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Generalization of interlayer tunneling models to cuprate superconductors with charge density waves
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Since the discovery of cuprate superconductors, the interlayer tunneling (ILT) and Lawrence-Doniach (LD)
models, which connect CuO planes by Josephson coupling, were considered the leading theoretical proposals for
these materials. However, measurements of the interlayer magnetic penetration depth λc yielded larger values
than required by the ILT model. After the discovery of planar stripes and incommensurate charge ordering,
it was also possible to consider Josephson coupling between these mesoscopic charge domains or blocks. We
show that the average intralayer is larger than the interlayer coupling and is comparable with the condensation
energy, leading to a superconducting transition by long-range phase order. Another consequence is that the ratio
[λc/λab]2 is related to the resistivity ratio ρc/ρab near the superconducting transition temperature, in agreement
with several measurements.
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I. INTRODUCTION

Several experiments on high-temperature cuprate super-
conductors (HTS) verified their large anisotropic properties
that arise mainly because of a much smaller resistivity (ρab)
along with the CuO layers. These facts suggested that the
interlayer tunneling (ILT) [1–5] or Lawrence-Doniach (LD)
models [6], which describe a layered superconductor as a
stack of Josephson-coupled adjacent blocks or layers, were
ideal candidates to describe the HTS. The ILT model of An-
derson and collaborators [3,4] consisted of non-Fermi-liquid
planar electrons and, in the superconducting (SC) phase, in-
terlayer tunneling of Cooper pairs. This approach results in
a strong decrease of the c-axis kinetic energy with a con-
comitant increase of the condensation energy (the gain of free
energy in the SC state compared with the normal state).

On the experimental side, Shibauchi et al. [7] mea-
sured the magnetic penetration depth λc and the planar
λab in single crystals of La2−xSrxCuO4 (LSCO) and found
that λc(T ) was in good agreement with the LD model.
However, images of interlayer Josephson vortices [8] in
single-layer compounds Tl2Ba2CuO6 yielded about 20 µm,
which is about 20 times the penetration depth determined
by the ILT model [5]. This result was considered strong
evidence against the ILT and LD models to cuprates [8,9]
and they were abandoned as the leading general HTS
theories.

On the other hand, over the years, a significant num-
ber of new experiments with novel techniques and methods
revealed properties not known when the ILT was origi-
nally proposed, which opened new possibilities: In particular,
charge inhomogeneities in the form of stripes were discov-
ered in underdoped Nd substituted in LSCO by neutron
scattering [10], which was a key experiment for the detec-
tion of charge-ordering (CO) or charge density wave (CDW)
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phenomena in HTS. Along this line, scanning tunneling
microscopy (STM) experiments made it possible to obtain
atomically resolved maps [11,12] of the energy-dependent
local density of states (LDOS). More recently, resonant x-ray
diffraction (RXRD) revealed the subtle variations of the CO
wavelength λCO with the doping level of several families of
cuprates [13].

To interpret their inhomogeneous STM data on under-
doped Bi2Sr2CaCu2O8+δ (Bi2212), Lang et al. [11] proposed
a structure of mesoscopic superconductor grains connected
by Josephson coupling. This original proposal was not gen-
erally accepted, mainly because there was no evidence
of CO instability near the optimal and in the overdoped
region. However, a few years later, similar CO granular pat-
terns were observed by STM near the optimal value [14]
and even in the overdoped regions [15–17]. Furthermore,
a variety of complementary experimental probes detected
charge instability in all hole-doped HTS families [13] as
well as in Nd-based electron-doped ones [18]. Recently,
charge inhomogeneities have been detected in overdoped
LSCO up to at least x = p = 0.21 [19–21] and possibly
up to p = 0.25 [22]. Therefore, the ubiquitous presence of
CDW in all HTS compounds suggested that they are inter-
twined with the SC phase and somehow related to the SC
interaction [23–26].

