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Sweeping across the BCS-BEC crossover, reentrant, and hidden quantum phase transitions
in two-band superconductors by tuning the valence and conduction bands
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Two-band electronic structures with a valence and a conduction band separated by a tunable energy gap and
with pairing of electrons in different channels can be relevant to investigate the properties of two-dimensional
multiband superconductors and electron-hole superfluids, such as monolayer FeSe, recently discovered super-
conducting bilayer graphene, and double-bilayer graphene electron-hole systems. This electronic configuration
also allows us to study the coexistence of superconductivity and charge-density waves in connection with
underdoped cuprates and transition metal dichalcogenides. By using a mean-field approach to study the system
mentioned above, we have obtained numerical results for superconducting gaps, chemical potential, condensate
fractions, coherence lengths, and superconducting mean-field critical temperature, considering a tunable band
gap and different fillings of the conduction band, for a parametric choice of the pairing interactions. By tuning
these quantities, the electrons redistribute among valence and conduction band in a complex way, leading to a
new physics with respect to single-band superconductors, such as density-induced and band-selective BCS-BEC
crossover, quantum phase transitions, and hidden criticalities. At finite temperature, this phenomenon is also
responsible for the nonmonotonic behavior of the superconducting gaps resulting in a superconducting-normal
state reentrant transition, without the need of disorder or magnetic effects.
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I. INTRODUCTION

Multiband and multigap superconductivity is a complex
quantum coherent phenomenon with peculiar features that
cannot be found in single-band and single-gap supercon-
ductors [1]. The increased number of degrees of freedom
in the condensate state allows for unique quantum effects
which are unattainable otherwise, for instance, enriching
the physics of the BCS-BEC crossover [2–5]. Proximity to
the crossover regime of the BCS-BEC crossover in multi-
band superconductors having deep and shallow bands can
determine a notable increase of superconducting gaps and
critical temperature (Tc) [6–9], associated with a higher mean-
field Tc, together with optimal conditions for the screening
of superconducting fluctuations [10–12]. Furthermore, the
interplay of low-dimensional two-band systems allows for
screening of fluctuations in systems composed by coupled
quasi-two-dimensional bands or even in the vicinity of a van
Hove singularity (e.g., in the case of quasi-one-dimensional),
enabling shrinking of the pseudogap phase and robust high-
critical temperatures [13–15].

Motivated by high-temperature superconductivity and
anomalous metallic-state properties in underdoped cuprates,
interest has grown in the pseudogap physics, in which a
blurred gap persists in the normal state near the Fermi level.
There are different models and explanations for this pseu-
dogap, the simplest one being a smooth crossover from the
BCS regime towards a Bose-Einstein condensation regime
in which bound pairs form first at higher temperatures, and
then below a critical temperature Tc they condense, with the

pseudogap being the excitation energy of the quasimolecular
pairs. Another explanation relevant for underdoped cuprates is
the presence of other mechanisms different from pair fluctua-
tions, such as charge density waves (CDWs) [16–19] and their
fluctuations that can modify the energy spectrum with opening
of (pseudo)gaps and at the same time mediate Cooper pairing.
Thus, systems in which CDWs and superconductivity coex-
ist are of primary interest to study the BCS-BEC crossover
when an energy gap separates the electronic spectrum in two
bands. The CDW instability or its precursor opens a gap or
a pseudogap at low energies, splitting the single band of the
nonordered state in two branches that in wave-vector space
behave locally as valence (holelike) and conduction (electron-
like) bands, characterized by an energy separation that is twice
the gap or pseudogap energy.

In addition to underdoped cuprates, an interesting example
is given by the transition metal dichalcogenide family, MX2,
where M = Ti, Nb, Mo, Ta and X = S, Se, which exhibits a rich
interplay between superconductivity and CDW order [20]. In
these materials, superconductivity occurs in an environment
of pre-existing CDW order [21,22], making them an ideal
platform to study many-body ground states and competing
phases in the two-dimensional (2D) regime. The relationship
between CDW and superconductivity in such systems is still
under investigation [23,24]. In general, their mutual interac-
tion is competitive, but evidence to the contrary, indicating a
cooperative interplay, has also been reported in angle-resolved
photoemission spectroscopy studies [22]. Among them, bulk
Niobium diselenide (2H-NbSe2) undergoes a CDW distor-
tion at T = 30 K and becomes superconducting at 7 K.
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References [25,26] reported that Tc lowers to 1.9 K in 2H-
NbSe2 single layers and that the CDW measured in the bulk
is preserved. Theoretical support is given by Lian et al. [27]:
They demonstrated enhanced superconductivity in the CDW
state of monolayer tantalium diselenide (TaSe2) with DFT
calculations. In contrast with 2H-NbSe2, they reported that as
TaSe2 is thinned to the monolayer limit, its superconducting
critical temperature rises from 0.14 K in the bulk to 2 K in
the monolayer. Another appealing superconducting material
is the monolayer FeSe grown on a SrTiO3 substrate, which
exhibits a huge increase of Tc up to 100 K [28] and is char-
acterized by a valence and conduction band structure near
the Fermi level. Interestingly, spectroscopic evidence of a
real-space BCS-BEC crossover in a FeSe monolayer by using
spatially resolved scanning tunneling microscopy has been
recently reported [29]. The BCS-BEC crossover in this system
is driven by the shift of band structure relative to the Fermi
level. Furthermore, very recently, 2D superconductivity has
been found in bilayer graphene systems, in which conduction
and valence bands are separated by a small energy band gap
(0 ÷ 100 meV) that can be precisely tuned by an external
electric field [30] (for a review, see Ref. [31]). Coupling a
monolayer of WSe2 with bilayer graphene has been found
to enhance superconductivity by an order of magnitude in Tc

