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Magnon dynamics in a skyrmion-textured domain wall of antiferromagnets
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We theoretically investigate the interaction between magnons and a skyrmion-textured domain wall in a two-
dimensional antiferromagnet and elucidate the resultant properties of magnon transport. Using supersymmetric
quantum mechanics, we solve the scattering problem of magnons on top of the domain wall and obtain the exact
solutions of propagating and bound magnon modes. Then, we find their properties of reflection and refraction
in the skyrmion-textured domain wall, where magnons experience an emergent magnetic field due to their
nontrivial spin texture-induced effective gauge field. Based on the obtained scattering properties of magnons
and the domain wall, we show that the thermal transport decreases as the domain wall’s chirality increases. Our
results suggest that the thermal transport of an antiferromagnet is tunable by modulating the skyrmion charge
density of the domain wall, which might be useful for realizing electrically tunable spin caloritronic devices.
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I. INTRODUCTION

Antiferromagnets are arising platforms for spintronic
applications due to their exceptional features [1,2]. Anti-
ferromagnets have negligible net magnetic moments, which
thereby make antiferromagnets robust against external mag-
netic stimuli. Moreover, the absence of the net magnetic
moment allows us to ignore the effects of stray fields which
have been hampering the densification of ferromagnetic de-
vices. Compared to ferromagnets whose dynamics are on the
gigahertz scale, the inherent dynamics of antiferromagnets are
in the range of terahertz that supports the antiferromagnet as
a candidate for an ultrafast computation platform [3,4].

Elementary magnetic excitations of an antiferromagnetic
system exhibit left- and right-circular spin waves [5–8]. A
quantum of the spin wave is a spin-1 boson and is called a
magnon [9]. The magnon current can be free from the electron
current, which is the classic information carrier of electronics
but inevitably implies Ohmic loss. Therefore magnons are
considered as promising candidates of information carriers for
low-energy-based devices [10]. Not only fundamental interest
for excitations of ordered magnetic systems but also potential
technological usefulness derives research branches such as
magnonics [11] and spin caloritronics [12].

Topological solitons are topologically classified stable so-
lutions of field theory [13–17]. They are found and studied
in research areas such as nuclear physics [18,19], soft matter
physics [20–26], optics [27,28], and condensed matter physics
[29–38]. One of the mostly studied topological solitons is
the skyrmion [39,40]. The skyrmion was suggested in the
early 1960s and has been considered as a key to describe
baryonic matters in nuclear physics [41,42]. The originally
suggested skyrmion which resides in the three-dimensional
space is defined by the homotopy group π3(S3). A magnetic
skyrmion is the two-dimensional (2D) version of the origi-
nal skyrmion, called the baby skyrmion in the high-energy

community, and defined by π2(S2). In the condensed matter
community, magnetic skyrmions are simply called skyrmions.
Similarly skyrmions are generalized to N-dimension space
and defined by πN (SN ) [43]. From now on we use the term
“skyrmion” to refer to the magnetic skyrmion.

Two-dimensional antiferromagnets support topological
solitons such as skyrmions and domain walls [44–48].
Skyrmions are pointlikely localized in two dimensions and do-
main walls are pointlikely localized in one dimension [17,49].
These localities have an advantage in information technology
[50–52]. Furthermore, topological solitons can be used as con-
trollers of magnon currents via the interaction of magnons and
topological solitons [53]. In particular, a magnon on nontrivial
spin textures feels the gauge field so that it experiences the
effective Lorentz force which generates the transverse dynam-
ics of the magnon [54–57]. The nontrivial textures frequently
become the essence of the transverse transports and also de-
termine the nontrivial properties of the longitudinal transport
[58–60].

In this paper, we investigate the interaction of magnons
and a skyrmion-textured domain wall, which is a topological
soliton having properties of the skyrmion and the domain wall
[61,62], in two-dimensional antiferromagnets. The skyrmion-
textured domain wall shows a chiral texture along the domain
wall represented by the topological charge density and de-
termined by boundary conditions that is illustrated in Fig. 1.
Domain walls with no spin texture along with them are known
to be transparent to magnons [63,64]. However, the skyrmion-
textured domain wall is no longer transparent, since the chiral
texture makes a reflective potential barrier for the magnon
[62]. To obtain the reflection probability, we use supersym-
metric (SUSY) quantum mechanics (QM) [65,66]. We also
obtain the exact solutions of magnon-bound modes in the
vicinity of the domain wall. Based on the Lagrangian formal-
ism, we derive the gauge field for the magnon and interpret
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FIG. 1. A skyrmion-textured domain wall. The arrows represent
the Néel order parameter n. The color represents the z component of
the Néel order parameter.

the magnon refraction as a deflection of the magnon trajectory
due to the emergent magnetic field.

