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Effects of spin-orbit coupling on proximity-induced superconductivity
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We investigate the effect of spin-orbit coupling on proximity-induced superconductivity in a normal metal
attached to a superconductor. Specifically, we consider a heterostructure where the presence of interfaces gives
rise to a Rashba spin-orbit coupling. The properties of the induced superconductivity in these systems are
addressed within the tunneling Hamiltonian formalism. We find that the spin-orbit coupling induces a mixture
of singlet and triplet pairing and, under specific circumstances, odd-frequency, even-parity, spin-triplet pairs can
arise. We also address the effect of impurity scattering on the induced pairs and discuss our results in the context
of heterostructures consisting of materials with spin-momentum locking.
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I. INTRODUCTION

Hybrid nanostructures consisting of superconductors have
been intensively studied, both experimentally and theoreti-
cally. Such hybrid proximity structures provide a platform
for the realization of novel superconducting states in the
vicinity of interfaces that connect superconductors to non-
superconducting materials. The current heightened interest
in these systems is also driven by the potential of these
heterostructures to host Majorana fermions [1–4]. As these
Majorana fermions obey non-Abelian braiding statistics they
may serve as building blocks for fault-tolerant quantum com-
putation [5–9]. Superconductor and ferromagnetic (S/FM)
hybrid structures have been studied heavily [10–15], with a
recent focus on proximity structures with topological mate-
rials. In such proximity structures, the spin-orbit coupling
(SOC) plays an important role. It is usually induced by the
breaking of inversion symmetry, e.g., through an underlying
substrate or the presence of an interface. In a superconductor,
the SOC leads to a mixing of singlet and triplet pairing.
In this two-component superconductivity, either singlet or
triplet pairing can be dominating [16,17]. Recent observa-
tion of triplet-dominant two-component superconductivity in
CoSi2/TiSi2/Si heterostructures has confirmed the realization
of dominant triplet pairing in these structures via a substrate-
induced SOC [18,19].

The role of SOC in the S/FM nanostructures has been
studied extensively [20–24], where the junctions involved s-
wave superconductors. These studies were carried out in the
quasiclassical formalism in the diffusive limit [25]. In the
diffusive limit, the most dominant energy scale in the problem
is the elastic impurity scattering, i.e., the impurity scattering
rate τ−1 � �, τ−1

s f , τ−1
in , where � is the superconducting gap
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and τ−1
s f (τ−1

in ) is the scattering rate from spin-flip (inelastic)
scattering. In such a regime, an even-frequency–spin-singlet-
even-parity (ESE) superconductor induces ESE pairs in the
diffusive normal metals, and an even-frequency–spin-triplet-
odd-parity (ETO) superconductor leads to the formation of
odd–frequency-spin-triplet-even-parity (OTE) pairs in the dif-
fusive metal, as long as the interface is nonmagnetic in nature
[26]. A nonmagnetic interface prevents triplet-to-singlet con-
version. Our main objective in this article is to understand
the properties of proximity-induced superconductivity in met-
als with sizable SOC. We will examine the stability of the
proximity-induced superconductivity in the presence of weak
disorder and analyze the emergence of odd-frequency pairs.
The effect of SOC on the superconducting side has been
explored in Refs. [27,28], while interfaces with SOC have
been studied within the Blonder-Tinkham-Klapwijk (BTK)
formalism [29,30]. These studies do not include the effect
of proximity-induced pairs. The effect of SOC in the normal
metal side on proximity-induced superconductivity has so far
not been addressed. In general, both cases, i.e., SOC only at
the interface and SOC in the normal metal side, need to be
distinguished. Whereas the first leads to a spatially localized
spin-active boundary condition, the second results in a recon-
struction of the bands and broken spin-rotational symmetry in
the normal metal.

In this paper, we focus on the effect of SOC on induced
superconductivity in a normal nonmagnetic metal that is con-
nected to a conventional/unconventional superconductor. For
concreteness, we consider a Rashba SOC that is induced by
the underlying substrate beneath the normal metal component.
One reason for this particular choice of SOC interaction is that
it can be generated and controlled by applying a gate volt-
age to the heterostructure. Here, we focus on the properties
of the induced superconductivity in the normal metal con-
nected to a triplet superconductor. In what follows, we adopt
the tunneling Hamiltonian formalism [31–37]. In the next
section, we introduce the basic model and the theoretical
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FIG. 1. Schematic illustration of a superconductor–normal-metal
junction. The interface is along the yz plane.

methods. The subsequent section provides a discussion of
our results. The final section summarizes the key qualitative
conclusions.

