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Fate of magnetic impurity induced states in a non-Hermitian s-wave superconductor
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Recently, the non-Hermitian system has attracted great attention. However, the interplay between the non-
Hermiticity and impurities in superconductors remains to be explored. In this work, we investigate the magnetic
impurity chain on a three-dimensional non-Hermitian s-wave superconductor with the imbalanced pairing term.
For the Yu-Shiba-Rusinov (YSR)-type state, we find that their fate is determined by the generalized in-gap
nature of these states: These in-gap states and related topological phases survive only when the effective
superconducting gap exists. With the increasing strength of the non-Hermitian part of the pairing term, the host
superconductor is lead to a non-Hermitian gapless phase with exceptional surfaces, while these in-gap states and
topological phases disappear. Our work generalizes the in-gap state nature of the YSR state to the non-Hermitian
superconductor and reveals the relation between the exceptional surfaces and the YSR-type state, which provides
a minimal starting point to explore the interplay between the non-Hermiticity and magnetic impurities in the
s-wave superconductor.
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I. INTRODUCTION

The past few years have witnessed the growing attention
and efforts paid to non-Hermitian physics [1]. In non-
Hermitian physics, the exceptional points (EPs) are a very
important topic [2]: At these singularity points, the eigenval-
ues are degenerate and the eigenstates coalesce [2,3]. Further-
more, the EPs are involved in understanding PT -symmetric
quantum mechanics [4–14] and bulk Fermi arcs [3,15–22] in
non-Hermitian systems. Finally, EPs have been found in many
physical systems including open quantum systems [23–33],
the condensed-matter systems with self-energy effects [3,15–
18,20,34–42], and optical systems [43–52].

In condensed-matter physics, impurity is almost unavoid-
able and plays very important roles. For instance, the impurity
in metals introduces the Friedel oscillation of the electron
density [53,54]. As for the magnetic impurity chain in an
s-wave superconductor, every single magnetic impurity also
introduces the Yu-Shiba-Rusinov (YSR) bound state in the
superconducting (SC) gap [55–57]. When these impurities
are close to one another, these bound states hybridize and
can form bands. Based on these results, recent studies have
pointed out that the magnetic impurity chain has helical
spin textures, and bands from the hybridization of the YSR
states are topologically nontrivial [58–60]. Thus, the YSR
chain [61–68] in an s-wave superconductor can be applied to
realize the topological superconductivity [69–75]. To our best
knowledge, YSR states are in-gap states. Then, if the SC gap
decreases or vanishes, what happens to these in-gap states?
This question is important in non-Hermitian superconductors
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because the non-Hermitian part of the SC term can decrease
the SC gap and introduce the exceptional manifolds [24,76–
79]. Furthermore, since bands of the helical YSR chain are
formed by these YSR bound states [60], it is also interesting
to study the effect of the non-Hermitian SC term on bands and
topological phases of the helical YSR chain.

In this paper, we investigate a magnetic impurity chain on
a three-dimensional (3D) imbalanced s-wave superconductor
as shown in Fig. 1. We find that the fates of YSR-type states
are determined by their generalized in-gap state nature: These
YSR-type states and related topological bands survive as long
as the effective SC gap still exist. And the non-Hermiticity
changes the effective coherence length, which modifies the
phase diagrams of the impurity chain. Once the effective
SC gap is destroyed by the non-Hermiticity, these YSR-type
states and related bands are not allowed to exist in the non-
Hermitian gapless phase with exceptional surfaces.

This paper is organized as follows. In Sec. II we review
the spectrum of a 3D imbalanced s-wave superconductor and
show that this model can be gapped or gapless according to
the strength of the non-Hermitian term. Then, in Sec. III, by
solving the eigenstate at the position of the single impurity,
we show that the generalized in-gap nature of a YSR-type
state determines its fate. Next, in Sec. IV we consider the
helical magnetic impurity chain in a superconductor with
imbalanced s-wave superconductivity. After introducing the
projection method in Sec. IV A, we show and discuss the
resulting Hamiltonian and the corresponding Bloch spectrum
in Sec. IV B. Then, for the non-Hermitian gapless phase in
the host superconductor, in Sec. IV C we explain the reason
why YSR-type bands cannot be formed. In Sec. IV D, for
the gapped phase, we give the phase diagrams and show that
the non-Hermiticity affects the topological phase by changing
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∆1τx+i∆2τy

FIG. 1. Schematic of the helical magnetic impurity chain on a 3D
superconductor with the imbalanced s-wave pairing potential �1τx +
i�2τy. Each magnetic impurity is represented as an orange circle.
The small black arrows indicate the spin direction of each magnetic
impurity. The blue box represents the host superconductor.

the effective coherence length. Finally, in Sec. V we discuss
possible experimental regimes about the related model with
an imaginary SC pairing term and we give a summary.

II. THE SPECTRUM OF THE IMBALANCED s-WAVE
SUPERCONDUCTOR

Before discussing the magnetic impurity, we review the
spectrum of the 3D imbalanced s-wave superconductor. With-
out the non-Hermitian superconductivity, the system can be
described as the following free electron gas model:

εk = k2

2m
− μ. (1)

Here, the chemical potential μ � 0 and m is the effective
mass. Then, under the Nambu basis

�k = (ck,↑, ck,↓, c†
−k,↓,−c†

−k,↑)T , (2)

the imbalanced s-wave pairing term is

�k = �1τx + i�2τy, (3)

where �1 > 0 denotes the strength of the Hermitian term, and
the non-Hermiticity in our model is introduced by �2 > 0.
We note that the effects of the imbalanced s-wave supercon-
ductivity with �1 = 0 [76,78,79] and an imbalanced p-wave
pairing potential [77,80,81] have been investigated recently.
Motivated by these previous works about the non-Hermitian
superconductivity, the imbalanced s-wave pairing potential
�k is considered in our work.