Reflection and refraction phenomena affect the thermal
transport of the sample, and thus the thermal transport is
vividly chirality dependent. Generically, the thermal trans-
port is determined by the material parameters of a given
sample which are not easy to tune rapidly. Here using the
chiral texture, we propose potentially useful means to tune the
thermal transport. To elucidate the tunable thermal transport,
we use domain walls in an easy-axis antiferromagnet. The
easy-axis anisotropy breaks the spin O(3) symmetry down
to U(1) and the domain wall spontaneously breaks this U(1)
symmetry. In a two-dimensional system, a domain wall is a
one-dimensional object and spin textures can spatially vary
along the domain wall when chirality is injected [60,67–71].
The chirality injection is tunable by the spin Hall effect of
a metal contact at the boundary of the domain wall. This
tunability of the spin chirality manifests the tunable thermal
transport.

This paper is organized as follows. We begin in Sec. II
by formulating the field theory for two-dimensional antifer-
romagnets and introduce the skyrmion-textured domain wall.
Section III is devoted to understanding the interaction of
magnons and the skyrmion-textured domain wall via SUSY
QM and the emergent electromagnetism. In Sec. IV, we show
the chirality dependence of the thermal transport. In Sec. V,
we summarize and conclude our paper. In Appendix A, we
derive equations of motion for the antiferromagnet via the
Poisson bracket. Appendix B provides detailed calculations
of the gauged sigma model [72–74]. From the gauged sigma
model approach, we can naturally see how the gauge field of
the magnetic order generates the gauge field of the magnetic
excitation.

II. SKYRMION-TEXTURED DOMAIN WALLS
IN A 2D ANTIFERROMAGNET

In this section, using the continuum field theory
of Lagrange-Hamilton formalism, we formulate a two-
dimensional antiferromagnet and introduce the skyrmion-
textured domain wall.

A. General formalism

We consider a two-dimensional collinear antiferromag-
net with easy-axis anisotropy, where the magnetizations of
two constituent sublattices are antiferromagnetically coupled
[75–78]. The state of the antiferromagnet is represented by the
Néel order parameter n(x, t ) which is a three-dimensional unit
vector in the direction of the staggered magnetization, i.e., the
difference of the magnetization between the two sublattices.
The Lagrangian of the system is a functional of the order
parameter n, whose density is given by [79–81]

L = 1

2

{
ρ|ṅ|2 − A

∑
i

|∂in|2 − K[1 − (n · ẑ)2]

}
, (1)

where ρ, A, and K are the inertia of the staggered magnetiza-
tion, the exchange coefficient, and the anisotropy coefficient,
respectively. For the subsequent theoretical discussion, it is
convenient to use the natural unit of length, time, and energy
by setting ρ = A = K = 1, in which the Lagrangian density
is given by

L = 1

2

{
|ṅ|2 −

∑
i

|∂in|2 − [1 − (n · ẑ)2]

}
. (2)

Since the order parameter n has unit length, it can be ex-
pressed by two fields θ and φ by

n(x, t ) = (sin θ cos φ, sin θ sin φ, cos θ ), (3)

θ = θ (x, t ), φ = φ(x, t ). (4)

Since |ṅ|2 −∑i |∂in|2 = ∂μn · ∂μn = ∂μθ∂μθ + sin2 θ (∂μφ

∂μφ) from Eq. (3), we obtain the Lagrangian in terms of two
fields θ and φ:

L = 1
2 [∂μθ∂μθ + sin2 θ (∂μφ∂μφ) − sin2 θ ]. (5)

Here, we use Einstein’s summation convention and the metric
signature is [+,−,−] (2+1 space-time metric). The follow-
ing coupled equations of motion for the fields θ and φ are
obtained from the Euler-Lagrange equations:

∂μ∂μθ − sin θ cos θ (∂μφ∂μφ − 1) = 0, (6)

∂μ(sin2 θ∂μφ) = 0. (7)

Equation (7) can be cast into ∂μ jμ = 0, which represents
the conservation of spin rooted in the U(1) spin-rotational
symmetry of the Lagrangian about the z axis with

jμ = sin2 θ∂μφ. (8)

The spin density and the spin current density are given by
j0 and j = ( jx, jy), respectively. Since the Lagrangian has
no explicit dependence on space-time, the energy-momentum
tensor in terms of θ and φ, which is given by

T μν = ∂μθ∂νθ + sin2 θ∂μφ∂νφ − gμνL, (9)

is also a conserved current satisfying the continuity equa-
tion ∂μT μν = 0.