and superconductivity emerges already at zero magnetic field
[32]. Finally, it turns out that the two-band superconducting
system considered in this paper is in close correspondence
with two-band electron-hole superfluids in double bilayer
graphene [33].

Therefore, the growing experimental realization of 2D su-
perconductors with valence and conduction bands separated
by a tunable energy gap and electron-hole superfluidity in
multilayer systems motivated us to investigate the BCS-BEC
crossover in this kind of system. The detailed analysis of
this configuration is lacking in the literature to the best of
our knowledge. A pioneering work on a related system with
valence and conduction parabolic bands has been done by
Noziéres and Pistolesi [34] to study the phase transition from a
semiconducting to a superconducting state and the consequent
(pseudo)gap opening, in the specific case of equal pairing
strengths for all interaction channels considered. In our paper,
we consider a superconductor with two tight-binding bands
with different intraband and pair-exchange couplings to probe
the possibility to have coexisting Cooper pairs of different av-
erage sizes [35] in the valence and conduction band. However,
for most multiband superconductors, the tuning of intraband
and pair-exchange interactions is rather challenging and their
properties cannot be studied easily in a continuous way across
the BCS-BEC crossover. As shown in this paper, a different
way to explore the BCS-BEC crossover in such systems can
be achieved by tuning the energy gap between the valence and
the conduction band. In fact, since the number of particles in
the single bands is not conserved, when the energy band gap is
modified, the number of holes and electrons forming Cooper
pairs, respectively, in the valence and in the conduction bands
changes, allowing for the occurrence of a density-induced
multiband BCS-BEC crossover [36]. This redistribution of
charges between the valence and conduction bands also leads
to interesting quantum phase transitions (QPTs) from a su-
perconducting to an insulating state, or hidden criticalities

FIG. 1. Electronic band structure of the two-band 2D system
considered in this paper. Eg is the energy gap between the valence
(i = 1) and the conduction (i = 2) band.

evidenced by the analysis of the order parameter coherence
lengths [37,38]. At finite temperature, a different type of reen-
trant superconducting to normal state transition has been also
found and characterized. The results reported and discussed
in this paper demonstrate the richness of the proposed va-
lence and conduction band configuration to generate and tune
unique types of crossover phenomena and quantum phases.

The paper is organized as follow. In Sec. II, we describe
the model for the physical system considered and the theoret-
ical approach for the evaluation of the superconducting state
properties. In Sec. III, we report our results. The conclusions
of our work will be reported in Sec. IV.

II. MODEL SYSTEM AND THEORETICAL APPROACH

We consider a 2D two-band superconductor with a valence
and conduction electronic band in a square lattice. The va-
lence and conduction bands are modeled by a tight-binding
dispersion given, respectively, by Eqs. (1) and (2):

ε1(k) = 2t[cos(kxa) + cos(kya)] − 8t − Eg, (1)

ε2(k) = −2t[cos(kxa) + cos(kya)], (2)

where t is the nearest-neighbor hopping parameter assumed
to be the same for both bands, a is the lattice parameter,
and the wave vectors belong to the first Brillouin zone −π

a �
kx,y � π

a ; Eg is the energy band gap between the conduction
and the valence band. The energy band gap Eg considered in
our model can simulate a well-formed pseudogap or a gap
opening in the single-particle excitation spectrum in a fam-
ily of correlated systems at high temperature, due to charge
ordering instability or its precursor, and to study its effect on
the superconducting state that arises at lower temperature. On
the other hand, our two-band model can be relevant to study
the superconducting properties of other two-dimensional sys-
tems in which Eg can be controlled, for example, by an
external electric field. The band dispersions are reported in
Fig. 1. To study the superconducting state properties of our
system, we assume that Cooper pair formation is due to an
attractive interaction between opposite spin electrons. The
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two-particle interaction has been approximated by a separable
potential Vi j (k, k′) with an energy cutoff ω0, which is given
by

Vi j (k, k′) = −V 0
i j�(ω0 − |ξi(k)|)�(ω0 − |ξ j (k′)|), (3)

where V 0
i j > 0 is the strength of the potential in the different

pairing channels and i, j label the bands. V 0
11 and V 0

22 are the
strengths of the intraband pairing interactions (Cooper pairs
are created and destroyed in the same band). V 0