Then, by combing Eqs. (1) and (3) in the Nambu
space, we obtain the following Bogoliubov–de Gennes(BdG)
Hamiltonian:

H0(k) = εkτz + �k = εkτz + �1τx + i�2τy, (4)

where the Pauli matrix τi=x,y,z acts on the Nambu degree
of freedom. Similar to the imbalanced p-wave superconduc-
tor [77], Eq. (4) can be transformed into a balanced s-wave
superconductor model,

H̃0(k) = η̂H0(k)η̂−1 = εkτz +
√

�2
1 − �2

2τx, (5)

with the following transformation matrix:

η̂ =
⎛
⎝(�1−�2

�1+�2

) 1
4 0

0
(

�1+�2
�1−�2

) 1
4

⎞
⎠. (6)

FIG. 2. Real and imaginary parts of E0(k) as functions of |k|.
Panel (a), (b), and (c) correspond with the spectrums with 1 − γ 2 =
0.25, 0, and −0.25, correspondingly. The blue (red) lines denote real
(imaginary) parts of E0,±(k). The dashed lines denote the excep-
tional surfaces given by Eq. (9). Other parameters are m = 0.5 and
μ = 1.0.

Next, we consider the spectrum of H0(k) [or H̃0(k)], which
is

E0,±(k) = ±
√

ε2
k + M2

�, (7)

where

M� =
√

�2
1 − �2

2 = �1

√
1 − γ 2 (8)

and γ = �2/�1. In Fig. 2 we show Re[E0,+(k)] and
Im[E0,+(k)] as functions of |k|. When 0 < γ < 1, M� is real,
and the SC gap still exists in Fig. 2(a). Then, Fig. 2(b) shows
that M� = 0 and the SC gap closes if γ = 1. Finally, for the
γ > 1 case, M� becomes an imaginary number, and the model
is in a gapless phase with exceptional surfaces [see Fig. 2(c)].
These exceptional surfaces are given by

|k| =
√

k2
x + k2

y + k2
z = [2m(μ ± �1

√
γ 2 − 1)]

1
2 . (9)

In Fig. 2(c), EPs correspond to two exceptional surfaces in the
kx-ky-kz space.

III. MODEL WITH A SINGLE MAGNETIC IMPURITY

In this section, we consider a single magnetic impurity on a
3D imbalanced s-wave superconductor. Let us begin with the
following microscopic model:

H = H0(k) − gS · σδ(r). (10)

Here, H0(k) is given by Eq. (4). g > 0 is the strength of the
exchange coupling between the classical magnetic impurity
and the electron at r = 0. The impurity spin S points along an
arbitrary direction vector n = (sin θ cos φ, sin θ sin φ, cos φ)
and we have

S · σ = Sσn = S(sin θ cos φσx + sin θ sin φσy + cos θσz ).
(11)

For the Hamiltonian H , its eigenequation at r = 0 leads to

[E − H0(k)]|ψR(r)〉 = −gSδ(r)σn|ψR(0)〉. (12)

Here, the index R denotes the right eigenvectors in the non-
Hermitian problem. Then, note that η̂ does not act on the
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spin degree of freedom (i.e., η̂ commutates with the σn); we
multiply η̂ from the left of Eq. (12) and obtain

η̂[E − H0(k)]η̂−1η̂|ψR(r)〉 = −gSδ(r)σnη̂|ψR(0)〉. (13)

Next, with Eq. (5), we have

(E − εkτz − M�τx )|ψ ′(r)〉 = −gSδ(r)σn|ψ ′(0)〉, (14)

with |ψ ′(r)〉 = η̂|ψR(r)〉. This eigenequation looks quite sim-
ilar to the Hermitian model. However, there is a difference
between Eq. (14) and the Hermitian case: The effective pair-
ing term is M�. As we have discussed in Sec. II, this term is
zero or an imaginary number when the gap of a host super-
conductor closes.

Now, according to Ref. [60], by multiplying [E − εkτz −
M�τx]−1 from the left of Eq. (14) and making the Fourier
transformation, we obtain

|ψ ′
k〉 = −gSσn

E − εkτz − M�τx
|ψ ′(0)〉

= −gS[E + εkτz + M�τx]

E2 − ε2
k − M2

�

σn|ψ ′(0)〉, (15)

which leads to

[1 + J0(E )σn]|ψ ′(0)〉 = 0, (16)

with

J0(E ) =
∫

dk
(2π )3

gS[E + εkτz + M�τx]

E2 − ε2
k − M�

= ν0

∫
dεk

gS[E + εkτz + M�τx]

(εk + xi)(εk − xi)
, (17)

where x =
√

M2
� − E2 and ν0 is the density of states of the

free electron gas at the Fermi level. When

Re(x) = Re
(√

M2
� − E2

) �= 0, (18)

Eq. (17) becomes [82]

J0(E ) = −α(Eτ0 + M�τx )√
M2

� − E2
, (19)

with α = gSπν0. Note that Eq. (16) has nontrivial solutions if
det[1 + J0(E )σn] = 0, i.e.,(

1 ± αE√
M� − E2

)2

− α2M2
�

M2
� − E2

= 0. (20)

We can solve the following single impurity spectrum:

E± = ±M�

1 − α2

1 + α2
= ±�1

√
1 − γ 2

1 − α2

1 + α2
. (21)

If γ = 0, Eq. (21) reduces to the spectrum of the Hermitian
YSR bound state [55–57,60].