The system can also be studied within the Hamiltonian
formalism. Performing the Legendre transformation to the
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Lagrangian yields the following Hamiltonian density:

H = 1

2

[
π2

θ + |∇θ |2 + π2
φ

sin2 θ
+ sin2 θ (|∇φ|2 + 1)

]
, (10)

where πθ ≡ ∂L/∂θ̇ = θ̇ and πθ ≡ ∂L/∂φ̇ = sin2 θφ̇ are con-
jugate momenta of the fields θ and φ, respectively [82]. In
the Hamiltonian formalism, the time evolution of fields or
momenta is determined by their Poisson brackets with the
system’s Hamiltonian, which leads us to the same Eqs. (6)
and (7) as in the Lagrangian formalism. See Appendix A for
the derivation based on the Hamiltonian formalism.

B. Skyrmion-textured domain walls

To obtain a static domain-wall solution, we set θ̇ = 0 and
φ̇ = 0 in the equations of motion:

∇2θ − sin θ cos θ (∇φ · ∇φ + 1) = 0, (11)

∇ · (sin2 θ∇φ) = 0. (12)

For a domain wall, we consider the following ansatz by em-
ploying separation of variables:

θ (x, y) = θ (x), φ(x, y) = φ(y), (13)

n(x = ±∞, y) = ±ẑ. (14)

The equations are solved by the following solution:

cos θ = tanh
(√

1 + k2
0x
)
, φ = k0y. (15)

Here, k0 is a real number which characterizes chirality of the
domain-wall texture. The chirality constant k0 gives rise to
winding of the order parameter n on the domain-wall line
(x = 0). The domain wall interpolates two discrete vacua
n(x, y) = ±ẑ. In a two-dimensional system, a domain wall is
a one-dimensional object which can exhibit nontrivial textures
along with it [83,84]. With the considered solution, domain-
wall angle φ varies uniformly along the domain wall (i.e.,
along the y axis, see Fig. 1), which gives rise to the finite
skyrmion charge density given by

ρsky(x, y) ≡ 1

4π
n · (∂xn × ∂yn) (16)

= − k0

4π

(
1 + k2

0

)
sech2

(√
1 + k2

0x
)
. (17)

Note that the domain wall carries the skyrmion charge density,
which is localized in the vicinity of the domain wall. Along
the y axis, the density is uniform and the linear skyrmion
charge density (per unit length in the y direction) is given by∫

dxρsky = − k0

2π
. (18)

If the periodic boundary condition along the y axis is de-
manded (y + L = y), we would have φ(L) = φ(0), which
discretizes the allowed values for k0 as k0 = 2πn/L for an
integer n. The integration of the density yields the integer
skyrmion charge

∫
dxdyρsky = −n [61]. In the case of k0 = 0,

the domain-wall profile along the y axis is uniform and the
corresponding skyrmion charge is zero.

For the static field, the Hamiltonian density is given by
H = −L. The explicit expression for the energy density of
the domain-wall solution (15) is given by

H = (1 + k2
0

)
sech2

(√
1 + k2

0x
)
. (19)

The energy density per unit length in the y axis is given by

E =
∫

dxH = 2
(
1 + k2

0

) 1
2 . (20)

Note that the nontrivial magnetic texture on the domain wall
increases the energy.

We make one remark from Derrick’s scaling argument
[85]. Without nth-order derivative terms (n > 2 or n = 1) in
the energy functional, finite energy isolated skyrmions are
unstable in the bulk. However, skyrmions in a domain wall can
be stable since the scaling argument is applied to the dimen-
sion perpendicular to the domain wall and to other dimensions
separately [43,49,84]. In this paper, first, the characteristic
length of the domain wall is determined by the ratio of A and K
in the Lagrangian (1). Second, the characteristic length of the
chiral texture in the domain wall is determined by the chirality
constant k0.

Experimentally, the obtained domain-wall states with the
finite skyrmion charge can be realized by injecting a spin
current into the magnet via the spin Hall effects as shown
in Ref. [86] for a ferromagnet and in Refs. [87,88] for an
antiferromagnet.