12 and V 0
21

are the strengths of the pair-exchange interactions (Cooper
pairs are created in one band and destroyed in the other band,
and vice versa), so superconductivity in one band can induce
superconductivity in the other band. The same energy cutoff
ω0 of the interaction for intraband and pair-exchange terms
is considered. Throughout this paper, ω0 is considered an
energy scale larger than the total bandwidth of our system
to model an effective pairing of electronic origin or a contact
attractive potential. This is a key assumption that makes it pos-
sible for the system to explore the entire BCS-BEC crossover
[39]. The terms corresponding to Cooper pairs forming from
electrons associated with different bands (interband or cross-
band pairing) are not considered in this paper (see Ref. [40]).
ξi(k) = εi(k) − μ in Eq. (3) is the energy dispersion for band i
with respect to the chemical potential μ. The superconducting
state of the system and its evolution with relevant system
parameters is studied at a mean-field level. The BCS equa-
tions for the superconducting gaps have to be coupled with
the density equation which fixes the chemical potential, since
the self-consistent renormalization of the chemical potential is
a key feature to account for the BCS-BEC crossover physics.
Zero and finite temperature cases have been considered in this
paper. The BCS equations for the superconducting gaps in the
two-band system at a given temperature T are

�1(k) = − 1

2�

∑
k′

[
V11(k, k′)

�1(k′)
E1(k′)

tanh
E1(k′)

2T

+ V12(k, k′)
�2(k′)
E2(k′)

tanh
E2(k′)

2T

]
, (4)

�2(k) = − 1

2�

∑
k′

[
V22(k, k′)

�2(k′)
E2(k′)

tanh
E2(k′)

2T

+ V21(k, k′)
�1(k′)
E1(k′)

tanh
E1(k′)

2T

]
, (5)

where Ei(k) =
√

ξi(k)2 + �i(k)2 is the dispersion of single-
particle excitations in the superconducting state and � is the
area occupied by the 2D system. h̄ = 1 and kB = 1 throughout
the paper. The superconducting gaps have the same energy
cutoff of the separable interaction:

�i(k) = �i�(ω0 − |ξi(k)|). (6)

The total electron density of the two-band system is fixed and
given by the sum of the single-band densities, ntot = n1 + n2,
that can vary instead. The electronic density ni in the band (i)
at temperature T is given by

ni = 2

�

∑
k

[vi(k)2 f (−Ei(k)) + ui(k)2 f (Ei(k))], (7)

where f (E ) is the Fermi-Dirac distribution function. The BCS
coherence weights vi(k) and ui(k) are

vi(k)2 = 1

2

[
1 − ξi(k)√

ξi(k)2 + �i(k)2

]
, (8)

ui(k)2 = 1 − vi(k)2. (9)

The mean-field critical temperature of the phase transition Tc

in the two-band superconductor under consideration is deter-
mined by imposing that both superconducting gaps �1 and
�2 in Eqs. (4) and (5) vanish at the same Tc, resulting in the
condition ∣∣∣∣a11 − 1 a12

a21 a22 − 1

∣∣∣∣ = 0, (10)

where

ai j = − 1

�

∑
k′

Vi j (k, k′)
2ξ j (k′)

tanh
ξ j (k′)

2Tc
. (11)

To explore the BCS-BEC crossover and to determine its
boundaries for a given set of parameters in our system, we
evaluate the condensate fraction, that can be used for this
purpose when the BEC regime of the BCS-BEC crossover
corresponds to a system of bosons with a weak residual mu-
tual interaction, in such a way to not have the depletion of the
condensate caused by boson-boson repulsive interactions. The
validity of the condensate fraction as a detection parameter
for the BCS-BEC crossover has been tested in Ref. [39],
comparing the crossover boundaries Â obtained with the in-
trapair correlation length (the average pair size) and the ratio
between the superconducting gap energy and the Fermi en-
ergy. Furthermore, similar conclusions have been obtained
with the quantitative comparisons between quantum Monte
Carlo simulations and mean-field predictions in Refs. [41,42],
where it is reported that the low-density regime (that we are
considering in our paper) allows us to minimize the effects
of the dipolar interactions among the bosons, leading to a
condensed fraction of order unity in the BEC regime. For
the valence band, the definition of the condensate fraction is
the ratio of the number of Cooper pairs in the valence band to
the number of holes in the valence band:

αh
1 =

∑
k (u1(k)v1(k))2∑

k u1(k)2 . (12)

For the conduction band instead, the expression already used
in the one-band case is generalized to the number of Cooper
pairs divided by the total number of carriers in the conduction
band:

αe
2 =

∑
k (u2(k)v2(k))2∑

k v2(k)2 . (13)

The intrapair coherence length ξpairi
has the same form for

both the valence and the conduction bands, that is,

ξ 2
pairi

=
∑

k |∇(ui(k)vi(k))|2∑
k (ui(k)vi(k))2

. (14)