Next, by substituting E± into Eq. (17), we obtain the fol-
lowing eigenvectors:

|ψ ′
+(0)〉 = 1√

C

(|↑〉
|↑〉
)

, |ψ ′
−(0)〉 = 1√

C

( |↓〉
−|↓〉

)
, (22)

FIG. 3. Single impurity spectra E± in Eq. (21) as functions of
γ . The blue (red) solid line corresponds to E+ (E−). The point at
(γ , E/�1) = (0, 0) denotes that no YSR-type state exist since the
host model becomes gapless. Another parameter is α = 0.95.

with the factor C and the eigenvectors of σn:

|↑〉 =
(

cos θ
2

sin θ
2 eiφ

)
, |↓〉 =

(
sin θ

2 e−iφ

− cos θ
2

)
. (23)

Since |ψ ′(r)〉 = η̂|ψR(r)〉, the right-eigenvectors in
Eq. (12) are

|ψR,+(0)〉 = η̂−1|ψ ′
+(0)〉 = η̂−1

√
C

(|↑〉
|↑〉
)

,

|ψR,−(0)〉 = η̂−1|ψ ′
−(0)〉 = η̂−1

√
C

( |↓〉
−|↓〉

)
, (24)

and the corresponding left-eigenvectors are (see Appendix A)

|ψL,+(0)〉 = η̂|ψ ′
+(0)〉 = η̂√

C

(|↑〉
|↑〉
)

,

|ψL,−(0)〉 = η̂|ψ ′
−(0)〉 = η̂√

C

( |↓〉
−|↓〉

)
, (25)

with the spectrum given by Eq. (21). For these right- and left-
eigenvectors, the factor C = 2 can be obtained by the binor-
malized condition 〈ψL,+(0)|ψR,+(0)〉 = 〈ψL,−(0)|ψR,−(0)〉 =
1. Now, we discuss the results of the model with the single im-
purity. The single impurity spectrum, Eq. (21), as the function
of γ is plotted in Fig. 3. We find that as γ increases, |E±| de-
creases. Meanwhile, we exclude the point (γ , E/�1) = (0, 0)
in this spectrum. To illustrate this result, we substitute Eq. (21)
into Eq. (18), which yields

Re
(√

M2
� − E2

) = ± 2α

1 + α2
Re(M�)

= ± 2�1α

1 + α2
Re(

√
1 − γ 2) �= 0. (26)

Here, Eq. (26) is satisfied if γ ∈ [0, 1). This result is a gener-
alization of the in-gap nature of the YSR state: The magnetic
impurity-induced state is protected by the effective gap M� of
the host superconductor. As long as the gap is destroyed by
the non-Hermiticity, these states cannot exist. For this reason,
the eigenstates in Eqs. (24) and (25) are dubbed “YSR-type
states.” Meanwhile, as we have shown in Figs. 2(b) and 2(c),
the host model is gapless when γ � 1, so no YSR-type state
exists. At last, for the host model with γ > 1, since the
exceptional surfaces accompany the non-Hermitian gapless
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phase, we can conclude that the YSR-type state is forbidden
to survive once exceptional surfaces occur in the host model.

IV. MODEL WITH A MAGNETIC IMPURITY CHAIN

Now, we consider the magnetic impurity chain on
an imbalanced s-wave superconductor. Here, the spin
moment of the jth magnetic impurity is S j = Sn j =
S(sin θ j cos φ j, sin θ j sin φ j, cos θ j ), where n j is a unit vector
denoting the direction of the spin moment. For the helical spin
textures, we have a constant θ j = θ and φ j = 2khx j with a
pitch π/kh. The lattice constant of the impurity chain a = 1,
and so x j = j.

In the following part, we first generalize the projection
method used in Ref. [60] to the non-Hermitian eigenvectors.
Then, we focus on the effective resulting Hamiltonian of
this magnetic impurity chain and its spectrum. Finally, we
investigate the fate of the bands and topological phases of this
impurity chain on the imbalanced superconductor.

A. General formulation of the projection
to the right- and left-eigenvectors

Before deriving this effective model Hamiltonian, we want
to introduce the concept of projection in non-Hermitian
physics. To this end, we begin with the Hermitian case. Af-
ter projecting a matrix A to a set of the normalized bases
(|1〉, |2〉, . . . |i〉, . . . |N〉), the elements of the resulting matrix
A′ are

A′
i j = 〈i|A| j〉. (27)

For non-Hermitian physics, Eq. (27) can be generalized
to the right- and left-eigenvectors satisfying 〈i, L| j, R〉 =
〈i, R| j, L〉 = δi j :

A′
i j = 〈i, L|A| j, R〉. (28)

Finally, we would like to consider the right-eigenvectors
|ψR(r j )〉 at the jth impurity site and the left-eigenvectors
|ψL(ri )〉 at the ith site. For the imbalanced pairing term, from
Eq. (28) we have

〈ψL(ri )|(�1τx + i�2τy)||ψR(r j )〉
= 〈ψ ′(ri )|[η(�1τx + i�2τy)η−1]|ψ ′(r j )〉
= 〈ψ ′(ri )|

(
�2

1 − �2
2

)
τx|ψ ′(r j )〉

= 〈ψ ′(ri )|M�τx|ψ ′(r j )〉. (29)

Equation (29) means that the non-Hermitian basis |ψR,L(ri )〉
can be transformed into the Hermitian one |ψ ′(ri )〉 via the
transformation matrix η. During this transformation, the im-
balanced pairing term is also replaced by the balanced one,
and this transformation does not change the inner product.
Thus, we can derive the resulting Hamiltonian Heff with
the Hermitian basis and the balanced pairing term (see Ap-
pendix B).

