Pauli matrices acting on the pro-
jected two bands, and F (x) = [−E(−x)

x+1 + K(−x)]/[E(−x) −
K(−x)] is a monotonically decreasing function, where K and
E are the complete elliptic integral of the first and second
kind, respectively. The superconducting pairing only enters
into an overall energy renormalization function F , which
can be factored out without changing any of the topological
properties. Then, the effective Hamiltonian (1) resembles the
1D Su-Schrieffer-Heeger model [53] instead of the 1D topo-
logical Kitaev chain in which the p-wave pairing is linear
in momentum [54]. Consequently, when m̃B > 0, the vortex
line Hamiltonian is topologically nontrivial. At m̃ = 0, which
corresponds to a critical chemical μ = μc, the gap vanishes,
signaling a topological phase transition which is consistent
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FIG. 2. SMTI/SC heterostructure. (a) Schematic of the zero-energy modes residing in the vortex core and the boundary. (b) In the absence
of vortex, the Chern number N of the quasi-2D system as a function of μ. (c) The quasi-one-dimensional band structure for μ for Nz = 10 and
Ny = 100. The distribution of the wave function along the z direction indicated by the scale from blue to yellow color. (d) The energy spectra
for the open boundary condition and the illustration of the spatial probability distribution |
(x, y, z)|2 of zero-energy state and the chiral state
for a 30 × 30 × 18 lattice. (e) At μ = 0, the energy for the lowest energy mode as a function of Nz for different Nx and Ny. (f) For finite μ, the
energy for the lowest energy mode as a function of Nx and Ny for Nz = 10. The singularity points in the logarithmic plot due to the oscillation
are indicated by the vertical dashed lines. Parameters are � = 0.05, h̄v = 0.4, b = 0.5, and m = 0.28. The exchange field Vz = 0.1 is added
to top three layers.

with the Z2 topological invariant. From Eq. (1), we can obtain
the energy splitting for the zero-energy modes

δE = 4m̃vF
(
k2

F ξ 2
)

√
4Bm̃ − v2

∣∣∣∣∣sin

(√
4m̃B − v2

2B
Lz

)∣∣∣∣∣ exp

(
−vLz

2B

)
.

(2)

For the chemical potential μ ∼ 0 or in the strong pairing
limit kF ξ � 1, we have F (k2

F ξ 2) � 1 and m̃ � m; the energy
splitting is independent on the superconducting pairing and
recovers the finite size effect for the surface state of topo-
logical insulator [55,56]. As shown in Fig. 1(f), the energy
splitting of the zero-energy states based on tight-binding nu-
merical calculations quickly saturates when the size of the
slab is much large than the superconducting coherence length
Lx, Ly � ξ and features an oscillating exponential decay with
increasing the thickness of the sample, which agrees well
with the analytic expression. For μ �= 0, since the chemical
potential enters into the oscillating function sin(

√
4m̃B−v2

2B Lz )
through the renormalized mass m̃, the energy splitting is also
sensitive to μ besides the thickness of the sample as shown
in Fig. 1(g). For large μ or the weak pairing limit kF ξ � 1,
F (k2

F ξ 2) � ln(4kF ξ )−1
k2

F ξ 2 shows a power-law decrease of kF ξ .
Due to the presence of this prefactor, the finite size effect is
strongly suppressed.

This energy splitting can be understood from aspects of
top and bottom surface states with superconducting pairing by
means of the index theorem [57–59]. The Dirac surface states
of strong topological insulator thin films can be described
by hsurf

k�

= v�z(k� × σ)z + t�x − μ, where k� = (kx, ky, 0) de-
notes the in-plane wave vector, t is the intersurface tunneling,
and the Pauli matrices � and σ denote surface and spin degrees
of freedom, respectively.. In combination with the supercon-
ducting pairing, the BdG Hamiltonian is H surf

BdG(k�) = τzhsurf
k�

+
�τx, which belongs to the Altland-Zirnbauer symmetry class
DIII and is classified by a Z2 topological invariant. This
system has the mirror symmetry Mz = i�xσz with M2

z = −1,
which reflects the top surface to the bottom surface. After a
uniform π/2 rotation around �yσz, the full BdG Hamiltonian
can be decoupled into the direct sum of two mirror sectors
Hχ

k�

with mirror eigenvalue as iχ . The two subblocks are

particle-hole partners of each other: τyσxHχ∗
k�

σxτy = −H−χ

−k�

.
Each subblock breaks particle-hole symmetry explicitly and
possesses the chiral symmetry {C, Hχ

k�

} = 0 with C = τy and
thus belongs to the class AIII. In two spatial dimensions, the
topological classification for class AIII is trivial [36]. In the
presence of a vortex, the pertinent Hamiltonian for μ = 0
becomes

