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Flat band induced room-temperature ferromagnetism in two-dimensional systems
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The remarkable and fascinating properties of two-dimensional (2D) materials have raised them to the rank of
most promising candidates for technological applications. In particular, the possibility of long-range ferromag-
netic order in 2D materials is generating a growing excitement. Here, we demonstrate that flat bands (FBs) can
pave the way for room-temperature ferromagnetism in 2D compounds. Indeed, the magnetic exchanges between
localized spins are largely dominated by the FB-FB contribution. This contribution is ferromagnetic and scales
linearly with the local coupling, thus leading to crossover temperatures (ferromagnetic phase/paramagnetic
phase) higher by an order of magnitude than those currently reported in experiments. High crossover tempera-
tures could be reached in micrometer-sized FB systems.
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Since graphene has been discovered, the interest in two-
dimensional material (2DM) has grown tremendously. In the
plethora of studies, two areas of research have particularly
stood out: flat band (FB) physics, and magnetism in 2DM.
In FB systems, the dispersionless bands are at the origin
of unforeseen phenomena [1,2] such as fractional quantum
Hall states [3,4], unconventional superconductivity [5–7], and
magnetism [8–10]. FBs host as well an unusual type of quan-
tum electronic transport as revealed in several studies [11–14].
The interest for ferromagnetism in 2DM such as Cr2Ge2Te6,
CrI3 or Fe3GeTe2 is experiencing a boost over the past years
[15–22]. 2DMs are undoubtedly promising candidates for
technological applications, in spintronics, optoelectronics and
data storage. Ferromagnetism in 2DMs was long ignored,
because of the Mermin-Wagner (MW) theorem [23] that says
that in one and two dimensions, continuous symmetries can-
not be spontaneously broken at finite temperature in systems
with short-range interactions. The MW theorem only excludes
long-range magnetic order at finite temperature in the thermo-
dynamic limit, i.e., for infinite systems. However, it does not
exclude the possibility of quasi-long-range ordering in finite
systems below a crossover temperature T ∗

C [24–26]. It implies
that below T ∗

C the spin-spin correlation length is much larger
than the system size. So far, T ∗

C reported in micrometer-sized
samples has been at most about 40 K which stimulates the
search for strategies to gain the missing order of magnitude.
Our aim is to discuss the impact of FBs on the magnetic prop-
erties of 2D systems. One key question is whether FBs may or
may not promote ferromagnetism beyond room temperature.
To address this issue, we consider the s-d Lieb Model as it
is illustrated in Fig. 1. This model describes itinerant carriers
locally coupled to localized magnetic spins that are considered
classical. We recall that in Cr2Ge2Te6 or CrI3 the spin of Cr3+

is S = 3/2. The advantages of considering the Lieb lattice
(LL) are numerous. First, the LL is a simple square lattice
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with 3 atoms/unit cell. It possesses a FB at E = 0, there is
no need to nanostructure or introduce defects or vacancies
in the lattice. Finally, it could be designed experimentally
in the framework of covalent-organic compounds [27]. The
Hamiltonian reads,

Ĥ =
∑
〈i j〉,α

(ti jc
†
iαc jα + H.c.) + J

∑
i∈B,C

ŝi · Si. (1)

c†
iα creates an electron with spin α=↑,↓ at site Ri. In the first

term, the sum runs over the lattice sites, 〈i j〉 are restricted
to nearest-neighbor pairs for which the hopping ti j = −t . J
is the local Kondo coupling between the localized classical
spin Si = S.ei at site Ri (ei being a unit vector) and that of
the itinerant carrier ŝi. Its components are ŝλ

i = c†
iα[σ̂ λ]αβciβ

where λ = x, y, and z and σ̂ λ are the Pauli matrices. In what
follows we set t = 1 and JS is expressed in units of t . In
this study, we focus our attention on the half-filled case, thus
the chemical potential μ = 0. The coupling between a pair of
localized spins at Ri and R j is given by [28],

Ji j = − (JS)2

2π

∫ +∞

−∞
	[G↑

i j (ω)G↓
ji(ω)] f (ω)dω. (2)

The Green’s function Ĝσ (ω) = (ω + iη − Ĥσ )−1, where Ĥσ

is the Hamiltonian in the spin sector σ (σ =↑,↓). In addition,
η mimics an infinitesimal inelastic scattering rate and f (ω) =

1
eβ(ω−μ)+1 is the Fermi-Dirac distribution. Ji j � 0 (resp. Ji j � 0)
means antiferromagnetic (respectively, ferromagnetic) cou-
pling. Notice that Eq. (2) is derived for classical spins and
implies that the corresponding effective Heisenberg Hamilto-
nian reads 1

2

∑
i 
= j Ji jei · e j .