II. MODEL AND FORMALISM

Figure 1 shows a schematic diagram of the
superconductor–normal-metal (SN) junction. The interface is
located in the x = 0 plane. We consider a SOC that is induced
by the substrate and take the ẑ axis to be parallel to the
substrate normal. The Hamiltonian for the normal component
reads

HN =
∑
k,σ

c†
kσ

[ξkδσσ ′ + ĤRashba]ckσ ′ , (1)

where c† (c) is the electron creation (annihilation) operator,
ξk is the electronic dispersion, k denotes the momentum, and
σ represents the electron spin. We denote a 4 × 4 matrix in
Nambu-spin space with �̌, while �̂ indicates a 2 × 2 matrix
in spin space. The Rashba SOC term reads

ĤRashba = − α

m
(σ × k) · ẑ = εN (ẑ × k̂) · σ, (2)

εN = α|k|
m

. (3)

Here, α is the Rashba SOC coupling constant, m is the ef-
fective mass, and σ is the Pauli vector (σx, σy, σz), where
σx, σy, and σz are the Pauli matrices in spin space. The two
helical bands generated by this term have energies ξk ± εN .
The Hamiltonian for the superconductor reads

Hsc = 	†

(
ξkσ0 �̂

�̂† −ξkσ0

)
	. (4)

Here, σ0 is the 2 × 2 identity matrix in spin space,
ξk is the dispersion in the superconductor, and 	† =
(a†

↑k, a†
↓k, a↑−k, a↓−k ), where a† (a) is the creation (anni-

hilation) operator. The gap �̂ = �iσy for the singlet case,
while for the triplet case �̂ = �d · σiσy. Here, d is the
order-parameter vector in spin-space for triplet pairing. The
tunneling Hamiltonian is

Htunneling = γ	†τ̌3� + H.c., (5)

where τ̌3 = diag(1, 1,−1,−1) is a matrix in Nambu-spin
space, �† = (c†

↑k, c†
↓k, c↑−k, c↓−k ), where c†

kσ and ckσ are

the creation and annihilation operators in the normal metal
segment, and γ is the tunneling matrix element. We assume γ
to be spin and momentum independent and take it to be real.

The mean-field expression for the Green’s function of the
superconducting component is

Ǧsc = 1

ω2 − ξ 2 − |�|2
(

(ω + ξ )σ0 �̂

�̂† (ω − ξ )σ0

)
. (6)

For notational convenience, we abbreviate ξk as ξ . The tun-
neling self-energy for the normal side of the junction at the
interface reads

̌t (k||, ω) = |γ |2
∫

dk⊥
2π

1

ω2 − ξ 2 − |�|2

×
(

(ω + ξ )σ0 −�̂

−�̂† (ω − ξ )σ0

)
. (7)

Here, k⊥ is the momentum component perpendicular to the
SN interface, and k|| is the momentum parallel to it. The self-
energy has the same general structure as the structure of the
Green’s function in the superconductor. The integration over
the momentum component perpendicular to the interface may
modify d to d̃ depending on the junction geometry.

To study the robustness of the induced pairs in the presence
of disorder, we consider pointlike impurities randomly dis-
tributed in the normal metal. Within a self-consistent T-matrix
approximation which incorporates all scattering processes
from a single impurity site the impurity self-energy contribu-
tion is

̌imp(ω) = nimpτ̌3Vimp[1̌ − ǧτ̌3Vimp]−1, (8)

where nimp is the impurity concentration, Vimp is the impurity
potential, 1̌ is the 4 × 4 identity matrix, and ǧ is

ǧ =
∫

k
Ǧ, (9)

where

Ǧ = 1̌

Ǧ−1
0 − ̌t (k||, ω) − ̌imp(ω)

. (10)

Here, Ǧ0 is the normal metal bare Green’s function, and
the impurity self-energy is calculated self-consistently. The
order-parameter energy scale � sets the energy scale in this
problem, and will not be calculated self-consistently. It is
assumed that the superconductor has an effective attractive
interaction to generate the gap symmetry under consideration.
A self-consistent determination of � will only change its
numerical value. A change in the spin-momentum structure
of the order parameter is not expected as there is no attrac-
tive interaction that could generate any changes in the order
parameter structure.