Hχ = χτz[−iv(σy∂x − σx∂y) + tσz] + �(cos θτx + sin θτy),

(3)
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where k� is replaced by −i(∂x, ∂y). Note that the five four-
dimensional Hermitian matrices anticommute with each other
and the interface tunneling term enters into the Hamiltonian
as the fifth anticommuting matrix. For t = 0, there is addi-
tional chiral symmetry τzσz in Hχ , which can be expressed
as {τzσz, Hχ } = 0 and ensures the spectral symmetry. As a
consequence, the zero-energy states |
χ

0 〉 of Hχ becomes
eigenstates of τzσz with eigenvalue as +1. The analytic in-
dex of the chiral symmetric model is defined by indHχ =
n+ − n−, where n± are the number of zero-energy states with
chirality ±1. The index theorem states that the analytic index
is identical to the winding number of the order parameter in
the two-dimensional space and there are exactly n number of
zero modes for the vorticity n [57–59]. Also, as pointed in
Ref. [60], the zero modes are associated with hedgehogs in the
complex vector fields of the superconducting order parameter
n(r) = (� cos θ,−� sin θ ). In particular, when the vorticity
is one there exists a single state at zero energy for Hχ . After
including the chirality symmetry breaking term χtτzσz, we
have (Hχ + χtτzσz )|
χ

0 〉 = χtτzσz|
χ

0 〉 = χt |
χ

0 〉 that the
energy will be shifted from zero to χt . The existence of the
zero-energy solution heavily relies on the assumption that
the intersurface tunneling is negligible. When the tunneling
effects are taken into account, the zero-energy bound states
are actually shifted away from zero.

III. SMTI/SC HETEROSTRUCTURE

For comparison, we now turn to the SMTI/SC heterostruc-
ture. The exchange interaction between the magnetic ion
and the surface electrons leads to nonzero magnetization
and makes the top surface electrons open an energy gap
2|Vz|. When the Fermi level intersects gapless bottom surface
states and locates within the magnetic gap of the top surface
states, i.e., |μ| <

√
V 2

z − �2, the quasi-2D system is topolog-
ically equivalent to a chiral topological superconductor with
nonzero Chern number supporting chiral Majorana modes
on its boundary [12,61–69]. A topological phase transition
occurs at |μ| = √

V 2
z − �2 in Fig. 2(b). It is verified by nu-

merical calculations for different μ as shown in Fig. 2(c).
The presence of edge states is consistent with the bulk band
topology. After introducing a vortex, the existence of the Ma-
jorana zero-energy state is governed by the BdG Hamiltonian
for the surface states. We then map the surface states onto a
2D plane with the intersection point of the vortex line with
the bottom surface mapped to the center of the plane. In
this situation, the exchange field only exists outside a disk
radius R, i.e., M(r) = Vz�(r − R). For

√
V 2

z − �2 > μ > 0,
we find a zero-energy solution |ψcore〉 localized at the vor-
tex core and a bound state |ψinter〉 localized at the interface
between the magnetic and nonmagnetic regions [44,45,70].
We can construct the approximate eigenstate wave function as
|
±〉 = 1√

2
(|ψcore〉 ± |ψinter〉) with the energies E+ = −E− =

δE [71,72]. These two wave functions satisfy the particle-hole
symmetry of the BdG equations, �|
+〉 = |
−〉. As shown in
Fig. 2(d), based on the tight binding calculations, we present
the energy spectra and the wave functions for the lowest two
energy states. The zero-energy state is constituted by two parts
of contributions: one part is exponentially localized at the
vortex core, while the other part is localized at the interface.

In addition to the zero modes, there are chiral modes peaked
only at the interface within the superconducting gap. By
considering the overlapping of two zero-energy modes, the
energy splitting can be obtained as (Appendix C)

δE ≈ 2� e−R/ξ | sin(kF R − δ)|, (4)

where δ = arctan
√

Vz+μ

Vz−μ
+ π

4 . The energy splitting decays ex-

ponentially as a function of R. The coherence length is simply
the superconducting coherence length ξ = v/�, which is pro-
portional inversely to the superconducting order parameter �.
The analytic result (4) is in qualitative agreement with the
numerical results as shown in Figs. 2(e) and 2(f).