III. SPIN WAVES ON TOP OF THE
SKYRMION-TEXTURED DOMAIN WALL

In this section, we formulate the dynamics of magnons on
top of the skyrmion-textured domain wall. With the aid of
SUSY QM, we find chiral bound modes. Furthermore, we ob-
tain an analytic form of a reflection probability of the magnon
and show their refraction in the presence of the skyrmionic
texture of the domain wall. This refraction is interpreted from
the perspective of the emergent magnetic field for magnons.

A. Spin waves

To obtain a spin-wave solution on top of the skyrmionic
domain wall, we consider a small fluctuation δn(x, t ) on the
static domain-wall background n(x) [Eq. (15)]. The variation
of the vector is described by variations of the angles:

δn1 = δθ, δn2 = sin θδφ. (21)

Linearizing the Euler-Lagrange equations [Eqs. (6) and (7)]
with respect to the variation (θ, φ) �→ (θ + δθ, φ + δφ), we
obtain two coupled equations for δn1 and δn2. The two equa-
tions are combined into one complex equation:[

� + (1 + k2
0

)
(1 − 2 sin2 θ ) + 2qik0 cos θ∂y

]
	q = 0, (22)

where 	q ≡ δn1 − qiδn2, q = ±1, and � ≡ ∂μ∂μ. Here, the
complex field 	q represents q-polarized spin waves, where
q = 1 and −1 are for right-handed and left-handed spin
waves, respectively [89]. Since the Lagrangian for the anti-
ferromagnet (2) is Lorentz invariant, the equation of motion
for 	q (22) is Lorentz invariant. For the case of ferromagnets,
the Lagrangian is similar but nonrelativistic and the magnon
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wave function has only a first-order time derivative in the
equation of motion [62]. Due to the translational symmetries
with respect to (t, y) �→ (t + δt, y + δy), the equation

	q(t, x, y) = ψq(x)ei(kyy−ωt ) (23)

is supported as an eigenfunction. The equation of motion for
the eigenfunction is given by

ω2ψq = [− ∂2
x + k2

y + (1 + k2
0

)
(1 − 2 sin2 θ )

− 2qk0ky cos θ
]
ψq. (24)

We interpret the equation as the “Schrödinger” equa-
tion ω2ψq = Hψq with the eigenvalue ω2 and the “Hamilto-
nian” H = −∂2

x + V , which consists of the kinetic energy −∂2
x

and the potential energy given by

V = k2
y + (1 + k2

0

)[
1 − 2sech2(√1 + k2

0x
)]

− 2qk0ky tanh
(√

1 + k2
0x
)
. (25)

Equation (22) with the potential (25) is one of our main
results. Here, the potential energy V is known as the Rosen-
Morse potential [90]. Note that, for the case of the nontextured
domain wall k0 = 0, the potential becomes the Pöschl-Teller
potential [91] which is known as a reflectionless potential
[92]. In general, with nonzero k0, spin waves are reflected;
the derivation of the reflection probability is presented below
in Sec. III D.

B. SUSY QM

In this section, we solve the equation of motion for the spin
wave with the aid of SUSY QM. To apply SUSY QM, we
define the annihilation and creation operators:

a = ∂x +
√

1 + k2
0 tanh

(√
1 + k2

0x
)+ β, (26)

a† = −∂x +
√

1 + k2
0 tanh

(√
1 + k2

0x
)+ β, (27)

where β = −qkyk0/
√

1 + k2
0 . The commutation relation of

the operators is given by

[a, a†] = 2
(
1 + k2

0

)
sech

(√
1 + k2

0x
)
. (28)

With these operators, the Hamiltonian is written as H =
a†a − β2 + k2

y and the SUSY partner Hamiltonian is defined
as H̃ = aa† − β2 + k2

y . The SUSY partner of the potential is
defined by the relation H̃ = −∂2

x + Ṽ . Since, by definition,
H̃ = H + [a, a†], the commutator (28) eliminates the sech
term in the potential (25). Thus the induced partner potential
is simpler than the original potential, that is,

Ṽ = k2
y + 1 + k2

0 − 2qk0ky tanh
(√

1 + k2
0x
)
. (29)

Figure 2 provides comparison of the original potential V and
the partner potential Ṽ . Note that the partner potential for the
case of k0 = 0 is a constant potential. Due to the algebraic

(a)

(b)