To understand how they intertwine we use the Cahn-
Hilliard (CH) equation that can simulate the observed CO
wavelength λCO of different materials employing a phase
separation Ginzburg-Landau (GL) free energy. The VGL free
energy can be tuned in different forms or shapes and acts as
a template for the CO or CDW while confining the charges in
alternating hole-rich and hole-poor domains. VGL works as a
surface potential that binds the electrons in physical grains of
a granular superconductor with the difference that the CDW
domains are of nanoscopic dimensions. But the Cooper pair
coherence lengths in HTS are also of nanoscopic sizes, and
they may be formed by local hole pair interactions mediated
by VGL modulations.
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In this scenario, we calculate local SC amplitudes by a
self-consistent Bogoliubov–de Gennes (BdG) approach. Akin
to granular superconductors, there are Josephson couplings
between the nanoscopic charge domains that compete with
thermal disorder to promote long-range phase order at the SC
critical temperature Tc [26,27]. We also consider the planar
Josephson coupling between the CO domains together with
interlayer coupling to formulate a generalization of the ILT
and LD models.

We mentioned above that the measurements and calcula-
tions of the penetration depth λc were important tests of the
ILT theories. On the other hand, the Josephson couplings are
proportional to the local superfluid densities [28] that in turn
are proportional to the inverse of the magnetic penetration
depth [29], which is our route to estimate λc and λab. Using
the LSCO calculations from Ref. [26] we reproduce several
low-temperature [λc(p)/λab(p)]2 measurements [7,30]. We
also demonstrate an equation relating this ratio to the resis-
tivities Rc

n/Rab
n just above the SC transition, which is easy

to test experimentally and is in agreement with several old
measurements [31,32].

II. CDW CALCULATIONS

We mentioned that the CH phase separation method repro-
duces the observed planar CDW, but its great advantage is the
GL free-energy map that provides a scale to the pairing attrac-
tion. The starting point is the time-dependent phase separation
order parameter associated with the relative local electronic
density, u(r, t ) = [p(r, t ) − p]/p, where p(r, t ) is the local
charge or hole density at a position r in the CuO plane. The
CH equation is based on the GL free-energy expansion in
terms of this (conserved) order parameter u [23,33,34],

f (u) = 1
2ε|∇u|2 + VGL(u, T ), (1)

where ε is the parameter that controls the charge modula-
tions and VGL(u, T ) = −α[TPS − T ]u2/2 + B2u4/4 + · · · is a
double-well potential that characterizes the two (hole-rich and
hole-poor) local charge densities of the CDW structure. The
phase separation transition temperature TPS is assumed to be
near the pseudogap instability at T ∗(p).

An elegant way to derive the CH equation is through the
continuity equation for the local free-energy current density
J = M∇(δ f /δu) [35],

∂u

∂t
= −∇ · J = −M∇2[ε2∇2u − α2(T )u + B2u3]. (2)

The equation is nonlinear and solved by a stable and fast
finite-difference scheme with free-boundary conditions, and
we stop the simulation time t when a given CDW structure is
reproduced and the solutions u(r) or p(r) are used in the SC
calculations.

We have provided a detailed description of the CH simu-
lations in several previous works [26,27,36]. Figure 1(a) il-
lustrates a typical VGL(r, T ) ≡ VGL[u(r), T ] low-temperature
solution for a p = 0.19 LSCO compound. We can see that
VGL(r, T ) forms an array of side-by-side potential minima that
hosts the alternating hole-rich and hole-poor charge density

FIG. 1. (a) A three-dimensional plot of the two-dimensional
phase separation potential VGL(r, T ) viewed from just above the CuO
plane. Notice the array of similar potential wells that host rich and
poor alternating charge density domains p(r). (b) Similar view of the
SC amplitudes �d (r) that also follows the same modulation pattern,
what is known as pair density waves.

domains (not shown here; see the many simulations in the
Supplemental Material of Ref. [27]).

The derived CDW density map that reproduces the mea-
surements of a given compound and the respective VGL will
be used in the BdG calculations to obtain the SC properties in
the next section.

III. The BdG SUPERCONDUCTING CALCULATIONS

To perform the BdG SC approach, we use two results from
the CH calculations: (1) the CDW density map p(r) and (2)
the functional VGL(r) shown in Fig. 1(a).