In order to gain better insight into the difference be-
tween the two present cases, we derive an effective model
to capture the main physics in the SMTI/SC heterostruc-
ture. We start from the effective Hamiltonian for the strong
topological insulator thin films in contact with the magnetic
insulator on its top, hmag

k�

= −v(k� × σ)z + M(k�)σz [73,74].

At low energy (k� < kc with kc � √m
B ), M(k�) = 0, hmag

k�

turns out to be the massless Dirac Hamiltonian which de-
scribes the bottom surface states. At high energy regime
(k� > kc), M(k�) �= 0 originates from the surface states that
evolve into the bulk in the high energy regime and break
time reversal symmetry explicitly. Thus M(k�) behaves as
a regularization term and changes the band topology. The
wave function with the positive eigenvalue can be solved
as |ψc〉 = (i cos

ϕk
�

2 , eiθk
� sin

ϕk
�

2 ) for M(∞) > 0 and |ψc〉 =
(i e−iθk

� cos
ϕk

�

2 , sin
ϕk

�

2 ) for M(∞) < 0, where cos ϕk�
=

M(k�)/ε(k�) with ε(k�) =
√

v2k2
�

+ M2(k�). Note that the

angular factor e±iθ must accompany the component vanishing
at k� → ∞ to ensure the single valueness of the wave func-
tion. After the inclusion of the superconducting pairing, the
BdG Hamiltonian can be projected onto the two bands which
are intersected with the Fermi energy,

Hmag
BdG =

(
ε(k�) − μ

vk�

ε(k�)�e−sgn[M(∞)]iθk
�

vk�

ε(k�)�esgn[M(∞)]iθk
� −ε(k�) + μ

)
. (5)

It is an effective chiral p-wave BdG Hamiltonian and the
chirality crucially depends on the sign of the M(∞). The pro-
jected Hamiltonian cannot be determined without ambiguity
in the absence of the regulator. The Chern number for the
occupied band is N = sgn[M(∞)]. The presence of a vortex
will lead to the antiperiodical condition for the wave function,

(r, θ + 2π ) = eiπ
(r, θ ) [44,45]. By using the ansatz for
the wave function 
l (r) = eilθ√

2πr
[e−iθ/2ul (r), eiθ/2vl (r)], we

can obtain the the radial BdG Hamiltonian for [u0(r), v0(r)],

H radial
BdG = [

ε
( − ∂2

r

) − μ
]
τz − i

�

2μ
v∂rτx,

which is equivalent to a 1D Kitaev chain. The superconduct-
ing pairing only enters into the off-diagonal terms in sharp
contrast with Eq. (1).

IV. SUMMARY

The pairing patterns of the Majorana modes in the TI/SC
and SMTI/SC heterostructure in the presence of a vortex
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have different features. Both numerical simulation and ana-
lytical analysis show that the energy splitting of the modes
decays exponentially in the thickness Lz of the TI layer in the
TI/SC structure and the size R of the SMTI/SC structure. The
coherence length in the TI/SC is independent of the super-
conducting order parameter, which is contrary to that in the
SMTI/SC structure or a p-wave topological superconductor.
The distinct behaviors of the coherence lengths in two cases
reveal that the microscopic origins and the topological nature
of the vortex Majorana zero modes are different.
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APPENDIX A: TIGHT-BINDING MODEL FOR
NUMERICAL SIMULATIONS

In this section, we give the explicit model for the tight-
binding calculations. The microscopic model for the bulk
model of the hybrid system with a single vortex is defined
by the Hamiltonian,

Ĥtot = ĤTI + ĤSC + ĤZ.

The ĤTI term describes the topological electronic structure of
the bulk system. In the basis of |P1+

z ,↑〉, |P1+
z ,↓〉|P2−

z ,↑〉,
|P2−

z ,↓〉, it can be written as [3,5,49]

ĤTI =
∑

r

ψ†
r

[(
M −

∑
δ

Bδ

)
ρzσ0 − μρ0σ0

]
ψr

+
∑
r,δ

[
ψ†

r
1

2

(
Bδρzσ0 − ivδ

a
ρxσδ

)
ψr+δ + H.c.