FIG. 2. The solid line represents the original potential (25) and
the dashed line represents the SUSY partner (29). Here, we consider
the case of left-polarized magnons (q = −1) coming from the left
x < 0. The chiralities of the skyrmion-textured domain wall are
(a) k0 = 0 and (b) k0 = 0.5, where ky = k0.

relation of H and H̃ , eigenfunctions for both Hamiltonians
satisfy the following relations:

H̃aψq = aHψq = ω2aψq, (30)

Ha†ψ̃q = a†H̃ψ̃q = ω̃2a†ψ̃q, (31)

where H̃ψ̃q = ω̃2ψ̃q. It means that aψq(a†ψ̃q) is an eigen-
function of H̃ (H ). We will solve the problem in the partner
system which is easier than the original system and obtain
the solution for the original problem by applying the ladder
operator, ψq = a†ψ̃q.

C. Domain-wall bound spin waves

Before elucidating propagating modes, we will discuss
bound modes. Since the bound modes satisfy relation aψq =
0, the solution is given by

ψq(x) = sech
(√

1 + k2
0x
)
e−βx, (32)

whose bound frequency is ω2 = −β2 + k2
y . The solution for

bound modes is one of our main results. Note that, in this pa-
per, the bound magnon propagates to the y direction whereas
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FIG. 3. Trajectories of (a) left-polarized bound magnons and
(b) right-polarized bound magnons. Here k0 is assumed to be posi-
tive. The arrows piercing the balls represent the spins of the magnons.
The arrows on the plane indicate the direction of the spin current due
to the bound magnons.

it is localized in the x direction. Our solution generalizes the
well-known bound solution [93] which corresponds to the
case of β = 0. One can define the bound magnon’s position
as the location where the amplitude of the wave function
is maximized. By this definition, the position of the bound
magnon is given by

X = − q√
1 + k2

0

tanh−1

(
kyk0

1 + k2
0

)
. (33)

Equation (33) tells us that positions of bound modes with
different ky are separated and left- and right-polarized bound
magnons have opposite positions. Figure 3 schematically il-
lustrates the trajectories of left- and right-polarized bound
magnons.

D. Propagating spin waves

In the partner system described by H̃ , asymptotic behaviors
of the propagating wave function are

ψ̃q(x → −∞) ∼ eik−x + re−ik−x, (34)

ψ̃q(x → +∞) ∼ teik+x, (35)

where k2
+ = k2

− − 4k0ky (from the conservation of the energy)
and k− is the wave number of the incoming spin wave. By
acting of a† on ψ̃q, asymptotic behaviors of the propagating
wave function in the original system are given by

a†ψ̃q(x → −∞) ∼ [−ik− − 2k0ky + β]eik−x

+ r[ik− − 2k0ky + β]e−ik−x, (36)

a†ψ̃q(x → +∞) ∼ t[−ik+ + 2k0ky + β]eik+x. (37)

Reflection probability of the original potential is

R =
∣∣∣∣ ik− − 2k0ky + β

−ik− − 2k0ky + β

∣∣∣∣
2

|r|2 = |r|2, (38)

and it is known to be equivalent to the reflection probability
of the partner potential from SUSY QM. The partner system
has the hyperbolic-tangent potential which is known to be
solvable. The transmission probability T = 1 − R is given by
[64,94,95]

T(k−, ky) =

⎡
⎢⎣1 −

sinh2
[

π (k+−k− )

2
√

1+k2
0

]
sinh2

[
π (k++k− )

2
√

1+k2
0

]
⎤
⎥⎦
(k2

− − 4k0ky), (39)

where 
 is the Heaviside step function. To capture the deflec-
tion of a magnon trajectory in real space, we express the wave
function in the laboratory frame {x̂, ŷ, ẑ}:

ψ in
lab = δn · (x̂ − iŷ) = (−1)	e−ik0y as x → −∞

∼ ψ (x)ei[(ky−k0 )y−ωt],

ψout
lab = δn · (x̂ + iŷ) = 	eik0y as x → +∞

∼ ψ (x)ei[(ky+k0 )y−ωt], (40)

where the extra factor exp(±ik0y) comes from the fact that
	 is defined with respect to the local spin frame where
the azimuthal angle changes along the y direction in the
domain wall. For concreteness of discussion, let us first con-
sider left-polarized magnons. Note that the y component of
the magnon’s linear momentum is changed from ky − k0 to
ky + k0 after passing by the domain wall. In the laboratory
frame, wave vectors of incoming, reflected, and transmitted
magnons with left-handed polarization are given by

kL = (k−, ky − k0, 0), (41)

kL
r = (−k−, ky − k0, 0), (42)

kL
t = (k+, ky + k0, 0). (43)