III. RESULTS AND DISCUSSION

A. SN junction with a singlet superconductor

First, we consider a pure singlet superconductor attached
to the normal metal component discussed above. In that case,
�̂ = �iσy and the tunneling self-energy is given by

̌t (k||, ω) = |γ |2
(

(0 + 3)σ0 iσy1

−iσy1 (0 − 3)σ0

)
. (11)
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In the case of a momentum-independent � and for a particle-
hole-symmetric system, the tunneling self-energy becomes

̌t (k||, ω) = −�t
1√

�2 − ω2

(
ωσ0 iσy�

−iσy� ωσ0

)
. (12)

Here, �t ≡ π |γ |2νs is the energy scale associated with the
tunneling process, where νs is the normal state density of
states (DOS) of the superconductor at the Fermi level. Inclu-
sion of particle-hole asymmetry results in a nonvanishing 3,
which can be absorbed in the chemical potential. As it turns
out, the presence of particle-hole asymmetry does not lead to
a significant qualitative difference. The normal metal Green’s
function in the clean limit is

Ǧ =
(

[ω̄ − ξ ]σ0 − εN (w · σ ) −i1σy

i1σy [ω̄ + ξ ]σ0 − εN (w · σ∗)

)−1

,

Ǧ =
(
Ĝ11 Ĝ12

Ĝ21 Ĝ22

)
. (13)

Here, ω̄ = ω − 0 and w = ẑ × k̂. The components of Ǧ are

Ĝ11 = 1
2 [R+ + R−] + 1

2 [R+ − R−](w · σ), (14)

R± = ω̄ + (ξ̄ ± εN )

ω̄2 − (ξ̄ ± εN )2 − 2
1

, (15)

Ĝ12 =
(

1

2

[
1

D+
+ 1

D−

]
+ 1

2

[
1

D+
− 1

D−

]
w · σ

)
× (iσy1), (16)

D± = ω̄2 − (ξ̄ ± εN )2 − 2
1 . (17)

The structure of the induced pairs can be obtained from the
anomalous Green’s function Ĝ12. The first term of Ĝ12 in
Eq. (16) is the spin-singlet, even-parity, and even-frequency
component. This is the conventional proximity effect for a
singlet superconductor. The second term of Ĝ12 in Eq. (16) is a
spin-triplet, odd-parity, and even-frequency term. This term is
directly proportional to the strength of the SOC. Due to finite
SOC, spin-rotational symmetry is broken, which allows for a
mixing of singlet and triplet terms. The d vector for triplet
pairing is determined by the SOC vector w.

At this point, we can include the effect of impurity scat-
tering. The impurity self-energy depends on the momentum-
integrated Green’s function. Since w is an odd function of
momentum, the terms linear in w vanish in the momentum-
integrated Green’s function for a singlet superconductor. As a
result, the momentum-integrated Green’s function is∫

k
Ǧ = −πN0

1√
2

1 − ω̄2

(
ω̄σ0 1iσy

−iσy1 ω̄σ0

)
, (18)

where N0 is the normal metal DOS at the Fermi level. The
impurity self-energy can be expressed as

̌imp =
(

imp0σ0 iσyimp1

−iσyimp1 imp0σ0,

)
, (19)

imp0 = nimp
g0V 2

1 − V 2
(
g2

0 − g2
1

) , (20)

imp1 = nimp
−g1V 2

1 − V 2
(
g2

0 − g2
1

) , (21)

FIG. 2. Proximity-induced gap in the normal metal. (a) Variation
of normalized DOS with strength of tunneling energy scale �t .
(b) Normalized density of states at the interface as a function of
energy for several values of the impurity scattering rate.

where we have neglected the 3 component of the impurity
self-energy, which vanishes for a particle-hole-symmetric sys-
tem. We can define an impurity-renormalized energy and an
induced off-diagonal self-energy as

ω̃ = ω − 0(ω) − imp0(ω̃), (22)

̃1 = 1(ω) + imp1(ω̃). (23)

Here, the fully dressed Green’s function is used to calculate
ω̃, ̃1 self-consistently. The equations for the renormalized
̃1 and ω̃ are identical to those for an s-wave superconductor
with nonmagnetic impurities. Now, we rewrite the impurity
and tunneling dressed Green’s function Ǧ by replacing ω̄ and
1 with ω̃ and ̃1, respectively. After some straightforward
algebra, we get ω̃/̃1 = ω̄/1. This ensures that the induced
pairs remain robust against nonmagnetic disorder. Next, we
consider the interface DOS given by

N (ω) = N0Im
ω̃√

̃2
1 − ω̃2

. (24)

Figure 2(a) shows the interface DOS for several values of
the tunneling energy scale �t . In the weak-tunneling regime
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(�t 
 �), the effective gap in the DOS is determined by
�2

t /�, and in the strong-tunneling regime (�t � �), the ef-
fective gap becomes identical to the size of the gap of the
superconductor. The subdominant triplet component does not
induce any low-energy subgap states; instead, the low-energy
DOS is mainly controlled by the singlet order parameter,
which is an isotropic s-wave in the present case. The effect
of impurity scattering is depicted in Fig. 2(b), which shows
no change in the DOS with increasing impurity scattering rate
�imp ≡ nimpπN0V 2/(1 + π2V 2N2

0 ). The underlying triplet or-
der parameter remains unaffected by the impurity scattering,
in contrast to bulk triplet superconductors.