]
,

where ρi and σi (i = 0, x, y, z) are Pauli matrices act-
ing on the orbit and spin spaces, respectively. ψr =
[cr1↑, cr1↓, cr2↑, cr2↓]T are annihilation operators of the four-
component spinor at position r. 2M is the band gap at � point.
h̄
a vδ and Bδ describe the spin-dependent and spin-independent
hoppings on the cubic lattice along the δ direction with δ =
x, y, z. a is the lattice constant. μ is the chemical potential. For
simplicity, we take Bx = By = Bz = B; then the above model
describes a strong topological insulator phase with gapless
surface states for 2 > M/B > 0.

The proximity-induced superconductivity ĤSC can be de-
scribed by

ĤSC =
∑

r

[ψ†
r �(r)e−iφ(r‖ )iσyψ

†
r + H.c.],

where φ(r‖) = arg(r‖ − r0
‖ ), with r‖ = (x, y) as the planar

position vector, r0
‖ as the coordinate for the vortex line, and

arg representing the argument of the vector. The pairing func-
tion is written as �(r) = �0 f (z) tanh(r‖/ξ ), where �0 is the
amplitude of the pairing function, f (z) and tanh(r‖/ξ ) are
the distribution function along z and the planar direction,

respectively, and ξ = v/�0 is the coherent length of the su-
perconductor. Here we think the thickness of the topological
insulator film is much less than the coherent length of the
superconductor such that f (z) � 1.

ĤZ describes the Zeeman term which is modeled as

ĤZ =
∑

r

Vz(z)ψ†
r ρ0σzψr,

with Vz as the amplitude of the exchange field. The exchange
field is only restricted to several layers near the top surface
of the system, Vz(z) = Vz�(zm − z), where � is the Heaviside
step function and zm is the thickness of magnetic layers.

APPENDIX B: DERIVATION OF THE EFFECTIVE
VORTEX HAMILTONIAN

The inclusion of the s-wave superconductivity in the three-
dimensional topological insulator leads to the Bogoliubov–de
Gennes (BdG) Hamiltonian as

HBdG
k =

(
Hk �

� −σyH∗
−kσy

)
,

where � is the superconducting pairing. In the presence of
a vortex in z direction, the superconducting pairing � →
�(r)eiθ with respect to the vortex core. We have used cylin-
drical coordinates (x, y, z) = (r cos θ, r sin θ, z). In view of
the rotational symmetry about the z axis, we can assign the
quantum numbers (kz, l, n) for the bulk of the system, which
are the momentum in z direction, the angular momentum in
xy plane, and the radial quantum number, respectively. These
emergent symmetries of the effective Hamiltonian allow us to
obtain the radial BdG equation HBdG

kz,l

kz,l,n = Ekz,l,n
kz,l,n at

a given kz and l with

HBdG
kz,l =

(
Hkz,l �(r)
�(r) −σyH∗

−kz,−lσy

)
,

where

Hkz,l =

⎛⎜⎜⎜⎝
M1−l

kz
− μ 0 vkz −viDl

r

0 Ml
kz

− μ −viD1−l
r −vkz

vkz −viDl
r −M1−l

kz
− μ 0

−viD1−l
r −vkz 0 −Ml

kz
− μ

⎞⎟⎟⎟⎠.

Here we have introduced Dl
r = ∂r + l/r and Ml

kz
= m −

Bk2
z + BD1−l

r Dl
r . To find the effective Hamiltonian for the

vortex line, we first rewrite the Hamiltonian as H (kz, l ) =
H1(∂r, l ) + H2(kz, l ), then solve solutions for kz-independent
part H1, and finally project kz-dependent part H2 onto the
relevant bands. H1 can be expressed as a direct sum of + and
− sectors H±

1 (∂r, l ) = −iv(∂r + 1
2r )τzνx − μτz + �(r)τx ∓

v
2r τ0νy ± vl

r τzνy. For l = 0, there exists a chiral symmetry
τyνxH±

1 (∂r, l = 0)τyνx = −H±
1 (∂r, l = 0), which plays an es-

sential role in the determination of the zero-energy solutions.
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The zero-energy solutions for H±
1 can be solved as

|φ+〉 = N e− ∫ r
0 dr′ �(r′ )

v

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−J1(kF r)
0
0

iJ0(kF r)
J0(kF r)

0
0

iJ1(kF r)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

|φ−〉 = N e− ∫ r
0 dr′ �(r′ )

v

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
J0(kF r)
iJ1(kF r)

0
0

J1(kF r)
−iJ0(kF r)

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

with the normalization factor defined as

4πN2
∫ ∞

0
dr r e−2

∫ r
0 dr′ �(r′ )

v

[
J2

0 (kF r) + J2
1 (kF r)

] = 1.