As mentioned in the Introduction, at low temperatures,
VGL(r, T ) constrains the planar charges in alternating hole-
rich and hole-poor domains forming the CDW structure.
These alternating densities force the ions to oscillate around
new displaced positions as observed by x-ray diffraction [37].
They interact back with the holes, leading to a local lattice-
mediated hole-hole attraction and Cooper pairs inside the
CDW domains, recalling that this is possible because the SC
coherence length ξ is in general shorter than λCO. This pairing
interaction is dependent on the CDW hole-rich and hole-poor
local concentrations, and it is reasonable to assume that it
scales with the localization potential VGL(r, T ) [26].

We use this interaction as a nearest-neighbor potential
attraction in an extended Hubbard model to calculate the
local SC amplitudes �d (ri ). This is done by a self-consistent
approach that keeps the p(ri ) CDW structure constant from
the beginning to the end of the calculations following sev-
eral different experiments [14–16,22,37]. This is achieved by
changing the local chemical potential μ(ri ) at each iteration
until the �d (ri ) amplitudes converge and the density map
p(ri ) is preserved. At the end of the calculations we obtain the
original CDW map and the local d-wave amplitudes �d (ri )
with the same charge modulations [λCO(p)], what is known as
pair density waves (PDWs) [25]. This is shown in Fig. 1(b)
for the same compound of Fig. 1(a).

The �d (ri, p, T ) local spatial variations imply that global
properties, such as the condensation energies, critical tem-
peratures, and interlayer-intralayer Josephson coupling, are a
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function of the average SC amplitudes [26,27,36] given by

〈�d (p, T )〉 =
N∑
i

�d (ri, p, T )/N, (3)

where the sum, as in the case of 〈VGL(p)〉, is over the N unit
cells of a single CuO plane.

IV. JOSEPHSON COUPLING CALCULATIONS

We mentioned in the Introduction that the CDW structure
shown in Fig. 1(a) with its charge domains bounded by the
VGL(ri, p, T ) potential has some similarities with granular
materials. In this case, the charges are bounded to the physical
grains by the surface potential and local superconductivity
may arise in the interior. Long-range order or supercur-
rents are a consequence of Josephson tunneling between the
grains [38]. Although the HTS crystals are not granular in a
structural sense, the ubiquitous CDW in these materials led
us to suggest [23] that they may form an array of mesoscopic
Josephson junctions.

Under this assumption, the SC transition develops in two
steps when the temperature decreases [38]: First, the order
parameters with local amplitudes �d (ri, p, T ) and phases θi

arise in each charge CDW domain “i.” These localized am-
plitudes give rise to local Josephson coupling EJ(ri j ) that is
proportional to the local supercurrent or the lattice version of
the local superfluid density [28] nsc, and proportional to the
local phase stiffness.

Second, upon further cooling, the local phase stiffness
increases and eventually overcomes thermal disorder, which
leads to a SC transition by long-range phase order. Therefore,
we emphasize that the SC critical temperature Tc is deter-
mined by the competition between thermal disorder and the
average planar Josephson energy 〈EJ(p, T )〉.

These in-plane calculations are the fundamental pillars of
the three-dimensional long-range-order (LRO) in the whole
system, which we infer from transport measurements. For low
doping p, the c-direction resistivity ρc is ≈103–106 larger
than the a- or b-axis resistivity ρab, a behavior shared also by
Bi2Sr2−xLaxCuO6+δ [39,40]. Despite this huge difference, it
is surprising that both ρc(T ) and ρab(T ) fall to zero at the same
temperature (Tc). We have recently argued that the mechanism
behind this puzzling behavior may be understood in terms of
the planar and weaker out-of-plane average Josephson cou-
pling [23], exactly as the weakly coupled XY models.

As explained previously [24], even for d-wave amplitudes,
it is sufficient to use the Ambegaokar-Baratoff analytical s-
wave expression [41] averaged over the plane,

〈EJ(p, T )〉X = π h̄〈�d (p, T )〉
4e2RX

n (p)
tanh

[ 〈�d (p, T )〉
2kBT

]
, (4)

where X = ab for planar and X = c for interlayer coupling
and RX

n (p,∼ Tc) is the corresponding normal-state directional
resistance just above Tc. In our model of an array of Josephson
junctions, the current is composed of Cooper pairs tunneling
between the CDW domains and by normal carriers or quasi-
particle planar current [42]. For a d-wave HTS near Tc the
supercurrent is dominant [42], which justifies the use of the
experimental Rn(Tc) between the charge domains in Eq. (6).