In the laboratory frame, the kinetic energy of magnons is con-
served, which ensures the following equalities: |k| = |kr | =
|kt |. Let us consider a magnon incoming from x < 0 along
the x axis. This is the case of ky − k0 = 0. This magnon
initially has no y component of the wave vector. However,
after the transmission through the domain wall, the magnon
has nonzero y component 2k0. For magnons with right-handed
polarization, reflection direction is opposite. Wave vectors of
incoming, reflected, and transmitted right-polarized magnons
are

kR = (k−, ky + k0, 0), (44)

kR
r = (−k−, ky + k0, 0), (45)

kR
t = (k+, ky − k0, 0). (46)

Expanding the spin density j0(θ, φ) (8) with respect to
(θ → θ + δθ, φ → φ + δφ) up to second order, we can ob-
tain the spin of q-polarized magnons. Since unperturbed fields
θ and φ are time independent, the zeroth order of the spin
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density is zero. Using the definition (21), we expand the spin
density:

j0 = sin2 θ∂tδφ + 2 sin θ cos θδθ∂tδφ

= sin θ∂tδn2 + 2 cos θδn1∂tδn2. (47)

From the following expression of the magnon wave function
(23)

	q(t, x, y) = δn1 − qiδn2 = |ψq(x)|ei(kyy−ωt+η), (48)

the perturbative fields read as

δn1 ∝ cos(kyy − ωt + η),

δn2 ∝ −q sin(kyy − ωt + η), (49)

where η is an arbitrary phase. Plugging Eq. (49) into Eq. (47)
and evaluating its expectation value with respect to time av-
eraging, the first-order term vanishes and the remaining term
yields

〈 j0〉t ∝ qω cos θ = qω tanh
(√

1 + k2
0x
)
. (50)

This equation indicates that spin of the left-polarized (right-
polarized) magnon is changed from +(−)h̄ to −(+)h̄ while
the magnon is passing through the domain wall.

E. Perspective of emergent electromagnetism

Here, we describe an alternative way to understand the
deflection of a magnon trajectory by invoking the emergent
electromagnetism of spin waves on top of a magnetic texture.
From the second-order variation of the Lagrangian of the
antiferromagnets, we obtain the Lagrangian of the magnon:

LSW = 1
2 (Dμ	q)∗(Dμ	q), (51)

where the covariant derivatives and texture-induced gauge
field are given by [89,96]

Dμ = ∂μ + iqaμ, aμ = − cos θ∂μφ. (52)

Detailed derivation of the Lagrangian can be found in Ap-
pendix B. The covariant derivative and the gauge field for the
magnon are expected by the notion of the connection in differ-
ential geometry since the magnon lives on the tangent space of
the sphere [97,98]. From the given domain-wall solution (15),
the emergent magnetic field is obtained by [69]

b = −(∂1a2 − ∂2a1)

= k0

√
1 + k2

0sech2
(√

1 + k2
0x
)
. (53)

The change of the transverse momentum due to the emergent
Lorentz force is given by

�py =
∫

q(v × b) · ŷdt = −2qk0, (54)

where v is the magnon velocity and b = bẑ. This result is
consistent with the result obtained by SUSY QM. Note that
the change of the transverse momentum depends on the po-
larization q of the magnon. This indicates that, when the
same number of two distinctly polarized magnons pass the
skyrmion-textured domain wall in the longitudinal direction
(e.g., x direction), there arises a net finite spin current while

+

−

+

−

x

y

FIG. 4. Schematic illustration of the motion of distinctly po-
larized antiferromagnetic magnons moving across the skyrmion-
textured domain wall. Similar to Fig. 3, the blue (red) ball represents
the left-polarized (right-polarized) magnon and the color change
of the arrow depicts the change of spin angular momentum of
the magnon passing through the domain wall [the change from
white (black) to black (white) represents the change from +(−)h̄
to −(+)h̄]. Note that, when the same number of two distinctly
polarized magnons move in the longitudinal direction, the resultant
net transverse magnon current vanishes, but the net transverse spin
current is finite.

having a zero net magnon current in the transverse direction
(e.g., y direction). The situation is illustrated in Fig. 4.