B. Effective model of the impurity chain

Next, we give the effective Hamiltonian of the magnetic
impurity chain on the non-Hermitian superconductivity. We

still begin with

H = H0(k) − gS
∑

j

σn j δ(r − r j ). (30)

With the transformation matrix η and Eq. (29), we can obtain
the following effective Hamiltonian (see Appendix B):

Heff = M�

(
h↑↑ �↑↓
�

†
↑↓ −hT

↑↑

)
, (31)

where the elements of the matrix, h↑↑ and �↑↓, are

h↑↑,i j =

⎧⎪⎪⎨
⎪⎪⎩

(1 − α), if i = j,

− sin(kF ri j )
kF ri j

e− ri j
ξ

[
cos2

(
θ
2

)
eikhxi j

+ sin2
(

θ
2

)
e−ikhxi j

]
, if i �= j,

and

�↑↓,i j =
{

0, if i = j,
i cos(kF ri j )

kF ri j
e− ri j

ξ sin θ sin khxi j, if i �= j.
(32)

The resulting Hamiltonian Heff has the same form as the
one with the Hermitian host superconductor [60]. The only
difference is that the SC gap �1 is replaced by the effective
one M� = �1

√
1 − γ 2, which leads to a modified effective

coherence strength ξ :

ξ = vF

M�

= vF

�1

√
1 − γ 2

= ξ0√
1 − γ 2

, (33)

where ξ0 = vF /�1 is the coherence length without the non-
Hermiticity.

To obtain the Bloch spectrum, we make the Fourier trans-
formations [60]

h↑↑,k =
∑

j

h↑↑,i je
ikxi j , �↑↓,k =

∑
j

�↑↓,i je
ikxi j , (34)

and we obtain the corresponding Hamiltonian:

Heff,k = M�

2
(h↑↑,k + h↑↑,−k )τz + M��↑↑,kτx

+ M�

2
(h↑↑,k − h↑↑,−k )τ0, (35)

with (see Appendix C)

h↑↑,k = (1 − α) + 1

kF

[
αk+kh cos2 θ

2
+ αk−kh sin2 θ

2

]
,

αk = −
⎡
⎣arctan

sin(kF + k)

e

√
1−γ 2

ξ0 − cos(kF + k)

+ arctan
sin(kF − k)

e

√
1−γ 2

ξ0 − cos(kF − k)

⎤
⎦, (36)

and

�k = sin θ

4kF

(
βkF +kh+k − βkF +kh−k − βkF −kh+k + βkF −kh−k

)
,

βk = − ln

(
1 + e− 2

√
1−γ 2

ξ0 − 2e−
√

1−γ 2

ξ0 cos k

)
. (37)
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And its spectrum is

E±,k = M�

2
(h↑↑,k − h↑↑,−k )

± M�

√
�2

↑↓,k + 1

4
(h↑↑,k + h↑↑,−k )2. (38)

In the following part of this section, we discuss the differ-
ent fates of the topological phase of the impurity chain in the
γ � 1 and 0 < γ < 1 cases.

C. The lost YSR-type bands and topological phases
in the γ � 1 case

We begin with the γ � 1 case. In this case, we need to
stress that the topological phase in the YSR-type chain cannot
exist even though we can write Heff with γ � 1 and calculate
some results (see Appendix D).

To illustrate this point, let us consider the resulting Hamil-
tonian Heff obtained from the projection method. As we have
introduced in Sec. IV A, to complete the projection, we need
a set of states, which is given by

[|ψ ′(r1)〉, |ψ ′(r2)〉, . . . , |ψ ′(ri )〉, . . . , |ψ ′(rN )〉]. (39)

Here, each |ψ ′(ri )〉 = η|ψR(ri )〉 = η−1|ψL(ri )〉 corresponds to
the YSR-type state at the ith impurity lattice. In Sec. III,
we have shown that the single YSR-type state cannot exist
when γ � 1, then it is impossible to find a set of |ψ ′(ri )〉 to
complete the projection process and obtain Heff . The physical
picture is that, since the YSR-type state at each lattice does not
exist, the corresponding YSR-type bands cannot be formed by
the hybridization of these bound states. Thus, the topological
phases from the YSR-type bands are not allowed to survive
either.

D. Topological invariant and phase diagram with 0 < γ < 1

Then, we consider the 0 < γ < 1 case. In this case, h↑↑,k

and �↑↓,k are real functions about k, so one can check that
Heff,k is Hermitian.