B. SN junction with a triplet superconductor

In a triplet superconductor the order parameter is �̂ = �d ·
σiσy, where the d vector describes the pair structure in spin
space. Here, we restrict ourselves to unitary pairing (d × d∗ =
0) in the superconducting component of the heterojunction. In
this case, we find, for the tunneling self-energy,

̌t (k||, ω) = |γ |2
(

0σ0 1d̃ · σiσy

−iσy1d̃∗ · σ 0σ0

)
, (25)

where the components are given by

0 = |γ |2
∫

dk⊥
2π

ω

ω2 − ξ 2 − �2|d|2 , (26)

1d̃ = |γ |2
∫

dk⊥
2π

−�d
ω2 − ξ 2 − �2|d|2 . (27)

As before in the singlet case, we ignore the 3 self-energy.
The d vector is an odd function of momentum; d̃ is also an
odd function of the momentum parallel to the interface (k||),
and it does not depend on the momentum component normal
to the interface (k⊥). The Green’s function in the normal metal
can be written as

Ǧ =
(

[ω̄ − ξ ]σ0 − εN (w · σ ) −1d̃ · σiσy

iσy1d̃∗ · σ [ω̄ + ξ ]σ0 − εN (w · σ∗)

)−1

=
(
Ĝ11 Ĝ12

Ĝ21 Ĝ22

)
. (28)

The general structure of the off-diagonal Green’s function has
the form

Ĝ12 ∝ A0σ0 + A1w · σ + A2d̃ · σ + A3d̃∗ · σ + A4(d̃ × w) · σ,

(29)

where the specific values of the set {Ai} (i = 0, . . . , 4) will
depend on the geometry of the junction and the specifics of the
d vector, which, in turn, determine d̃. In general, d̃ × d̃∗ may
not vanish despite unitary pairing in the superconductor (d ×
d∗ = 0). Equation (29) has singlet and triplet terms, but due
to the anisotropic nature of the gap in the superconductor, the
details of the geometry and pairing structure are essential to
understand the structure of induced pairs in the normal metal.
To proceed, we will consider a few pertinent cases.

1. d vector ‖ w

Motivated by the recent experiments on CoSi2/TiSi2/Si
heterostructures [18,19,28], we first consider the case of a

FIG. 3. (a) and (b) Two different SN junction geometries.

d vector that is parallel to the SOC vector w. The experi-
mental results for CoSi2/TiSi2 on a Si substrate indicate the
presence of a dominant triplet superconducting state in CoSi2

with d vector along w. Due to the SOC which is induced by
the Si substrate, there will also be a finite but weak singlet
component in the superconductor, which we ignore for now.
The general case of a mixed-parity superconductor will be
addressed in Sec. III B 3. For side-by-side coupled junctions
such as the one illustrated in Fig. 3(a), the tunneling self-
energies are

0 = 0(ω, k||), (30)

1d̃ = −ky1(ω, k||)x̂, (31)

where d̃ = −kyx̂ and the normal and anomalous parts of the
Green’s functions are

Ĝ11 = 1

D

[(
a0b+b− − b0

2
1 d̃ · d̃

)
σ0

− εN
(
b+b− + 2

1 d̃ · d̃
)
(w · σ)

− 2εN2
1 (d̃ · w)d̃ · σ

]
, (32)

Ĝ12 = Ĝ12
1

D
iσy, (33)

Ĝ12 = (2εNξk1d̃ · w)σ0

− 2ε2
N1(d̃ · w)w · σ

+ (
ω̄2 − ξ 2

k + ε2
N − 2

1 d̃ · d̃
)
1d̃ · σ

− 2iω̄εN1(d̃ × w) · σ, (34)

D = (
ω̄2 − ξ 2

k + ε2
N − 2

1 d̃ · d̃
)2

+ 4ε2
N

[
2

1 (d̃ · w)2 − ω̄2
]
. (35)

Here, a0 = ω̄ − ξk, b0 = ω̄ + ξk, and b± is ω̄ + ξk ± εN .
Equation (34) contains an even-parity (∝ k2

y ), even-frequency
singlet term that arises due to a nonzero SOC and disappears
in the limit of vanishing SOC. Apart from an expected triplet
pairing with d̃ · σ, a nonvanishing SOC brings about another
kind of triplet pairing with w · σ structure. Both these triplet
components are even in frequency and have odd parity. This
additional pairing that arises due to the SOC is described by
the last term in Eq. (34) which is ∝ (d̃ × w) · σ and possesses
a momentum dependence ∝ kxky. This term describes triplet
pairs that have even parity and are odd in frequency. This term
is absent when the SOC vanishes. This term also vanishes
for junctions possessing top-bottom geometry such as the
one shown in Fig. 3(b) as d̃||w in this geometry. Thus there
are only singlet and triplet components with even-frequency
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FIG. 4. The local density of states at the interface for several
values of the normal state scattering rate. The parameter c is the
cotangent of the s-wave phase shift; c ≡ cot θs is 1 for (a) and 0.01
for (b).