The calculation of Ji j requires the knowledge of the
ground-state (GS), hence that of the underlying localized spin
texture. The spin configuration could be the state where spins
are randomly oriented, it mimics the high temperature phase,
but we would have to deal with this disordered system nu-
merically only. Instead, we consider the GS at T = 0 K and
restrict ourself to two different spin configurations: (i) the
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FIG. 1. Illustration of the s-d Lieb Model. The hoppings are
restricted to nearest neighbor pairs, crosses on B (C) sites correspond
to the local exchange J between the spin of the itinerant carrier (si)
and the localized one Si. Ji j is the magnetic couplings between pairs
of localized spins.

ferromagnetic GS (F-GS) where spins on B and C sublattices
are parallel and (ii) the antiferromagnetic GS (AF-GS) where
spins are anti-parallel. Figure 2 shows the GS energy per unit
cell EGS/N (N is the number of unit cells) as a function of
JS for both spin configurations. First, as expected EGS/N is
an even function of JS. Secondly, for JS 
= 0, F-GS has the
lowest energy and the energy difference between these two
spin configurations increases as |JS| increases.

Although F-GS has the lowest energy, we discuss the na-
ture of the couplings for F-GS and AF-GS. The data are
depicted in Fig. 3. In both cases, the couplings are always
ferromagnetic. Finding ferromagnetic (B,C) couplings for
AF-GS contradicts an antiferromagnetic ordering at T = 0 K .
Thus, even if we start with the wrong GS, the calculated
couplings reveal the correct magnetic order. Interestingly, the
couplings are found significantly larger for AF-GS than for
F-GS. More precisely, for short distances they are about 10
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FIG. 2. Ground-state energy per unit cell EGS/N as a func-
tion of JS. AF denotes the antiferromagnetic spin texture: Si =
+Sez (respectively, Si = −Sez) on B (resepctively, C) sublattice. F
is the ferromagnetic spin texture, Si = +Sez on both sublattices.
The inset represents the energy difference between these two spin
configurations.
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FIG. 3. Couplings (in units of t) as a function of the dis-
tance for |JS| = t . The circles (respetively, squares) correspond to
the ferromagnetic (respectively antiferromagnetic) spin texture. The
open (respectively filled) symbols correspond to (B, B) [respectively
(B,C)] couplings.

times larger in the first than in the second case, it becomes
3 orders of magnitude when Ri j � 4 a. The plotted data are
obtained for |JS| = t but our conclusions are general. From
now on, we consider that F-GS is the GS at T = 0 K . Now,
we propose to discuss in details the nature of the couplings
and their interband contributions. For that purpose, we first
focus our attention on (B,B) pairs. For a given distance R, we
write JBB = ∑

a,b JBB
a,b , where a (respectively, b) is the band

index in the spin ↑-sector (respectively, ↓-sector). a and b
are −, 0 and +, they correspond respectively to the lower
dispersive band (DB), to the FB and to the upper DB as
illustrated in Fig. 4(a). JBB along the x axis and its different
contributions are depicted in Fig. 4(b)–4(d) for |JS|/t = 0.1,
1 and 10. The five nonvanishing terms correspond to the
(a,b) pairs: (−, 0), (−,+), (0, 0), (+,−) and (0,+). JBB

−,0 and
JBB

0,+ are found antiferromagnetic and for symmetry reasons,
identical. In contrast, the other three terms JBB

−,+, JBB
+,− and JBB

0,0
are ferromagnetic. In the weak coupling regime (|JS| = 0.1 t),
the dominant contribution to JBB is JBB

0,0 which is orders of
magnitude larger than the other contributions. A fit of the data
plotted in Fig. 4(b), for R/a � 1, shows that JBB ∝ 1/R4.
In the intermediate regime (|JS| = t), the situation differs.
For short distances JBB reduces to JBB

0,0 while for larger ones
it coincides with JBB

+,− and the sum JBB
−,0 + JBB

−,+ + JBB
0,0 + JBB

0,+
vanishes. Finally, for |JS| � t , these four contributions cancel
out each other for any distance and JBB ≈ JBB

+,−. A fit of the
data reveals a faster decay than in the weak coupling regime,
JBB ∝ 1/R6. These features are discussed in more details in
the following. Notice as well, that our findings are general
and valid for other directions and pairs of atoms.