To discuss the topological properties, we first focus on the
possible gap-closing points. At k = 0 and k = π , Eq. (38)
gives E±,0 = M�|h↑↑,0| and E±,π = M�|h↑↑,π |, and thus the
first gap-closing conditions are

h↑↑,0 = h↑↑,π = 0, (40)

which leads to

α+ = 1 − 1

kF

⎡
⎣arctan

sin(kF + kh)

e

√
1−γ 2

ξ0 + cos(kF + kh)

+ arctan
sin(kF − kh)

e

√
1−γ 2

ξ0 + cos(kF − kh)

⎤
⎦;

α− = 1 + 1

kF

⎡
⎣arctan

sin(kF + kh)

e

√
1−γ 2

ξ0 − cos(kF + kh)

+ arctan
sin(kF − kh)

e

√
1−γ 2

ξ0 − cos(kF − kh)

⎤
⎦. (41)

FIG. 4. Numerical results of min(|E+,k |) about different kF and
α. Here θ = π/2 in panel (a) and π/3 in panel (b). The blue (red)
region denotes the (gapped) gapless regions. The label “T” (“N”)
represents the topological (normal) gapped phase. The white solid
lines correspond to the first gap-closing condition given by Eq. (40).
Other parameters are �1 = 1.0, γ = 0, kh = π/8, and ξ0 = 2. The
result is measured in the unit of M� = �1.

Apart from Eq. (40), according to Eq. (38), the second gap-
closing condition is that

1
2 |h↑↑,k − h↑↑,−k| =

√
�2

↑↓,k + 1
4 (h↑↑,k + h↑↑,−k )2 (42)

at a specific k0(k0 �= 0, π ).
Next, we consider the topological invariant of the chain.

Similar to the Kitaev chain [69], Heff,k also satisfies the
particle-hole symmetry (PHS) CHT

eff,kC−1 = −HT
eff,−k , with

C = τy. Thus, Heff,k with 0 < γ < 1 belongs to the D class
in the Hermitian Altland-Zirnbauer classification. And the
corresponding topological index is Z2, which is given by (see
Appendix E)

ν = sgn(h↑↑,k=0)sgn(h↑↑,k=π ). (43)

The phase boundaries are h↑↑,k=0 = h↑↑,k=π = 0, which are
exactly the first gap-closing conditions in Eq. (40).

Before discussing the effects of the non-Hermiticity, to
show and review some general features [60,62] of the phase
diagram, we plot the phase diagram about kF ∈ [2π, 3π ] and
α in Fig. 4. Let us begin with Fig. 4(a), which corresponds
to the YSR chain with γ = 0 and θ = π/2. We find that the
first gap-closing conditions at k = 0 and k = π are consistent
with results given by Eq. (43). Meanwhile, the gapless phase
introduced by the second gap-closing condition in Eq. (42)
divides the topological phase region into two parts. Then, for
Fig. 4(b) with γ = 0 and θ = π/3, we note that the white
solid lines are unchanged since the gap-closing conditions at
k = 0 and k = π are independent of θ [see Eqs. (40) and (41)].
The varying θ only enlarges the gapless region, separating two
regions of the topological phase.

Now, we show the phase diagrams about the kF and α

with different γ and θ = π/2 in Figs. 5(a1)–5(a3). Here we
set ξ0 = 2, which satisfies the short coherence length limit.
Let us begin with Figs. 5(a1) and 5(a2). If γ = 0.6, the
effective coherence length ξ = ξ0/

√
1 − γ 2 = 1.25ξ0 is also

in the short limit, so the two-phase diagrams are similar to
each other. However, when γ � 1 (i.e., �2 is comparable
with �1), ξ = ξ0/

√
1 − γ 2 → ∞, and thus the phase diagram

changes a lot in Fig. 5(a3). Besides, with the increasing γ , we
also find that the chain with α = 1.1 and larger kF is more
possible to be topological in Fig. 5, which is similar to the
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FIG. 5. Numerical results of min(|E+,k |) about different kF and α with γ = 0, 0.6, 0.999. Here, θ = π/2 in panels (a1)–(a3) and π/3
in panels (b1)–(b3). The label “T” (“N”) represents the topological (normal) gapped phase. The phase diagrams with kF ∈ [3π, 4π ) and
kF ∈ [4π, 5π ) are similar to the one with kF ∈ [2π, 3π ). The white solid lines correspond to the gap-closing condition given by Eq. (40). The
white dashed lines are α = 1.1. Other parameters are �1 = 1.0, kh = π/8, and ξ0 = 2. The result is measured in the unit of M� = �1

√
1 − γ 2.

previous results in Ref. [62]. These results indicate that the
non-Hermitian pairing term modifies the topological phases by
changing the effective coherence length ξ . The phase diagrams
with θ = π/3 are also plotted in Figs. 5(b1)–5(b3). As we
have explained, the only difference between θ = π/2 and
θ = π/3 cases is that the gapless region dividing two topolog-
ical regions is larger, which does not affect the main results.
Finally, we also show the phase diagrams with different kh

in Appendix F. We find that although some details of phase
diagrams are changed, the varying kh does not change some
main features of phase diagrams; e.g., each topological region
is divided into two parts by a gapless region, and the phase
diagrams also changes by the varying γ .