Regarding the superconducting order parameter coherence
length, two characteristic length scales in the spatial behav-
ior of superconducting fluctuations are expected, since the
system is made up by two partial condensates. When the
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pair-exchange interaction is not present, these two lengths are
simply the order parameter coherence lengths of the conden-
sates of the valence ξc1 and the conduction ξc2 band. When
the pair-exchange interactions is different from zero, one has
to deal with coupled condensates, and these length scales
cannot be attributed to the single bands involved, describing
instead the collective features of the whole two-component
condensate. The pair-exchange interactions mix the supercon-
ducting order parameters of the initially noninteracting bands
that acquire mixed character. The soft, or critical, coherence
length ξs diverges at the phase transition point, while the rigid,
or noncritical, coherence length ξr remains finite. Following
the approach in Ref. [38], these characteristic length scales
are given by

ξ 2
s,r = G(T ) ±

√
G2(T ) − 4K (T )γ (T )

2K (T )
, (15)

where ξs corresponds to the solution with the plus and ξr to
the one with the minus sign and

G(T ) = (
V 0

12

)2
(g̃1(T )β2(T ) + g̃2(T )β1(T ))

+ (
1 − V 0

11g̃1(T )
)
V 0

22β2(T )

+ (
1 − V 0

22g̃2(T )
)
V 0

11β1(T ), (16)

K (T ) = (
1 − V 0

11g̃1(T )
)(

1 − V 0
22g̃2(T )

) − (
V 0

12

)2
g̃1(T )g̃2(T ),

(17)

γ (T ) = (
V 0

11V
0

22 − (
V 0

12

)2)
β1(T )β2(T ), (18)

g̃i(T ) = gi(T ) − 3νi(T )
(
�i(T )

)2
, (19)

gi(T ) = 1

2�

∑
k

1

ξi(k)
tanh

ξi(k)

2T
, (20)

νi(T ) = − 1

2�

∑
k

∂

∂|�i|2
(

1

Ei(k)
tanh

ξi(k)

2T

)
�i=0

, (21)

βi(T ) = − 1

4�

∑
k

∂2

∂q2
l

[
1

ξi(k) + ξi(k − q)

×
(

tanh
ξi(k)

2T
+ tanh

ξi(k − q)

2T

)]
q=0

, (22)

where l refers to the Cartesian axis in Eq. (22).
To describe the physics of the quantum phase transition,

the values of the coherence lengths at zero temperature have
been approximated by choosing a low enough temperature
so the superconducting gaps and the chemical potential re-
tain the same behavior of the zero temperature case. The
energies are normalized in units of the hopping t and the
dimensionless couplings λii are defined as λii = NV 0

ii , where
N = 1/4πa2t is the density of states at the top/bottom of
the valence/conduction band that coincide, since the density
of states is not modified by the concavity of the band. The
intrapair coherence lengths ξpairi

are normalized using the
average interparticle distance in the normal state li = 1/

√
πni,

where ni is the density in the band i. These quantities differ by
a factor of

√
2 by the inverse of the respective Fermi wave

vector KFi. The soft ξs and the rigid ξr coherence lengths are

FIG. 2. Superconducting gaps �2/t opening in the conduction
band (a), (b) and in the valence band �1/t (c), (d) as functions
of the band gap energy Eg/t for an energy cutoff of the attrac-
tive interactions ω0/t = 20. The intraband couplings are λ11 = 0.23
and λ22 = 0.75. The pair-exchange couplings are (λ12 = λ21): (a),
(c) (0.001); (b), (d) (0.1). The superconducting gaps are reported for
different values of the total density a2ntot.

normalized with respect to the lattice constant a, since in the
two-band case they cannot be attributed to either of the two
bands.

III. RESULTS

In this section, we study the properties of the supercon-
ducting ground state and give a full characterization of the
BCS-BEC crossover in the two-band system considered in this
paper. First, we study the zero-temperature superconducting
gaps in the conduction (�2) and valence (�1) band through
the BCS-BEC crossover, for the case of unbalanced intraband
couplings (λ11 �= λ22). The results are shown in Fig. 2, in
which the superconducting gaps are reported as functions of
the energy band gap Eg for different values of the total density
a2ntot and for different pair-exchange couplings λ12 = λ21. In
the case of an empty conduction band and a completely filled
valence band corresponding to a2ntot = 2.00, a QPT to the
normal state takes place at a specific quantum critical point
(QCP) that occurs when Eg = E∗

g . When the carrier concen-
tration in the conduction band is nonzero, the phase transition
disappears and superconductivity extends for all values of the
band gap Eg. However, the system presents different behaviors
if the value of the band gap is smaller or larger of E∗

g . For finite
doping, the valence band contributes very weakly to the su-
perconducting state of the system for Eg > E∗