structure in this junction geometry where the singlet pairs
are generated by the SOC. Next, we include the effect of
impurity scattering as described in Sec. II. We consider a
two-dimensional electron gas and a side-by-side coupled ge-
ometry. For a two-dimensional superconductor with an order
parameter characterized by d = ẑ × k, the Fermi surface is
fully gapped. In that case, the self-energy components are

0 = −�t
ω√

�2 − ω2
, (36)

1d̃ = �t
�√

�2 − ω2

ky

kF
x̂. (37)

The momentum-integrated Green’s function is g01̌. The
disorder-renormalized ω̃ is determined by

ω̃ = ω + �t
ω√

�2 − ω2
+ nimp

πN0

g0

cot2 θs − g2
0

, (38)

where θs ≡ tan−1(πN0V ) is the s-wave scattering phase shift.
Figure 4(a) shows the local DOS at the interface for weak
scattering (c = 1), and Fig. 4(b) shows the local DOS for
c = 0.01, i.e., strong scattering. In contrast to the isotropic
s-wave, the impurity scattering rapidly suppresses the induced
superconductivity in this case. While the bulk superconductor

is fully gapped, the induced superconductivity has low-energy
states and does not develop a gap in the DOS. Although
the low-energy states rapidly disappear with increasing dis-
order, the off-diagonal Green’s function remains finite. This
is in contrast to a bulk superconductor, where the anomalous
Green’s function vanishes once the impurity scattering rate
reaches a critical value.

2. d vector ⊥ w

Next, we consider a chiral p-wave state with d = (px +
ipy)ẑ, which is a complex but unitary order parameter (d ×
d∗ = 0). In this case, the tunneling self-energies read

0 = 0(ω, k||), (39)

1d̃ = iky1(ω, k||)ẑ, (40)

with d̃ = ikyẑ. The anomalous part of the Green’s function is
obtained as

Ĝ11 = [(
a0b+b− − b0

2
1 |d̃|2)σ0

+εN
(
b+b− + 2

1 |d̃|2)(w · σ)
] 1

D
, (41)

Ĝ12 = Ĝ12

D
iσy, (42)

Ĝ12 = 1
(
ω̄2 − ξ 2

k + ε2
N − 2

1 |d̃|2)d̃ · σ

− 2iω̄εN1(d̃ × w) · σ, (43)

D = (
ω̄2 − ξ 2

k + ε2
N − 1

2|d̃|2)2 − 4ε2
N ω̄2. (44)

As d̃ ⊥ w, any d̃ · w component, be it singlet or triplet,
vanishes. This also ensures the presence of an odd-frequency
component for both kinds of junction geometries. The mo-
mentum structure of the odd-frequency component turns out
to be ∝ kxkyx̂ + k2

y ŷ; therefore the imp1 self-energy con-
tribution becomes finite, in contrast to the previous case.
A nonvanishing imp1 self-energy, as it turns out, converts
the induced pairing into nonunitary pairing. (See the general
expression for the Green’s function in Appendix A). The im-
purity self-energies are given by Eqs. (20) and (21). However,
the SOC itself kills the induced pairing as can be inferred from
Fig. 5(a), where it is shown that the DOS at the Fermi level
reaches the normal state value as the SOC strength increases
beyond the pairing energy scale of the superconductor. In
Fig. 5(b), the DOS at the interface is shown for energies
below the superconducting gap in the case of weak SOC.
We are, however, interested in the regime � 
 εN 
 EF , and
in this regime the proximity-induced superconductivity does
not survive. In the strong-SOC regime, unless the d vector
is aligned with SOC, SOC will act as a strong pair breaker
[17]. The inclusion of impurity scattering does not change
this conclusion. Impurity scattering only further diminishes
the proximity-induced superconductivity even for weak SOC
as can be inferred from Fig. 5(c).

3. Mixed-parity state

The last case that we consider is that of a superconductor
with mixed-parity order parameters. Such a state is possible
if the superconductor itself is under the influence of a SOC.
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FIG. 5. (a) The interface DOS at the Fermi level as a function
of SOC energy in the clean limit. (b) and (c) The interface DOS as
a function of energy for several values of SOC energy in the clean
limit (b) and with a scattering rate �N = � for c = 1 (c).