To shed light on our numerical results, we go fur-
ther and analytically derive the couplings in the weak and
strong coupling regime. Details can be found in the Sup-
plemental Material (SM) [29]. Let us start with the weak
coupling regime (|JS| � t) for which we only focus on

184441-2



FLAT BAND INDUCED ROOM-TEMPERATURE … PHYSICAL REVIEW B 107, 184441 (2023)

FIG. 4. (a) Density of states as a function of the energy for JS = t . (b)–(d) (B,B) coupling (Jtot) and its different contributions (Ja,b) along
the x axis as a function of the distance, for three different values of |JS|/t (0.1, 1 and 10). The coefficient ε = 1 for antiferromagnetic couplings
and ε = −1 for ferromagnetic ones. a (respectively, b) is the band index in the ↑ (respectively, ↓) spin-sector and a and b can be − (lower
dispersive band), + (upper dispersive band) and 0 (flat band).

the FB-FB contribution. The FB eigenvalues and eigen-
states for both spin sectors are, Eσ

0 = ± JS
2 = ±
 where +

(respectively,−) corresponds to σ =↑ (respectively, σ =↓)
and 〈�σ

0 | = (0,
fy

s ,− fx

s ), where fλ = −2t cos(kλa/2), with

λ = x, y and s(k) =
√

f 2
x (k) + f 2

y (k). Starting from the defi-
nition of the couplings, we get

JXY
0,0 (R) = −1

2
|JS|

∣∣∣∣ 1

N

∑
k

fXY (k)

s2(k)
eik.R

∣∣∣∣2

, (3)

where fXY (k) = f 2
y (k), f 2

x (k) and fx(k). fy(k) for, respec-
tively, (X,Y ) = (B, B), (C,C) and (B,C). Eq. (3) shows that
for any pairs of atoms, JXY

0,0 (R) is always ferromagnetic and
varies linearly with |JS|. This is so because JS appears in
the denominator of 	[G f b↑

i j (ω)G f b↓
ji (ω)], where G f bσ

i j is the FB
contribution to the Green’s function in the σ sector.

This contrasts with the standard weak coupling regime
which leads to a (JS)2 dependency of the couplings. It simply

means that the perturbative calculation breaks down in the
presence of FBs. Indeed, the FB-FB contribution is simply ab-
sent in the perturbative calculation since the Green’s functions
used are those corresponding to JS = 0. In a recent work,
within such an approach, it has been shown that the FB-DB
terms introduce strong frustration effects [30]. This is still
partly correct, the FB-DB contributions are antiferromagnetic
and for |JS| � t they scale as (JS)2. However, JXY

0,0 (R) largely
dominates and washes out completely the frustration effects.
This explains why in the numerical data of Fig. 4(b), the
FB-FB term is much larger that the other contributions by
at least one order of magnitude. We should stress the fact
that Eq. (3) is valid for any |JS|. It could have suggested a
divergence of the couplings in the limit |JS| → ∞, but as it
has been shown [see Fig. 4(d)] the other contributions cancel
out the divergence. The complete analytical calculations as
detailed in Ref. [29] lead to

JXY
0,0 (R) = −|JS| a4

8π2R4
gXY (θ ), (4)
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where gXY (θ ) = cos2(2θ ) for (X,Y) = (B,B) or (C,C), and
gXY (θ ) = sin2(2θ ) for (X,Y)=(B,C). θ is the angle between
R and the x axis. Eq. (4) clearly explains the 1/R4 decay
of the couplings found in the numerical calculations. Let us

define the dimensionless quantity C0 = JBB
0,0

|JS| · [ R
a ]4. A fit of the

numerical data plotted in Fig. 4(b) gives C0 = −0.0123 which
agrees very well with the analytical result C0 = −0.0126.