V. DISCUSSION AND SUMMARY

Now we discuss the related experimental schemes of
our work. We first consider the experimental setup of the
non-Hermitian s-wave superconductor with the impurity.
Although the direct realization of the imbalanced s-wave su-
perconductivity is difficult, some of our results may be still
experimentally relevant: The fate of a YSR-type state depends
on the effective pairing term M�. Moreover, it is stimulating
the imaginary pairing term M� that does matter in exper-
iments. We can, therefore, investigate the YSR-type states
indirectly in related models. For instance, the YSR-type state
in the transformed Hamiltonian H̃0(k) = ηH0(k)η−1 in Eq. (5)
could be studied in cold-atom experiments. To this end, we
can use a BCS Fermi superfluid of 6Li atoms with heavy 133Cs

impurities. According to the accurately calibrated Feshbach
resonances between 6Li and 133Cs [83], we can independently
control the 133Cs-6Li scattering lengths due to the two inter-
species broad resonances located near B ≈ 843 G and 889 G,
then one can realize magnetic impurity scattering by tuning
the magnetic field [84,85]. As for the imaginary pairing term
M�, it has been pointed out that two-body losses, which
have been controlled by the dissipation with photoassociation
techniques [86], could lead to an imaginary s-wave pairing
term [24]. Finally, it has been predicted that the polaron
spectrum can be connected to the detection of Fermi super-
fluid excitations, including in-gap YSR states [84,85]. By
combing these methods, we could confirm that the YSR-type
state cannot exist in the non-Hermitian s-wave superconductor
with an imaginary s-wave pairing term. Since the imaginary
pairing term M� also leads to the exceptional surface in our
host model, one may experimentally check that the YSR-type
state is forbidden to survive in our model with exceptional
manifolds.

In summary, we find that the fate of the YSR-type state
depends on its in-gap state nature even if the host supercon-
ductor is non-Hermitian: When the real part of the effective
s-wave SC gap term is nonzero, the BdG gap still exists in
our model. Then, we can find the YSR-type state. And the
related topological phases also exist in the impurity chain.
However, for the imaginary effective s-wave SC gap term, the
model is in a gapless phase where the YSR-type states and re-
lated topological phases are not allowed to survive. Since the
exceptional surfaces accompany the non-Hermitian gapless

184507-6



FATE OF MAGNETIC IMPURITY INDUCED STATES IN A … PHYSICAL REVIEW B 107, 184507 (2023)

phase, our results indicate that the non-Hermitian generation
of the YSR state might have the potential to detect the ex-
ceptional surface of superconductors with the non-Hermitian
s-wave pairing term in the future. Our work could be extended
to the d-wave [61] or the inhomogeneous s-wave supercon-
ductor [63,64] with the non-Hermiticity. Besides, since our
work only considers impurities with the classic spin, it is
also valuable to investigate the interplay between quantum
magnetism [87] and exceptional physics in superconductors.
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APPENDIX A: LEFT EIGENSTATES AND SINGLE
IMPURITY SPECTRUMS

In this Appendix, we give some details about solving the
left-eigenvectors and the corresponding spectrums of the sin-
gle impurity problems. The corresponding eigenequation is
given by

[E∗ − H†
0 (k)]|ψL(r)〉 = −gSσnδ(r)|ψL(0)〉. (A1)

With the transformation matrix in Eq. (6) of the main text, we
have

H̃0(k) = η̂−1H†
0 (k)η̂ = εkτz +

√
�2

1 − �2
2τx. (A2)

Thus, Eq. (A1) leads to

η̂−1[E∗ − H†
0 (k)]η̂η̂−1|ψL(r)〉 = −gSδ(r)σnη̂

−1|ψL(0)〉,
(A3)

i.e.,

[E∗ − H̃0(k)]|ψ ′′(r)〉 = −gSδ(r)σn|ψ ′′(r)〉, (A4)

where |ψ ′′(r)〉 = η̂−1|ψL(r)〉. Next, by following a procedure
similar to that in Eqs. (15)–(20) of the main text, we can obtain
the single impurity spectrum

E∗
± = E± = ±

√
�2

1 − �2
2

1 − α2

1 + α2
= ±�1

√
1 − γ 2

1 − α2

1 + α2
.

(A5)

and find that |ψ ′′(r)〉 = |ψ ′(r)〉. Since the Hermitian basis
|ψ ′(r)〉 has been given in Eq. (22) of the main text, we have
the corresponding left-eigenvectors

|ψL,+(0)〉 = η̂|ψ ′
+(0)〉 = η̂√

C

(|↑〉
|↑〉
)

,

|ψL,−(0)〉 = η̂|ψ ′
−(0)〉 = η̂√

C

( |↓〉
−|↓〉

)
, (A6)

which are exactly the results in Eq. (25) of the main text.

APPENDIX B: DERIVATION OF THE EFFECTIVE MODEL
OF THE IMPURITY CHAIN

The starting model Hamiltonian in the impurity chain prob-
lem is

H = H0(k) − gS
∑

j

σn j δ(r − r j ). (B1)

According to Eq. (29) in the main text, with the transformation
H̃0(k) = ηH0(k)η−1 and |ψ ′(r)〉 = η|ψR(r)〉 = η−1|ψL(r)〉,
we obtain the following nonlinear equation with the Hermitian
YSR basis |ψ ′(r j )〉 and the effective SC gap term M� [60]:[

σn j + JE (0)
]|ψ ′(ri )〉 = −

∑
j �=i

(
σniσn j

)
JE (ri j )|ψ ′(r j )〉,

(B2)
where ri j = ri − r j . In this nonlinear equation, JE (0) has been
given in Eq. (19) of the main text, and JE (r) is [60,62]

JE (r) = − α√
M2

� − E2

[
sin(kF r)e−

√
M2

�
−E2

vF
r

kF r
(Eτ0 + M�τx )

− cos(kF r)e−
√

M2
�

−E2

vF
r

kF r
τz

]
, r > 0. (B3)

For α → 1 (E → 0), expanding E to the first order makes
Eq. (B2) reduce to a linear equation [60]:[

σni − 1

M�

(E + M�τx )