The normal and anomalous mean-field Green’s functions in
this case are

Ĝ11 = 1
2 [Ĝ+ + Ĝ−] + 1

2 [Ĝ+ − Ĝ−]d · σ, (45)

Ĝ± = ω + ξ±
ω2 − ξ 2± − �2±

, (46)

Ĝ12 = 1
2 [(F̂+ + F̂−) + (F̂+ − F̂−)d · σ]iσy, (47)

F̂± = �±
ω2 − ξ 2± − �2±

. (48)

Here, �± = (�s ± �t ) and ξ± = ξk ± εS , where εS is the
SOC energy scale in the superconductor and �s (�t ) is the
singlet (triplet) component of the gap. The normal (̂11) and
anomalous (̂12) tunneling self-energies are 0 + socd̃ · σ

and (s + t d̃ · σ )iσy, where soc modifies the SOC in the
normal metal and s (t ) is the singlet (triplet) component.
They are given by

0/soc = −�t

(
ω

Q+
± ω

Q−

)
, (49)

s/t = �t

(
�+
Q+

± �−
Q−

)
, (50)

where Q± = 2
√

�2± − ω2 and it was assumed that the SOC
splitting energy in the superconductor is εS 
 EF . Conse-
quently, we ignore the differences between the DOSs of the
two helical bands, which are of the order of εS/EF . The
renormalized SOC term in the normal metal can be rewritten
as

ε̃N w̃ · σ = εN w · σ + socd̃ · σ, (51)

ε̃N =
√

(εN w + socd̃) · (εN w + socd̃), (52)

w̃ = εN w + socd̃
ε̃N

. (53)

The anomalous Green’s function in the normal metal is

Ĝ12 ∝ [A0σ0 + A1w̃ · σ + A2d̃ · σ + A3(d̃ × w̃) · σ]iσy,

(54)

where the set of coefficients {Ai} (i = 0, . . . , 3) is provided in
Appendix B. The first term in Eq. (54) is the even-parity, spin-
singlet term, and the second and third terms are odd-parity,
spin-triplet terms. There is an odd-frequency, spin-triplet,
even-parity (OTE) term, which only exists in the presence of
both a finite triplet component in the superconductor and a
finite SOC in the normal metal.

We parametrize the singlet and the triplet gaps in the su-
perconductor as �s = �0/

√
1 + r2 and �t = �0r/

√
1 + r2,

respectively [28]. The parameter r is the ratio of triplet and
singlet order parameters, where r > 1 describes a triplet-
dominant regime while r < 1 presents a singlet-dominant
regime. For a mixed-parity superconductor such as a non-
centrosymmetric superconductor, any value of r ∈ [0,∞)
is possible. Its experimental determination typically relies
on superfluid density or thermal transport measurements. In
principle, SN and proximity junctions can also be used to
determine the relative strength of the singlet and triplet com-
ponents [18,19,28]. In certain systems, r appears to be tunable
over a considerable range [38]. The general concerns regard-
ing the determination of the order parameter and its symmetry
apply here as well. A consistent extraction of similar r values
from different experiments appears to be the most promising
strategy.
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FIG. 6. The interface DOS for a mixed–parity SN junction with-
out any impurity scattering. (a) The interface DOS for r = 0.8 and
r = 1.2 with no SOC in the normal metal. The tunneling energy scale
�t = 0.5�0. (b) The interface DOS states for r = 0.8 and r = 1.2
with (solid lines) and without (dashed lines) SOC.

As is clear from the defining expression, in the extreme
singlet (r → 0) and triplet (r → ∞) limit, we recover the
results presented in Secs. III A and III B 1, respectively (see
also Appendix C). In the intermediate regime, the DOS at the
interface shows signatures of two energy scales, �± = �s ±
�t . For a vanishing SOC in the normal metal, the singlet-
dominant regime (r < 1) ensues, where the DOS shows a gap
min{�+,�−}, as shown in Fig. 6(a); for the triplet-dominant
case (r > 1), the DOS is similar to the pure triplet case dis-
cussed above (see Sec. III B 1), but the relevant energy scale
is again min{�+,�−}. This behavior remains qualitatively
the same in the presence of a SOC in the normal metal.
However, the SOC leads to a particle-hole-asymmetric DOS
as illustrated in Fig. 6(b). This happens due to the coupling of
singlet and triplet pairs in the normal metal due to the SOC.
This coupling generates a term linear in ξ in the denomina-
tor of the Green’s function, with a prefactor ∝ ε̃Nst d̃ · w̃,
which causes the breakdown of particle-hole symmetry. The
effect of impurity scattering for the singlet-dominant (triplet-
dominant) case is qualitatively the same as for the pure singlet
(triplet) case. The particle-hole asymmetry in the DOS also

FIG. 7. (a) The interface DOS for a singlet-dominant (r = 0.8)
SN junction for several representative values of the impurity scat-
tering rate. (b) Variation of interface DOS with disorder for the
triplet-dominant (r = 1.2) case.

gets smeared by the impurity scattering as depicted in Fig. 7(a)
for the singlet-dominant (r < 1) case and in Fig. 7(b) for the
triplet-dominant case (r > 1).