IV. TUNABLE THERMAL TRANSPORT

In this section, we obtain the chirality-dependent thermal
transport. The injected spin current at the boundary which
is electronically tunable via the spin Hall effect determines
mathematical boundary conditions of the system. Thus we can
control the chirality of the texture that is represented by k0

(15). To compute the tunable heat flux, we use the Landauer-
Büttiker formula [99–101]. Heat flux per unit length is given
by

J =
∑

q

∫ ∞

0

dkx

2π

∫ ∞

−∞

dky

2π
T(kx, ky)h̄

×
[
ωqLn(ωqL, TL)

∂ωqL

∂kx
− ωqRn(ωqR, TR )

∂ωqR

∂kx

]
,

(55)

where ωqL(R) is the frequency of a q-polarized magnon at the
left (right) domain x < 0 (x > 0), TL(R) is the temperature of
the left (right) domain, and n(ω, T ) is the Bose-Einstein distri-
bution. Figure 5 shows chirality dependence of the heat flow.
T̃L(R) ≡ kBTL(R)/h̄ is a rescaled temperature. Note that we use
the natural unit ρ = K = A = 1. Therefore time, length, and
energy are measured by

√
ρ/K ,

√
A/K , and A, respectively.

As we expected, chirality of the skyrmion-textured domain
wall disturbs the longitudinal magnon transport.
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ΔT̃ = 0.1
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FIG. 5. Chirality dependence of the heat flux. Here, T̃R denotes
the rescaled temperature of the right reservoir and the temperature
difference between two reservoirs is fixed as �T̃ = 0.1, where T̃L −
T̃R ≡ �T̃ .

V. CONCLUSION

We have formulated a theory of the skyrmion-textured
domain wall in a two-dimensional antiferromagnet. Using
the Lagrangian formalism, we have derived equations of mo-
tion for magnons on top of the skyrmion-textured domain
wall. Using SUSY QM, we have obtained the exact solutions
of magnon bound modes and investigated their scattering

properties in the skyrmion-textured domain wall. With the chi-
ral texture, the domain-wall potential is no longer symmetric
under the space inversion, and thus the position of the bound
magnon is shifted from the domain-wall center. Solving the
scattering problem of the domain-wall potential for magnons,
we have shown that magnons are refracted or reflected due
to the chiral texture of the domain wall. This refraction can
be interpreted as the magnon dynamics under the emergent
electromagnetism. Using the gauged sigma model approach,
we also have analyzed the Lagrangians of the magnet and the
magnon and find how the effective electromagnetism for the
magnons emerges in the chiral texture of the background mag-
net. We have found the total reflection of magnons which lack
enough longitudinal momentum to overcome the domain-wall
potential. The total reflection and the chirality-proportional re-
flection probability which can be tuned electronically reduce
the thermal transport.
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APPENDIX A: EQUATIONS OF MOTION FROM POISSON BRACKETS

Poisson brackets of the fields and its momenta are

{ϕa(x, t ), ϕb(x′, t )} = 0, (A1)

{πa(x, t ), πb(x′, t )} = 0, (A2)

{ϕa(x, t ), πb(x′, t )} = δabδ(x − x′). (A3)

Here, indices a and b denote the fields θ and φ. With these canonical relations, equations of motion for the fields are driven,
since time evolution is given by a Poisson bracket with the Hamiltonian. For θ and πθ , time evolutions are

θ̇ = {θ, H} =
∫

d2x′{θ (x),H} =
∫

d2x′
{
θ (x),

1

2
π2

θ

}
=
∫

d2x′{θ (x), πθ }πθ =
∫

d2x′δ(x − x′)πθ (x′) (A4)

= πθ , (A5)

π̇θ = {πθ , H} =
∫

d2x′{πθ (x),H} (A6)

=
∫

d2x′
[{

πθ (x),
1

2
∇θ · ∇θ

}
+
{

πθ (x),
1

2

π2
φ

sin2 θ

}
+
{
πθ (x),

1

2
sin2 θ

}
(∇φ · ∇φ + 1)

]
(A7)

=
∫

d2x′
[
∇2θ (x′)δ(x − x′) + π2

φ

cos θ

sin3 θ
δ(x − x′) − sin θ cos θ (∇φ · ∇φ + 1)δ(x − x′)

]
(A8)

= ∇2θ + sin θ cos θ (φ̇2 − ∇φ · ∇φ − 1). (A9)
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Since π̇φ = θ̈ , Eq. (A9) is consistent with Eq. (6). Similarly equations for φ and πφ are