As mentioned, thermal energy causes phase disorder and
coherence is achieved [23,36] at 〈EJ(p, Tc)〉ab = kBTc. The
smaller planar resistances yield larger Eab

J that promote first
LRO in the planes, but each plane i would have its own SC
phase θi if it was not for the weaker interplane Ec

J coupling.
It is similar to a ferromagnet cooled down in the presence
of a tiny magnetic field causing all the moments to become
aligned.

Thus, the weaker interlayer coupling 〈EJ(p, T )〉c connects
the planes but leads to only a single-phase θ at T � Tc in the
whole system, and both c and ab resistivity drop off together
despite their orders of magnitude difference.

V. MAGNETIC PENETRATION DEPTH AND RESISTIVITY

According to Eq. (4), due to the large difference in
the directional resistivities, we expect smaller superfluid
densities nsc along the c direction than along the plane,
which is confirmed by the ab- and c-axis penetration depth
anisotropy [7,30,43]. We recall also that the square of the
magnetic penetration depth λ is inversely proportional to the
phase stiffness ρsc [29] that is proportional to the average
Josephson current [28].

Along these lines and in the frame of the LD model [6],
Shibauchi et al. [7] successfully reproduced their c-axis λc(p)
measurements. We extend here their approach to account for
Josephson current between the CDW charge domains in the
CuO planes and use that [26,29,36] λ2

X (p) ∝ 1/〈EJ(p, T )〉X .
Therefore, we may write

[
λc(0)

λab(0)

]2

∝
[

〈EJ(p, T )〉ab

〈EJ(p, T )〉c

]
∝ Rc

n

Rab
n

, (5)

and Rc
n = ρc(Tc)s, where s, the distance between the CuO

layers in double-plane LSCO crystals, is approximately 6.6 Å.
This means that λc(p) is dominated by the interplane Joseph-
son current and, extending this idea, λab(p) is dominated by
the planar average coupling 〈EJ(p, Tc)〉ab. Therefore, we may
write the planar resistivity Rab

n = ρab(Tc)λCO, since λCO(p) is
the distance between the planar CDW domains. Therefore, in
a general way,[

λc(0)

λab(0)

]2

∝ Rc
n

Rab
n

∝ ρc(Tc)s

ρab(Tc)λCO
. (6)

This expression gives the magnetic penetration depths out of
the plane and planar ratio in terms of similar resistivity ratios,
the planar distance s, and the CDW wavelength λCO. Notice
that there is not any adjustable parameter in Eq. (6) and all
quantities have been measured previously.

Some HTS samples with similar doping have compara-
ble resistivities such as the La- and Y-based compounds
studied by Ando et al. [44]. When this is the case
the above equation shows why the low-temperature ratios
λc(p, 0)/λab(p, 0) for different families of compounds have
similar values [45]. This is the case for a large number of
LSCO and HgBa2CuO4+x [30] samples and they are also
comparable with the measurements of c-axis grain-aligned
orthorhombic YBa2Cu3O7−δ (YBCO) with δ = 0.0, 0.3, and
0.43 [46]. The quantitative explanation of these data and their
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TABLE I. Data and calculations for LSCO. The first column
is the hole density per unit cell. The second is the [λc(0)/λab(0)]2

measurements of Shibauchi et al. [7] and Panagopoulos et al. [30].
The third is the ρc(Tc )/ρab(Tc ) [31,32] resistivity ratios. The fourth
is λCO in units of the lattice parameter a0 ≈ 3.78 Å measured by
RXRD [13]. The last column is the calculations from Eq. (6) with s =
6.6 Å that should match the magnetic penetration depth ratio of the
second column. For the case of [λc(0.09)/λab(0.09)]2, the resistivity
data of different groups conflict and we used the p = 0.10 ± 0.01
resistivity ratio ρc/ρab from Ref. [32] (marked with an asterisk).

Sample [λc(0)/λab(0)]2 ρc/ρab(Tc ) λCO (Å) ρcs/ρabλCO

p = 0.09 625 2070∗ 5.6 a0 645∗

p = 0.10 ∝564 1714 5.0 a0 595
p = 0.12 441 1000 4.25 a0 408
p = 0.15 196 433 3.9 a0 193
p = 0.18 132 300 3.7 a0 164
p = 0.20 100 200 3.6 a0 97

connection with the ρc(Tc)/ρab(Tc) is one of the main motiva-
tions of our present calculations.