g . In this regime,
the bands are almost decoupled and the superconducting gaps
does not depend on Eg. However, in the case of Fig. 2(c),
since the pair-exchange couplings are weak, the conduction
band cannot sustain the superconductivity in the valence band
and �1 is suppressed. Thus, continuously tuning Eg to higher
values will result in �1 << �2 so there is only one significant
superconducting gap and one significant condensate. In the
other case instead [Fig. 2(d)], the pair-exchange couplings are
stronger and �1 is not much suppressed with respect to its
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FIG. 3. Electron density a2ne
2 (a), (b) in the conduction band and

hole density a2nh
1 (c), (d) in the valence band as functions of the band

gap Eg/t for different values of the total density a2ntot, normalized
to the area of the unit cell. ω0/t = 20. The intraband couplings are
λ11 = 0.23 and λ22 = 0.75. The pair-exchange couplings are (λ12 =
λ21): (a), (c) (0.001); (b), (d) (0.1).

initial value, since in these cases the superconductivity in the
valence band is sustained by the condensate of the conduction
band.

Another interesting feature of this system is that �1 is
enhanced for lower values of the total density as long as Eg <

E∗
g . When Eg > E∗

g instead, the opposite situation occurs. The
value of E∗

g at which this behavior takes place depends on the
level of filling of the conduction band, shifting to the left when
higher total densities are considered, and on the pair-exchange
couplings that shifts E∗

g to the right when larger interaction
strengths are considered. The reason for the behavior of the
superconducting gaps can be found by looking at the densities
of particles forming Cooper pairs, which are electrons in the
conduction band and holes in the valence band. While the
total density is fixed, the density in each band can vary. In this
way, the density of particles in the conduction band n2 is no
longer controlled only by doping as for a single band system,
there are instead additional particles excited from the valence
band. Nevertheless, for larger values of Eg, the gain in the
interaction energy due to superconductivity is much smaller
than the kinetic energy cost for transferring electrons from the
valence band to the conduction band, so very few electrons
(compared to the total density of electrons in the valence
band) are excited into the conduction band. This behavior is
shown in Fig. 3. As one can see for a2ntot = 2.00, the hole
density in the valence band and the electron density in the
conduction band coincide and are monotonically decreasing,
both of them vanishing at the QCP Eg = E∗

g . This is a sign
that superconductivity is due to holes in the valence band and
to electrons in the conduction band. In the other cases, the hole
density in the valence band is almost zero for Eg > E∗

g , while
the electron density in the conduction band is approaching the
asymptotic value given by the total density minus the density
of the filled valence band a2n2 = a2ntot − 2.00.

Regarding the single-particle excitation gap Eex in the
quasiparticle excitation spectra, in our two-band system the

FIG. 4. Shifted chemical potential μ′/t as a function of the
band gap Eg/t for ω0/t = 20. The intraband couplings are λ11 =
0.23 and λ22 = 0.75. The pair-exchange couplings are (λ12 = λ21):
(a) (0.001), (b) (0.1). The chemical potential μ′ is reported for
different total densities a2ntot. The black and magenta dashed lines
correspond to the bottom of the conduction band and the top of the
valence band, respectively.

situation is more complex and rich with respect to the single-
band case. In the two-band system, there are four branches
in the spectrum (two branches coming from the valence band
and the other two coming from the conduction band) and Eex

can be expressed as

Eex = min
k

{2E1(k), 2E2(k)}. (23)

In our parameter configuration, this minimum energy is al-
ways taken by the single-particle dispersion of the valence
band, whose intraband coupling is smaller than the one of the
conduction band. Thus, when the chemical potential lies in-
side the valence band, the excitation gap coincides with twice
the superconducting gap in the valence band, Eex = 2�1,
while when the chemical potential lies outside the valence
band, the excitation gap results in Eex = 2

√
ξ1(0)2 + �2

1.
In Fig. 4, the shifted chemical potential μ′ = μ + 4t is re-

ported as a function of Eg for different total densities a2ntot and
different pair-exchange couplings. We have defined a shifted
chemical potential to be consistent with the conventional way
of observing the crossover, with the BCS regime correspond-
ing to the region in which μ′ > 0, while the BEC regime
corresponds to the region in which μ′ < 0. The corresponding
bottom of the conduction band and top of the valence band
have been shifted by 4t to make them touch at zero energy
when Eg = 0. This shift does not affect the results, since
they depend on the energy difference between the two bands.
For higher values of the total density and the pair-exchange
couplings, the chemical potential shifts toward higher energies
due to the larger number of electrons in the conduction band.
In particular, when Eg is increased, in the low-density regime
the chemical potential starts deep inside the valence band and
then enters the gap between the two bands, meaning that the
condensate in the valence band spans a wide region of the
BCS-BEC crossover, while the conduction band is always
located on the BEC side of the crossover regime or in the BEC
regime, depending on whether the chemical potential lies in-
side the conduction band or not. When Eg > E∗

g , the chemical
potential acquires a flat dependence and is not modified by Eg,
in a similar way to what happens to the superconducting gaps
and the densities.
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FIG. 5. Condensate fractions in the conduction band αe
2 (a),

(b) and in the valence band αh
1 (c), (d) as functions of the band

gap Eg/t for ω0/t = 20. The intraband couplings are λ11 = 0.23
and λ22 = 0.75. The pair-exchange couplings are (λ12 = λ21): (a),
(c) (0.001); (b), (d) (0.1). The condensate fractions are reported for
different total densities a2ntot. Thin grey dashed lines correspond to
α = 0.2, 0.8 from bottom to top.