]
|ψ ′

R(ri )〉

=
∑
j �=i

e− ri j
ξ

kF ri j
[τz cos(kF ri j ) + τx sin(kF ri j )]σniσn j |ψ ′

R(r j )〉,

(B4)

with ξ = ξE=0 = vF /M�.
Next, to obtain the effective model, we need to project

Eq. (B4) to a set of |ψ ′(ri )〉 located at impurity sites [60].
[Here, each |ψ ′(ri )〉 is given by Eq. (22) and |ψ ′(ri )〉 =
η|ψR(ri )〉 = η−1|ψL(ri )〉.] For the Nambu space, the nonzero
inner products are

〈+|τx|+〉 = 1, 〈−|τx|−〉 = −1,

〈+|τz|−〉 = 1, 〈−|τz|+〉 = 1, (B5)

where |±〉 = 1√
2
(1,±1)T . Meanwhile, the inner products in

the spin space are

〈↑, i|↑, j〉 = cos
θi

2
cos

θ j

2
+ sin

θi

2
sin

θ j

2
e−i(φi−φ j ),

〈↑, i|↓, j〉 = e−i(φ j+φi )/2

[
cos

θi

2
sin

θ j

2
e−i(φ j−φi )/2

− sin
θi

2
cos

θ j

2
e−i(φi−φ j )/2

]
. (B6)

Since θ j = θ and φ j = 2khx j in this helical spin texture, after
a unitary rotation [60], we have

〈↑, i|↑, j〉 = cos2

(
θ

2

)
eikhxi j + sin2

(
θ

2

)
e−ikhxi j ,

〈↑, i|↓, j〉 = i sin θ sin khxi j . (B7)

Finally, by combing results in Eqs. (B5) and (B7), we can
project a set of bases

[|ψ ′(r1)〉, |ψ ′(r2)〉, . . . , |ψ ′(ri )〉, . . . , |ψ ′(rN )〉〉] (B8)

to the nonlinear equation, Eq. (B4), and obtain the effective
Hamiltonian, Eq. (31), of the main text.
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APPENDIX C: FOURIER TRANSFORMATION

In this Appendix, we review the Fourier transformation in
Refs. [60,62], which is used in the derivation of Eqs. (36)
and (37) in the main text.

For h↑↑, we need to consider the Fourier transformation
like

αk = −
∑

j

sin(kF ri j )

kF ri j
e− ri j

ξ eikxi j

= −
∑
j>0

ei(kF +k) j − e−i(kF +k) j + ei(kF −k) j − e−i(kF −k) j

2ikF j
e− j

ξ

= −Im
∑
j>0

e− j
ξ

ei(kF +k) j + ei(kF −k) j

j
. (C1)

Here, ξ = ξ0/
√

1 − γ 2 is the effective coherence length.
Then, when the length of the impurity chain L → ∞, we can
use the identity

− ln(1 − x) =
∞∑
j>0

x j

j
(C2)

and obtain

αk = Im
[

ln
(
1 − e− 1

ξ ei(kF +k)
)+ ln

(
1 − e− 1

ξ ei(kF −k)
)]

. (C3)

Since Im ln z = arctan Imz
Rez , we have

αk = −
[

arctan
e− 1

ξ sin(kF + k)

1 − e− 1
ξ cos(kF + k)

+ arctan
e− 1

ξ sin(kF − k)

1 − e− 1
ξ cos(kF − k)

]

= −
[

arctan
sin(kF + k)

e
1
ξ − cos(kF + k)

+ arctan
sin(kF − k)

e
1
ξ − cos(kF − k)

]
. (C4)

Then we have Eq. (36) in the main text.
As for �↑↓, its Fourier transformation is as follows:

�↑↓,k = i sin θ
∑

j

cos(kF ri j )e
− ri j

ξ

kF ri j
sin(khxi j )e

ikxi j

= sin θ

4kF

∑
j

(eikF ri j + e−ikF ri j )e− ri j
ξ

ri j

× [ei(kh+k)xi j − ei(k−kh )xi j ]

= sin θ

4kF

∑
j>0

(eikF j + e−ikF j )e− j
ξ

j

× [ei(kh+k) j − ei(k−kh ) j + e−i(kh+k) j − e−i(k−kh ) j]

= sin θ

4kF

∑
j>0

e− j
ξ

j
[(ei(kF +kh+k) j − ei(kF +kh−k) j

− ei(kF −kh+k) j + ei(kF −kh−k) j ) + c.c.]. (C5)

Note that Eq. (C5) includes the following summation:

βk =
∑
j>0

e− j
ξ

j
(eik j + c.c.)

= − ln
[
1 − ei(k+ i

ξ
)]− ln

[
1 − e−i(k− i

ξ
)]

= − ln
(
1 + e− 2

ξ − 2e− 1
ξ cos k

)
, (C6)

we have

�↑↓,k = sin θ

4kF
(βkF +kh+k − βkF +kh−k − βkF −kh+k + βkF −kh−k ),

(C7)
which is exactly Eq. (37) in the main text.

APPENDIX D: Heff,k WITH THE γ > 1 CASE

In this Appendix, we investigate Heff,k with the γ > 1 case.
Before discussing this Hamiltonian, we have to stress that
since the single YSR-type state cannot exist in the γ > 1 case,
Heff,k cannot be obtained by overlapping YSR-type states.
Here, the results of the γ > 1 case are discussed only to make
comparisons with ones of the 0 � γ < 1 case. And we set
(α, kF , kh, θ ) = (1.11, 2.5π, 0.125π, 0.5π ) in this Appendix.