On the other hand, most of the data on directional λX (0)
and ρX (Tc) with the same doping p were performed a long
time ago with LSCO crystals in order to understand the
anisotropies in HTS. Nowadays there are single crystals of
many other materials, but since the anisotropies are already es-
tablished, these measurements are not remade. The difficulty
to fabricate single crystals in the earlier days of HTS is the
reason why data on other materials are practically nonexis-
tent. In most cases, whenever there are data on λc(0)/λab(0),
they are not accompanied by ρc(Tc)/ρab(Tc) that is needed
by our Eq. (6). Nevertheless, we list in Table I the avail-
able data on LSCO for [λc(0)/λab(0)]2 [7,30] ratios and
ρc(Tc)/ρab(Tc) [31,32]. For the case of [λc(0.09)/λab(0.09)]2,
the resistivity data of different groups have discrepant results
and we used ρc/ρab(0.10 ± 0.01) from Ref. [32] (marked
with an asterisk). With these data and the respective CDW
wavelengths λCO(p) that enter in Eq. (6) for the planar Rab

n ,
we calculated the magnetic penetration depth ratio. The ex-
perimental results and our estimates are plotted together for
comparison in Fig. 2, and listed in columns two and five of
Table I.

There are also some data on λc(0)/λab(0) in the mag-
netically aligned powder of YBa2Cu3O7−δ [46] (YBCO)
that contains some uncertainty up to 30% in the c axis
but provides good estimates of this ratio. Similarly, we use

TABLE II. Data and calculations for optimal YBCO similar to
Table 1. The uncertainty of 30% in [λc(0)/λab(0)]2 is due to the
c-axis alignment uncertainty of the powders. For YBCO, the dis-
tance between two planes is s = 5.84 Å and for optimal doping [13]
λCO = 3.12 a0.

Sample [λc(0)/λab(0)]2 ρc(Tc )/ρab(Tc ) λCO (Å) ρcs/ρabλCO

p = 0.15 81 ± 25 167 3.9 a0 81.5

FIG. 2. Six LSCO [λc(0)/λab(0)]2 experimental points [7,30]
and one optimal YBCO-aligned powder in magnetic field with 30%
uncertainty [46] represented by the error bar. They are together with
the calculations from Eq. (6) which use the CDW wavelengths [13]
λCO(p) and the respective resistivity ratios [31,32] listed in Tables I
and II. For p = 0.09 we use the resistivities of p = 0.10 ± 0.01 from
Ref. [32] as explained in the text.

different anisotropic ρc(Tc)/ρab(Tc) optimal data on thin films
of YBCO grown on an off-axis cut SrTiO3 substrate [47].
Combining these data, we can apply Eq. (6) to this near
optimal compound and the calculation is very close to
the YBCO experimental result as shown in Fig. 2 and in
Table II.

VI. CONCLUSION

In this paper, we generalize the ideas of ILT and LD
models to account also for Josephson coupling between the
mesoscopic CDW domains or blocks. The in-plane average
Josephson energy is much larger than the interlayer coupling,
proportional to 1/λ2

ab and to the thermal energy at the crit-
ical temperature Tc. Therefore the SC properties are almost
entirely dependent on the planar Josephson coupling in oppo-
sition to the old ILT model, which depended on the interlayer
Josephson tunneling. Our approach yields values of λab at
least one order of magnitude larger than λc, which gives some
insights on why measurements [8] of λc gave a much smaller
condensation energy than the old ILT predictions [5].

Furthermore, we derive an equation relating the mag-
netic penetration depths [λc(0)/λab(0)]2 with the resistivities
[ρc(Tc)s]/[ρab(Tc)λCO] [Eq. (6)], which is in agreement with
many measurements without any adjustable parameter. Nowa-
days there are better single crystals of many materials but
since the anisotropies are already established these combined
measurements [ρX (Tc) and (λX (0)] on a single sample are no
longer explored. However, Eq. (6) provides the motivation for
more precise tests in future experiments with modern pristine
HTS crystals.
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