The expectation values of the remaining terms in H2 with
respect to the zero-energy solutions for H±

1 can be calculated
as

〈φs|M0
kz
|φs′ 〉 = sδss′F

(
k2

F ξ 2
)[

m − B

(
k2

z + k2
F + 1

ξ 2

)]
,

〈φs|vkzτzρxσz|φs′ 〉 = −sδs,−s′ ivkzF (k2
F ξ 2),

where s, s′ = ± and M0
kz

= ρz ⊗ diag(M1
kz
, M0

kz
,

−M0
kz
,−M1

kz
), which leads to Eq. (1) in the main text.

APPENDIX C: ZERO-ENERGY SOLUTIONS FOR SMTI/SC
HETEROSTRUCTURE

In this section, we calculate the zero-energy solutions for
SMTI/SC heterostructure and the energy splitting due to their
overlapping. In polar coordinates, by using the ansatz for the
wave function 
l,n(r, θ ) = ei[l− 1

2 (τz+σz )]θ
l,n(r), with l being
an integer to make it single valued, we can separate angular
and radial variables. The radial Hamiltonian is rewritten as
Hl (r)
l,n(r) = El,n
l,n(r), with

Hl (r) =
(

hl (r) �(r)
�∗(r) −σyh∗

−l (r)σy

)
, (C1)

where hl (r) is given by

hl (r) =
(−μ + M(r) −ivDl

r

−ivD1−l
r −μ − M(r)

)
. (C2)

Due to the presence of the particle-hole symmetry Hl =
−�H−l�

−1 with � = τyσyK, if E is an eigenvalue with
the eigenfunction 
l,E (r) = [u↑, u↓, v↓, v↑]T , then −E is
also an eigenvalue and the corresponding eigenfunction
is 
−l,−E (r) = [−v∗

↑, v∗
↓, u∗

↓,−u∗
↑]T . The zero-energy state

only exists for l = 0 and needs to be an eigenstate of �,
i.e., �
0,0(r) = ζ
0,0(r), which gives constraints on com-
ponents of the eigenfunctions u↑ = −ζv∗

↑ and u↓ = ζv∗
↓.

By redefining the spinors u↑ = ũ↑e−iπ/4−ζ
∫ r

0 dr′�(r′ )/h̄v and

u↓ = ũ↓eiπ/4−ζ
∫ r

0 dr′�(r′ )/h̄v , the four coupled differential equa-
tions in radial BdG equations are reduced to two real
equations:

−[μ − M(r)]̃u↑ + v∂r ũ↓ = 0,

v

(
∂r + 1

r

)
ũ↑ + [μ + M(r)]̃u↓ = 0. (C3)

For 0 < μ < Vz, by solution Eq. (C3), we find a solution
localized at the vortex core,(

u↑
u↓

)
core

∼ e−iπ/4σz−
∫ r

0 dr′ �(r′ )
h̄v

(
J1(kF r)

−J0(kF r)

)
,

with the positive eigenvalue ζ = +1 of � and a bound state
localized at the interface(

u↑
u↓

)
inter

∼ e−iπ/4σz

√
r

e
∫ r

R dr′ �(r′ )
h̄v

×

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛⎝√
μ+Vz

2Vz√
Vz−μ

2Vz

⎞⎠e−
√

m2−μ2 (r−R)
h̄v , r > R,(

− sin
[
kF (r − R) − δ + π

4

]
cos

[
kF (r − R) − δ + π

4

] )
, r < R,

(C4)

with the negative eigenvalue ζ = −1 of �, where δ =
arctan

√
Vz+μ

Vz−μ
+ π

4 is a phase determined by matching the

wave function at the interface. To estimate the energy splitting
for Majorana modes, we multiply 〈ψcore| to the BdG equa-
tion H0(r)|
+〉 = E+|
+〉, which yields E+ = 〈ψcore|H0(r)|
+〉

〈ψcore|
+〉 .
Then using the relation H0(r)|ψinter〉 = −ivτzσx|ψinter〉δ(r −
R) and H0(r)|ψcore〉 = 0, we arrive at the expression for the
energy splitting for the zero mode in the main text [Eq. (4)].
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