In Fig. 5, the condensate fraction is shown as a func-
tion of Eg for different a2ntot and different pair-exchange
couplings. The usual choice of the boundaries between the
different pairing regimes has been adopted: For α < 0.2, the
superconducting state is in the weak-coupling BCS regime;
for 0.2 < α < 0.8, the system is in the crossover regime; for
α > 0.8, the system is in the strong-coupling BEC regime.
Consistent with the information obtained from the chemical
potential, in the low-density regime the condensate in the va-
lence band explores the entire BCS-BEC crossover by varying
Eg. For the considered pair-exchange interactions [Fig. 5(c)],
the valence band condensate is in the BCS regime for small
Eg, while larger pair-exchange interactions [Fig. 5(d)] are
in the crossover regime. When the energy gap or the total
density increases, the valence band condensate enters the BEC
regime, with the hole condensate fraction αh

1 approaching
unity, indicating that the remaining few holes are all in the
condensate. The situation in the conduction band is different,
since due to the strong intraband coupling the condensate is
always located on the BEC side of the crossover regime or
in the BEC regime. In the case a2ntot = 2.00, both conden-
sate fractions suddenly drop to zero when Eg = E∗

g due to
the QPT.

In Fig. 6, the intrapair coherence length is reported as a
function of Eg for different a2ntot and different pair-exchange
couplings. Since for low densities and small pair-exchange
couplings, the valence band condensate is in the BCS regime
[Fig. 6(a)] when Eg is small, ξpair1

assumes initially larger
values with respect to the average interparticle distance l1.
For larger Eg, the system enters the BEC regime and ξpair1

becomes much smaller than the average interparticle distance.
The valence band condensate goes from the crossover to the
BEC regime in a small range of band gap values. This be-
havior is also observed for larger values of the total density.
The conduction band instead, due to the strong intraband

FIG. 6. Intra-pair coherence length ξpair2/l2 for the Cooper pairs
of the conduction band (a), (b) and intrapair coherence length ξpair1/l1

for the Cooper pairs of the valence band (c), (d) as functions of the
band-gap Eg/t for ω0/t = 20. The intra-band couplings are λ11 =
0.23 and λ22 = 0.75. The pair-exchange couplings are (λ12 = λ21):
(a), (c) (0.001), (b), (d) (0.1). The intra-pair coherence lengths ξpairi

/li

are reported for different a2ntot .

coupling, retains a small value of the intrapair coherence
length with respect to the the average interparticle distance
l2 for all considered values of the system density. In this
way, we found Cooper pairs of different sizes coexisting in
the system for low density and low pair-exchange couplings
values, in the regime of small Eg. For the zero doping case,
the intrapair coherence length is defined only for Eg < E∗

g ,
since in this regime the system is not superconducting and
an intrapair coherence length cannot be defined. The fact
that the intrapair coherence length is approaching zero at the
QCP in the BEC regime is different from Ref. [35], where
giant Cooper pairs are found in the vicinity of the QCP in
the BCS side. In this case instead, what we have found is
equivalent to the finite-density to zero-density QCP of tightly
bound molecules, namely, near the present QCP in the BEC
side the pair size is so small that pairs behave as point-
like bosons and the system can be described by its bosonic
counterpart [43].

In Fig. 7, the order parameter coherence coherence length
is reported as a function of Eg for different a2ntot and different
pair-exchange couplings. In the case a2ntot = 2.00, the soft
or critical coherence length ξs diverges when the band gap
reaches the critical value Eg = E∗

g , since the system undergoes
a QPT to the insulating state. In the other cases a2ntot �= 2.00,
the soft coherence length ξs is not diverging, since no QPT
occurs in the system for any Eg. In particular, in the cases
of a2ntot = 2.07 and a2ntot = 2.26, the soft coherence length
ξs shows a maximum in correspondence of the respective
Eg = E∗

g , showing its memory about the QPT of the valence
band condensate, which takes place when the pair-exchange
interactions are absent. The increase of λ12 = λ21 suppresses
the maximum, as shown in Figs. 7(a) and 7(b), since the band
condensates become more coupled. In the case of a2ntot =
2.35 instead, since the valence band is never superconducting
for any Eg when the band condensates are decoupled, there is
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FIG. 7. Soft ξs (a), (b) and rigid ξr (c), (d) order parameter
coherence length, normalized to the lattice constant a, as functions
of the band gap Eg/t between the two bands at temperature T/t =
0.00065 and for ω0/t = 20. The intraband couplings are λ11 = 0.23
and λ22 = 0.75. The pair-exchange couplings are (λ12 = λ21): (a),
(c) (0.001); (b), (d) (0.03). The coherence lengths ξs,r are reported for
different values of the total density a2ntot. In the case a2ntot = 2.00,
(orange dashed line) ξr has been rescaled by a factor of 7 (c) and 4.5
(d) to make the plot more visible.