IV. SUMMARY AND CONCLUSION

In this paper, we have studied the effect of Rashba SOC on
the structure of proximity-induced Cooper pairs in a normal
metal connected to a superconductor. We considered several
kinds of gap symmetries. The SOC in the normal metal leads
to a singlet-triplet mixed state if the SN junction involves
a singlet superconductor. The strength of the triplet compo-
nent in this case depends on the strength of the SOC, and
the low-energy quasiparticle spectrum remains gapped and
robust in the presence of disorder. The SOC-driven triplet state
does not lead to any low-energy states. This is reminiscent
of the proximity-induced mixed-parity states that have been
reported for topological insulator and s-wave superconducting
junctions where the origin of the singlet-triplet mixing is the
spin-momentum locking [34,36,39–42].

In the case of an SN junction involving a triplet super-
conductor, the broken spin-rotational symmetry can lead to
a nonzero singlet component, but its presence depends on
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the spin structure of the gap in the superconductor and the
junction geometry. We find that a singlet component is present
whenever the off-diagonal self-energy �1 has a component
parallel to the SOC vector w. On the other hand, an off-
diagonal self-energy that is perpendicular to the SOC vector
gets suppressed by the SOC very quickly. The induced triplet
component may have a different spin structure compared with
the superconductor, depending on the junction geometry. The
induced triplet pairs have subgap low-energy states; however,
the induced triplet component turns out to be fragile against
impurity scattering. The effect of disorder is similar to the
effect of disorder on proximity-induced p-wave superconduc-
tivity on the surface of topological insulators [35]. In the SN
junctions with two-component superconductors that have both
singlet and triplet components, the low-energy behavior is
determined by the dominant component. However, the SOC-
induced coupling between the singlet and triplet components
leads to a particle-hole-asymmetric DOS. The disorder sup-
presses this particle-hole asymmetry.

One of the key conclusions of this work is the formation
of odd-frequency, spin-triplet, even-parity pairs in the normal
metal segment of an SN junction with a triplet superconductor.
Such an odd-frequency component only arises in the presence
of SOC in the normal metal. The induced d vector of the
odd-frequency term is ∝ (�1 × w), which is an even function
of momentum. Proximity-induced OTE superconductivity has
been reported for s-wave superconductor junctions with topo-
logical insulators (TIs) [33,34,43] or with low-dimensional
Rashba metals [44,45]. In the case of TI-superconductor junc-
tions, either the gap modulation near the interface [33,43] or
a finite exchange field [34] is essential for the emergence of
OTE superconductivity, and in the later case, the Andreev
reflections give rise to OTE pairs, which is a different mech-
anism. In contrast, the formation of OTE pairs that we find
for a triplet superconductor SN junction does not require gap
modulation near the interface or any exchange field. We have
obtained the full momentum-spin-energy structure of the OTE
pairs. The OTE pairs have momentum dependence, which
makes them vulnerable to impurity scattering.

OTE pairs have also been reported in the normal metal
junctions with triplet superconductors where the normal metal
did not have SOC [26]. These studies were performed using
the Usadel equations with Nazarov-Tanaka boundary condi-
tions [46,47]. The present approach is different. We calculate
the normal state Green’s function right at the interface, thus
avoiding ambiguity with respect to possible boundary condi-
tions. The physical origin of the OTE pair formation differs in
both approaches. In the quasiclassical approach, the underly-
ing mechanism is Andreev reflection, which leads to a mixing
of parities at the interface [44,45]. In contrast, the OTE pairs
that we find in the tunneling matrix formalism are coming
from a modification of triplet pairs in the two SOC-generated
helical bands.

In summary, we have investigated the effect of Rashba
SOC on proximity-induced superconductivity in SN junctions
consisting of a normal metal and an unconventional super-
conductor. Equations (32) and (34) are very general, and the
structure of the induced superconductivity is applicable to
many other systems, such as surface states of topological
insulators or systems with Dresselhaus SOC. We examine the

robustness of the induced superconductivity in the presence
of disorder and find that the induced triplet superconductivity
gets suppressed by it. In contrast, the fully gapped s-wave
superconductivity remains robust in the presence of disorder.
We find that the OTE state is induced in the SN junctions
with triplet superconductors, but it does not show any low-
energy signature. The OTE pairs may get suppressed weakly
or strongly by the disorder depending on their momentum
structure. We show that the formation of the OTE pairs re-
quires a triplet superconductor in the SN junction, SOC, and
a favorable geometry. OTE pairs are not induced in every
triplet-superconductor–normal-metal junction.
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APPENDIX A: GENERAL TRIPLET CASE