We switch to the strong coupling regime (|JS| �
t) for which the couplings reduce to JXY

−,+. The en-

ergy of the DBs in each spin sector are E↑
± = −g∓ and

E↓
± = g± where g± = 1

2 [−
 ±
√


2 + 4s2]. The correspond-

ing eigenvectors are, respectively, 〈�↑
±| = 1

D±
(g±, fx, fy) and

〈�↓
±| = 1

D∓
(−g∓, fx, fy), where D± =

√
s2 + g2

±. Because,

the full calculation of JXY
−,+ is lengthy, the details can be found

in the the SM [29]. For |JS| � t , we find

JBB
−,+(R) = − 1

π2
(4 cos2(θ ) − 1)2 a6

R6

t2

|JS| , (5)

JBC
−,+(R) = − 3

π2
sin2(2θ )

a6

R6

t2

|JS| . (6)

Notice that JCC
−,+(R) is straightforwardly obtained by replacing

in JBB
−,+ θ by π

2 + θ . These expressions clearly explain the
1/R6 decay of the (B,B) couplings observed in the numerical
calculations. As before, we define the dimensionless variable
C∞ = JBB

−,+ · [ R
a ]6 · |JS|

t2 . From a fit of the numerical data plot-
ted in Fig. 4(c) we obtain C∞ = −0.71, while Eq. (5) gives
for θ = 0, C∞ = −0.91. The agreement between analytical
and numerical calculations is not as good as that found for
|JS| � t . However, for other directions, the agreement is
much better. For θ = π

2 , Eq. (5) gives C∞ = −0.101 and from
the numerical data one gets C∞ = −0.102. On the other hand,
for JBC

−,+ an excellent agreement is found for any values of θ .
More details are available in the SM [29].

In order to derive the crossover temperature T 
C , we now

turn to the calculation of the magnetic excitation spectrum.
It is important to point out that, because the couplings decay
sufficiently rapidly, in other words

∑
R JXY (R)R2 is finite for

any (X,Y ) pair, the Mermin-Wagner theorem [23] implies
that in the thermodynamic limit (system size → ∞) the Curie
temperature (TC) vanishes. A finite TC in 2DM is possible
only in the presence of anisotropy, which opens a gap in the
Goldstone mode. However, even in absence of anisotropy, for
a finite system one can define a size dependent crossover
temperature T 

C . A relevant question is, what is the order of
magnitude of T 

C for a micrometer-sized sample which is typ-
ically that of samples realized in laboratories. An appropriate
tool to estimate T 

C is the random phase approximation (RPA)
[31,32]. In diluted magnetic semiconductors, the comparison
with Monte Carlo simulation has revealed that RPA is reliable
and accurate [33]. It should be pointed out that it has been
demonstrated by a direct comparison between the full Monte
Carlo study (itinerant carriers coupled to classical spins) of a
similar Hamiltonian to that given in Eq. (1) that the two-step
approach is reliable and accurate. We emphasize that it is the
case even in the presence of disorder [34].

To proceed with the RPA approach, the Heisenberg Hamil-
tonian is written

HH = 1

2

∑
i 
= j

Ji jSi · S j, (7)

where the couplings Ji j = Ji j/S2. Notice that, the RPA in-
volves the presence of commutators between the localized
spins and the Heisenberg Hamiltonian, thus Si is treated as
quantum operator. It should be emphasized that in the case
of ferromagnetism the nature (quantum or classical) of the
localized spin has only a minor impact. Indeed, let us re-
call the results concerning the nearest-neighbor Heisenberg
Hamiltonian on the simple cubic lattice. We first define the
ratio Kc = TC/(JS(S + 1)) where TC is the Curie temperature.
First, from classical Monte Carlo simulations (CMC) which
means S = ∞ and JS2 is constant, it has been found that
Kc = 1.44 [35]. On the other hand, from quantum Monte
Carlo calculations (QMC) it has been shown that Kc = 1.15
for S = 1/2 [36]. These results should be compared to high
temperature expansion calculations for which one finds Kc =
1.15 for S = 1/2 [37], Kc = 1.3 for S = 1 [38] and Kc = 1.4
for S = ∞ [38]. Finally, the RPA leads to Kc = 1.33 for any
value of S [31,32]. To summarize, from QMC, CMC, HTE,
and RPA one clearly concludes that the nature of the spin has
a negligible impact since Kc = 1.35 ± 0.05 for S � 1.