no QPT and no peak. The rigid coherence length ξr instead
remains finite for all Eg and for all a2ntot. Anyway, we find
the memory of the QPT that takes place when the conduction
band is empty and the valence band is filled (a2ntot = 2.00).
In this case, in fact, the conduction band also returns to the
normal state at Eg = E∗

g . Indeed, for zero pair-exchange cou-
plings, the rigid coherence length ξr reduces to the coherence
length of the conduction band ξ2. Even though for finite
pair-exchange coupling the coherence length is nondiverging,
it encodes the memory of the QPT of the conduction band.
Also, the maximum value of the rigid coherence length ξr is
suppressed by the increase of λ12 = λ21 in this case, as shown
in Figs. 7(c) and 7(d).

We consider now finite-temperature effects on the critical
energy band gap for the case of no doping. The supercon-
ducting gaps as functions of temperature for different band
gaps are reported in Fig. 8. The superconducting gaps present
a nonmonotonic behavior that is very different from the
temperature dependence of the gaps in conventional supercon-
ductors. The strong enhancement of �2 at finite temperature is
due to the thermal excitation of the electrons from the valence
band to the conduction band. The enhancement of �1 instead
is weaker, since the intraband coupling of the conduction band
is larger than the one of the valence band. This behavior
becomes more pronounced for larger Eg, especially in the case
of Fig. 8(c) in which the system is initially in the normal state
for temperatures close to zero, and then becomes supercon-
ducting for larger temperatures. This superconducting-normal
state reentrant transition that we have found in our two-band
system is based on a different mechanism with respect to the

FIG. 8. Superconducting gaps �2/t opening in the conduction
band and in the valence band �1/t as functions of temperature T ,
normalized with respect to the critical temperature Tc, for a2ntot =
2.00. The intraband couplings are λ11 = 0.23 and λ22 = 0.75. The
pair-exchange couplings are (λ12 = λ21): (a), (c), (e) (0.03); (b), (d),
(f) (0.1).

reentrant transitions observed in superconductors containing
magnetic elements or in granular superconducting systems:
In the former, it is attributed to the competition of magnetic
ordering and superconductivity and in the latter it is attributed
to tunneling barriers effect, while in our valence-conduction
band system the thermal excitation of electrons from the
valence into the conduction band plays a crucial role. For
instance, granular BaPb0.75Bi0.2503 [44], Ba0.6K0.4BiO3 [45],
and Al thin films [46] show a finite resistance appearing
when the temperature is lowered in the superconducting state,
evidencing a similar character to the reentrant transition that
we have found in our system. In granular superconductors
consisting of grains of transition metals (W, Mo, Nb, Cr)
immersed in a diamondlike carbon-silicon dielectric matrix C-
Si-W instead, the reentrant transition manifests as small peaks
of resistance, but with the lowering of temperature super-
conductivity recovered [47]. Among the magnetic rare-earth
elements, HoNi2B2C and ErNi2B2C recover the normal state
and then return to the superconducting state again by lowering
the temperature, while in TmNi2B2C the resistivity shows a
continuous recovery towards the normal state and does not
show any sign of coming back to the superconducting state
[48], with this one being more similar to our system. In Fig. 9,
we report the phase diagram T versus Eg for our system.
The branch of the phase transition from the superconducting
to the normal state corresponding to the reentrant behavior
results from the second solution at lower temperatures of the
linearized self-consistent equations for the superconducting
gaps. From the left panel of Fig. 9, it is clear how the reentrant
transition is more pronounced when the intraband couplings
are unbalanced (λ22 � 3λ11 in the figure), while the reentrance
is reduced when the intraband couplings have similar values.
This effect also occurs in a less evident manner when the
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FIG. 9. Phase diagrams in the temperature versus energy band
gap plane, for the zero doping case. In the left panel, the red dashed
line is for λ11 = 0.23, λ22 = 0.4; the green dashed line is for λ11 =
0.23, λ22 = 0.75; and the blue dashed line is for λ11 = 0.65, λ22 =
0.75. The pair-exchange couplings are the same for all curves, λ12 =
λ21 = 0.1. In the right panel, the pair-exchange couplings from left
to right are λ12 = λ21 = 0.03, 0.1, 0.2, while the intraband couplings
are λ11 = 0.23 and λ11 = 0.75.

pair-exchange couplings are increased. Therefore, the most
relevant parameter to control the reentrance phenomenon is
the intraband coupling.