This Appendix provides the details of the normal metal
Green’s function for the general triplet case discussed in
Sec. III B. The Ĝ11 component of the normal state Green’s
function Ǧ is given by

Ĝ11 = b+b−
D

[M0σ0 − M1w · σ − M2q · σ

−M31d̃ · σ − M41d̃∗ · σ
]
, (A1)

D = M2
0 − M2

1 (w · w) − M2
2 (q · q)

−M2
32

1 (d̃ · d̃) − M2
42

1 (d̃∗ · d̃∗)

−2M1M2q · w − 4εN M1
2
1 d̃ · wd̃∗ · w

−2ε2
N4

1 |d̃|2d̃ · wd̃∗ · w. (A2)

Here, b± = ω̄ + ξk ± ε̃N , q = id̃ × d̃∗, and the coefficients Mi

(i = 0, . . . , 4) are

M0 = a0b+b− − b0
2
1 |d̃|2 − εN q · w, (A3)

M1 = −εN b+b− − εN2
1 |d̃|2, (A4)

M2 = −b0, (A5)

M3 = εN1d̃∗ · w, (A6)

M4 = εN1d̃ · w. (A7)

The anomalous component Ĝ12 of Ǧ reads

Ĝ12 = Ĝ12
iσy

D
, (A8)
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where

Ĝ12 = [C0σ0 + C1w · σ + C21d̃ · σ

+C31d̃∗ · σ + C41(d̃ × w) · σ], (A9)

C0 = 2εNξb+b−1d̃ · w

+2εN3
1b0(d̃ × (d̃ × d̃∗)) · w, (A10)

C1 = −2b+b−ε2
N1d̃ · w

−ε2
N3

1 (d̃ × (d̃ × d̃∗)) · w, (A11)

C2 = b+b−
(
a0b0 + ε2

N

)
+ε2

N2
1 (d̃ × w) · (d̃∗ × w), (A12)

C3 = −b+b−2
1 d̃ · d̃

−ε2
N2

1 (d̃ × w) · (d̃ × w), (A13)

C4 = −2iεN ω̄b+b− + iε2
N (q · w). (A14)

Here, a0 = ω̄ − ξk and b0 = ω̄ + ξk.

APPENDIX B: MIXED PARITY

Details of the normal and anomalous Green’s functions for
the mixed-parity state discussed in Sec. III B 3 are provided in
this Appendix.

The normal Green’s function is

Ĝ11 = b+b−
D

[L0σ0 − L1w̃ · σ − L2d̃ · σ], (B1)

L0 = a0b+b− − b0
(
2

s + 2
t d̃ · d̃

) + 2ε̃Nst d̃ · w̃, (B2)

L1 = −ε̃N
(
b+b− − 2

s + 2
t d̃ · d̃

)
, (B3)

L2 = −2
(
b0st − ε̃N2

t d̃ · w̃
)
, (B4)

D = L2
0 − L2

1 − L2
2 d̃ · d̃ − 2L1L2d̃ · w̃. (B5)

The anomalous Green’s function can be cast in the form

Ĝ12 = Ĝ12
iσy

D
, (B6)

with

Ĝ12 = [A0σ0 + A1w̃ · σ + A2d̃ · σ + A3(d̃ × w̃) · σ],

(B7)

A0 = (
a0b0 − ε̃2

N

)
s − 3

s + s
2
t d̃ · d̃ + 2ξkε̃N d̃ · w̃,

(B8)

A1 = 2ξkε̃Ns − 2ε̃2
Nt w̃ · d̃, (B9)

FIG. 8. The interface DOS for a mixed-parity SN junction for the
(a) singlet and (b) triplet case. The strong singlet r = 0 in (a) and
strong r = 1015 in (b) are particle-hole symmetric; however, the
near-degenerate states show a particle-hole-asymmetric DOS near
the Fermi level. In this figure, �t = 0.5� and εN = 10�.

A2 = t
(
a0b0 + ε̃2

N + 2
s − 2

t d̃ · d̃
)
, (B10)

A3 = −2iε̃N ω̄t . (B11)

APPENDIX C: EMERGENCE OF PARTICLE-HOLE
ASYMMETRY IN THE MIXED-PARITY SN JUNCTIONS

For a mixed-parity superconductor, the limits of vanishing
and infinitely large mixing parameter r, defined in Sec. III B 3,
recover the singlet and triplet cases, respectively. This is ex-
plicitly demonstrated in Fig. 8, where the interface density
of states is shown for a wide range of r values interpolating
between r = 0 and r → ∞.
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