To calculate the magnetic properties, we use the equa-
tion of motion method applied to the retarded spin Green’s
function, GS

i j,XY (ω) = ∫ +∞
−∞ GS

i j,XY (t )eiωt dt where GS
i j,XY (t ) =

−iθ (t )〈[S+
X,i, S−

Y, j]〉 and, 〈...〉 denotes the thermal average. We
only present the main results, the full procedure is detailed
in Ref. [29]. As expected, we find two magnon branches,
ω±

q = 〈Sz〉E±
q , where −’ is the acoustic mode and ′+′ is the

optical one, and

E±
q = f q

+ ±
√

( f q
−)2 + (

f q
BC

)2
, (8)

where f q
+ = 1

2 ( f q
BB + f q

CC ) and f q
− = 1

2 ( f q
BB − f q

CC ) with

f q
XX = −∑

Y J̄ XY (0) + J̄ XX (q) (X = B,C), we have de-
fined as well J̄ XY (q) = ∑

R eiq.RJ XY (R) and f q
BC = J̄ BC (q).

As it is shown in Ref. [29], the crossover temperature is given
by

kBT 
C = 1

3

(
1 + 1

S

)⎡
⎣ 1

N

∑
q 
=0,λ=±

Aλ
q

S2Eλ
q

⎤
⎦

−1

. (9)

A±
q is the spectral weight on each magnon branch. Equation

(9) can be written T 
C = (1 + 1

S )T ,cl
C , where T ,cl

C is the cross-
over temperature for classical spins (S → ∞). Let us discuss
the size dependence of T ,cl

C . We consider square shaped flakes
of size La × La. For small |q| we have, A±

q ≈ 1/2, E+
q ≈ E+

0

and E−
q ≈ Dq2, where D is the spin stiffness of the acoustic

mode, leading to 1
N

∑
q 
=0,λ=±

Aλ
q

S2Eλ
q

≈ 1
2S2 [ 1

E+
0

+ a2

2πD ln( QC

qmin
)],

where QC is a cutoff, and Qmin = 2π
La being the smallest non

zero momentum. Then, Eq. (9) becomes

kBT ,cl
C = 2S2

A + B ln
(

L
2π

) . (10)
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FIG. 5. Crossover temperature T ,cl
C as a function of |JS| for three

different sizes L = 103, 104 and 5. 104. The green dashed lines are
fits for the weak and strong coupling regimes for the data obtained
for L = 103 a.

A = 1
E+

0
+ a2

2πD ln(a.QC ) and B = a2

2πD . As expected, T ,cl
C de-

cays slowly as 1/ ln(L), and in accordance with the MW
theorem, it vanishes in the limit L → ∞. In the presence
of a small anisotropy leading to a gap (
) opening, ln( L

2π
)

is replaced by 1
2 ln( D


a2 ) and T ,cl
C becomes the true Curie

temperature. To show the accuracy of RPA, we compare our
T ∗,cl

C for the nearest neighbor Heisenberg Hamiltonian on the

square lattice with that obtained from Monte Carlo simu-
lations (MC) [22]. The system considered is a 1µm × 1µm
flake with a lattice spacing a = 4Å. Using Eq. (10), we get
T ,RPA

C ≈ 0.58 J while it has been found T ,MC
C ≈ 0.535 J,

where J denotes the nearest neighbor coupling between the
classical spins. We observe that the agreement between RPA
and MC is surprisingly good. We confidently return to our
system. In Fig. 5, T ,cl

C , calculated numerically is plotted as a
function of |JS| for three different sizes, the biggest system
contains 12.5 billions of atoms. As can be seen, an increase
of L as a small impact on T ,cl

C . This is consistent with the
ln(L) dependency in Eq. (10). We now estimate the cross-
over temperature in mesoscopic samples. We assume a lattice
spacing a of about 3 Å and choose for t a typical value of
1 eV, we recall that in graphene t ≈ 2.7 eV. From Fig. 5 the
maximum of the crossover temperature T 

max in a 3 µm × 3 µm
sample is 410, and 342 K for, respectively S = 1/2, S = 1 and
S = 3/2. These temperatures are beyond room temperature
and one order of magnitude higher than those reported in
various 2DMs such as Cr2Ge2Te6 [15] and Fe3GeTe2 [17].

In conclusion, FB states could pave the way to ambient
ferromagnetism in 2D materials. It is revealed, in the weak and
intermediate coupling regime, that the magnetic exchanges
between localized spins are largely dominated by the ferro-
magnetic FB-FB contribution which scales linearly with the
local coupling, contrasting with the standard quadratic depen-
dence of the other contributions. Using reasonable physical
parameters, we find that crossover temperatures well beyond
300 K could be reached in micrometer-sized systems opening
interesting avenues towards technological applications.
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