IV. CONCLUSIONS

We have studied the superconducting properties of a two-
band system of electrons, interacting through a separable
attractive potential with a large energy cutoff and multiple
pairing channels, at a mean-field level. The superconduct-
ing state properties are studied by varying the energy gap
between the bands. We have considered different levels of
filling for the conduction band, while the valence band is
always completely filled. When the band gap is modified, the
density of electrons in the two bands changes, allowing for the
occurrence of a density-induced BCS-BEC crossover. When
the pair-exchange couplings are small, the condensate in the
valence band remains superconducting but with a strongly
suppressed superconducting gap �1 for Eg > E∗

g . Therefore,
in the regime of small pair-exchange coupling, after E∗

g , there
is only one significant superconducting gap and one signifi-
cant condensate. Interestingly, in this case the soft coherence
length present a peak as a memory of the QPT that the valence
band condensate undergoes in the absence of pair exchanges.
This peak is more pronounced if the pair-exchange couplings
are sufficiently weak and disappears for higher values of the
pair-exchange couplings. For higher values of λi j , supercon-
ductivity in the valence band is sustained by the condensate
in the conduction band. Furthermore, in this regime we have
found that superconductivity is enhanced in the valence band
for increasing doping as long as Eg < E∗

g , while for Eg > E∗
g

superconductivity is enhanced for lower doping. We have also
found that superconductivity may occur even when no free
carriers exist in the conduction band in the normal state at
T = 0, as soon as the gain in superconducting energy exceeds
the cost in producing carriers across the band gap Eg. If the
binding energy is larger than the energy band gap, the system
becomes unstable under the formation of Cooper pairs and
superconductivity emerges. However, there exists a critical
value of the energy band gap E∗

g in correspondence of which

the process of creating Cooper pairs is not energetically fa-
vorable anymore, at this point a QPT occurs. This QPT is
confirmed by the soft coherence length, which is diverging
in correspondence to the critical band gap Eg = E∗

g . Thus,
the ground state is superconducting if Eg < E∗

g ; insulating if
Eg > E∗

g . At finite temperature, the value of E∗
g is larger than

its zero temperature value because the electrons are thermally
excited from the valence band. This situation is responsible
for the nonmonotonic behavior of the superconducting gap
opening in the conduction band, which is enhanced at low
temperatures because of the electrons that jump from the
valence band into the conduction band due to thermal exci-
tation. When there is a finite doping in the system, the QPT
disappears and superconductivity extends for all Eg. In this
case, for Eg > E∗

g the valence band contributes very weakly
to the superconducting state, since the hole density becomes
almost zero in this regime.

To conclude, we have found that the system explores differ-
ent regimes of the BCS-BEC crossover by tuning the energy
band gap and total density. The valence-band condensate
spans the entire BCS-BEC crossover for low enough density
by varying the band gap Eg. For larger values of the total
density, the condensate of the valence band is very dilute
and results in the BEC regime for any Eg. The condensate
of the conduction band instead resides in the BEC side of
the crossover or completely inside the BEC regime due to
the strength of the intraband coupling of electrons in the
conduction band. This picture of the BCS-BEC crossover
for the system has been found by analyzing the consistent
behavior of the chemical potential, the condensate fractions,
and the coherence lengths. Moreover, in the case of zero dop-
ing and at finite temperature, an interesting type of reentrant
superconducting to normal state transition has been numeri-
cally discovered for unbalanced intraband couplings, showing
that in this configuration superconductivity is assisted instead
of being suppressed by increasing temperature. This hap-
pens because the electrons in the valence band are able to
jump into the conduction band even for larger values of the
zero-temperature critical band gap due to thermal excitation,
making the superconducting state available for a wider range
of Eg when the temperature is higher. Finally, a discussion on
the role of random and spatially correlated disorder through-
out the BCS-BEC crossover is in order to make a connection
with real materials. The effects of disorder are minor in the
BCS regime of the crossover when the Fermi surface is well
formed and the Anderson’s theorem demonstrates that su-
perconducting properties are not modified by nonmagnetic
disorder. On the other hand, disorder can lead to an increase
of the critical temperature Tc and a widening of the pseudogap
energy at Tc in the crossover regime, while on the BEC side
of the crossover the presence of disorder favors the collapse
of the Fermi surface [49]. Disorder can actually favor the oc-
currence of pairing correlations, thus changing the statistical
properties of the Cooper pairs and enhancing multifractal fea-
tures of the superconducting order parameter [50,51]. In the
regime of the BCS-BEC crossover, many-body correlations
due to the interplay between disorder and superconducting
pair fluctuations and spatial correlations may cooperate to
enhance superconductivity, making it more robust and less
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sensitive to the disorder. In our system, the increase of pair
correlations and the pseudogap due to disorder can be taken
into account by renormalization of the energy band gap Eg,
which modifies in a quantitative way, but not qualitatively, the
phase and crossover diagrams. A quantitative analysis of the
effects of disorder on our conclusions will be the subject of
future investigations.
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