For Heff,k with γ > 1 cases, one can check that the PHS
CHT

eff,kC−1 = −HT
eff,−k , with C = τy, is also satisfied. Ac-

cording to the non-Hermitian Altland-Zirnbauer class, the
topological invariant can be given by the following Z2

index [88]:

ν ′ = sgn(R)

= sgn

{
Pf(Heff,πC)

Pf(Heff,0C)
exp

[
−1

2

∫ k=π

k=0
d ln det(Heff,kC)

]}
,

(D1)

which is valid for models with both line and point gaps. Since
the Z2 index is determined by the sign of R, this topological
invariant is ill-defined if R has a nonzero imaginary part. In
Fig. 6(a), we show real and imaginary parts of R with varying
γ ∈ [0, 1) ∪ (1, 1.5] (Heff,k with γ = 1 is just a trivial zero-
matrix). For γ ∈ [0, 1), the real number R = −1, and thus the
Z2 index in Eq. (D1) is well-defined. The system is in the
topological phase, which is consistent with the results given
by Eq. (43) in the main text. When γ ∈ (1, 1.5], the imaginary
part of R can be nonzero, and then the Z2 index is ill-defined.

To support the result in Fig. 6(a), we also calculate the local
density of state (LDOS), which is given by

A( j, ω) = − 1

π
Im[Gp, j (ω) + Gh, j (ω)],

G(ω) = lim
δ→0+

1

ω − Heff + iδ
. (D2)
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FIG. 6. (a) Re(R) and Im(R) as functions of γ . (b) The LDOS at the first site of the impurity chain. The black and white dashed lines are
γ = 1.0. Other parameters are �1 = 1.0, kh = π/8, kF = 5π/2, θ = π/2, α = 1.11, δ = 10−6, the number of impurity sites N = 100, and
ξ0 = 2.

Here p (h) denotes the particle (hole) space, and j repre-
sents the jth site of the impurity chain. In Fig. 6(b) we
show log10 |A(1, ω)| as a function of γ and ω. For ω = 0,
as the γ ∈ [0, 1), we find that the scale of A(1, ω = 0) is
much larger, which means that topological zero modes ex-
ist and they localize at the boundary. When γ ∈ (1, 1.5],
log10 |A(1, ω)| sharply decreases, which means that topolog-
ical boundary modes do not exist, and the system is not
topological.

APPENDIX E: SOME DETAILS OF DERIVING THE Z2

TOPOLOGICAL INVARIANTS

In this Appendix, we show some details about deriving the
Z2 topological invariants. For the Hamiltonian

Heff,k = M�

2
(h↑↑,k + h↑↑,−k )τz + M��↑↑,kτx

+ M�

2
(h↑↑,k − h↑↑,−k )τ0. (E1)

FIG. 7. Numerical results of min(|E+,k|) about different kF and α. (a1)–(a3): Results with kh = 3π/8 and γ = 0, 0.6, and 0.999. (b1)–(b3):
Results with kh = π/10, 4π/7, and 5π/6 and γ = 0.6. The label “T” (“N”) represents the topological (normal) gapped phase. The phase
diagrams with kF ∈ [3π, 4π ) and kF ∈ [4π, 5π ) are similar to the one with kF ∈ [2π, 3π ). The white solid lines correspond to the first
gap-closing condition, Eq. (40). Other parameters are �1 = 1.0, θ = π/3, and ξ0 = 2. The black regions denote the phases with the negative
gap term, which are also gapless phases. The result is measured in the unit of M� = �1

√
1 − γ 2.
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After the following unitary transformation,

U = 1√
2

(
1 1
−i i

)
, (E2)

we have H̃eff,k = UHeff,kU † = iAk , with

Ak = M�

(
−i�↑↑,k − i

2 (h↑↑,k − h↑↑,−k ) 1
2 (h↑↑,k + h↑↑,−k )

− 1
2 (h↑↑,k + h↑↑,−k ) i�↑↑,k − i

2 (h↑↑,k − h↑↑,−k )

)
. (E3)

According to Eqs. (36) and (37) of the main text, we can check that (h↑↑,k − h↑↑,−k ) = �↑↑,k = 0 when k = 0 and k = −π ,
which leads to A0 = −AT

0 and Aπ = −AT
π . Note that we consider the 0 < γ < 1 case and �1 > 0, and we have M� =

�1

√
1 − γ 2 > 0. Thus, we can calculate the following Z2 topological invariant at k = 0 and k = −π [69] by Pfaffian:

ν = sgn[Pf(A0)]sgn[Pf(Aπ )] = sgn(h↑↑,k=0)sgn(h↑↑,k=π ), (E4)

which is exactly Eq. (43) in the main text.

APPENDIX F: PHASE DIAGRAMS WITH A VARYING kh

In this Appendix, we show phase diagrams with a fixed θ = π/3 and varying kh and γ in Fig. 7. In Figs. 7(a1)–7(a3), we set
kh = 3π/8 and change γ . Then, one can find that the different kh = 3π/8 only introduces the phase with min(E±,k ) < 0, which
also belongs to the gapless phase, and the phase diagrams still change according to the varying γ . Next, after setting γ = 0.6
and changing kh, Figs. 7(b1)–7(b3) show that the varying kh modifies the gapless regions given by the gap-closing conditions,
Eqs. (40) and (42). However, although some details of phase diagrams are changed, the key feature that the topological regions
are separated by the gapless region still exists in Fig. 7.
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