φ̇ = {φ, H} =
∫

d2x′{φ(x),H} =
∫

d2x′
{

φ(x),
π2

φ

2 sin2 θ

}
=
∫

d2x′δ(x − x′)
1

sin2 θ
πφ (A10)

= πφ

sin2 θ
, (A11)

π̇φ = {πφ, H} =
∫

d2x′{πφ (x),H} (A12)

=
∫

d2x′
{
πφ (x),

1

2
sin2 θ∇φ · ∇φ

}
=
∫

d2x′ sin2 θ
∑

i

{πφ (x), ∂iφ}∂iφ (A13)

=
∫

d2x′ sin2 θ
∑

i

(−1)∂iδ(x − x′)∂iφ =
∫

d2x′∑
i

δ(x − x′)∂i(sin2 θ∂iφ) (A14)

=
∫

d2x′δ(x − x′)∇ · (sin2 θ∇φ) (A15)

= ∇ · (sin2 θ∇φ). (A16)

Since πφ = sin2 θφ̇, Eq. (A16) is identical to Eq. (7).

APPENDIX B: SECOND VARIATION OF THE LAGRANGIAN

The Néel vector is a unit vector on the sphere S2. Thus the Néel vector can be written as a rotation of a constant unit vector

n(x, t ) = R(x, t )e (B1)

where the rotation matrix is defined by

R = eφ(x,t )Lz eθ (x,t )Ly , (B2)

and the generators are

Lx =
⎛
⎝0 0 0

0 0 −1
0 1 0

⎞
⎠, Ly =

⎛
⎝ 0 0 1

0 0 0
−1 0 0

⎞
⎠, Lz =

⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠. (B3)

With this representation, the derivative of the Néel vector is written as

∂μn = [(∂μR) + R∂μ]e (B4)

= R[R−1(∂μR) + ∂μ]e (B5)

≡ R[Aμ + ∂μ]e. (B6)

The Lagrangian density of the Heisenberg antiferromagnet is given by

L = 1
2∂μn · ∂μn, (B7)

and this is called the O(3) sigma model. Plugging Eq. (B6) into the Lagrangian (B7), we can obtain the gauged sigma model:

L = 1
2∂μn · ∂μn (B8)

= 1
2R[∂μ + Aμ]e · R[∂μ + Aμ]e (B9)

= 1
2 [∂μ + Aμ]e · [∂μ + Aμ]e (B10)

= 1
2Dμe · Dμe, (B11)

with the covariant derivative

Dμ ≡ ∂μ + Aμ, (B12)

and the SO(3) gauge field Aμ ∈ so(3), where so(3) is the Lie algebra of the Lie group SO(3). Since the rotation generators (B3)
form a basis of so(3), we can write the covariant derivative as

Dμ = ∂μ + Aμ = ∂μ + Ai
μLi, (B13)

[Dμe] j = ∂μ[e] j + Ai
μ[Li]

j
k[e]k = ∂μ[e] j + Ai

με
j
ik[e]k = [∂μe − Aμ × e] j, (B14)
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where Ai
μ is the ith component of Aμ which is the dual vector of Aμ and ε is the Levi-Civita tensor. In Ref. [102], the author

uses Aμ as a SO(3) gauge field. The gauge field Aμ and its dual Aμ have the same information and are linked by the relation

[Aμ]i
j = εi

jk Ak
μ. (B15)

Effects of magnons are captured by the expansion of e ≈ ẑ + δe, where δe = δe1x̂ + δe2ŷ, |δe| � 1. We will obtain the
Lagrangian of a magnon via the second-order variation with respect to δe. The expansion of the Lagrangian is written as

2L = Dμe · Dμe (B16)

= Aμe · Aμe + ∂μe · ∂μe + 2Aμe · ∂μe (B17)

= Aμẑ · Aμẑ + Aμδe · Aμδe + 2Aμẑ · Aμδe + ∂μδe · ∂μδe + 2Aμδe · ∂μδe + 2Aμẑ · ∂μδe. (B18)

The zeroth-order term is the Lagrangian without the magnon and the first-order terms vanish due to the stationary action principle.
Now, the Lagrangian of the magnon (spin wave) is obtained:

2LSW = ∂μδe · ∂μδe + Aμδe · Aμδe + 2Aμδe · ∂μδe (B19)

= ∂μδe · ∂μδe + [[Aμ]1
2δe2x̂ + [Aμ]2

1δe1ŷ + ([Aμ]3
1δe1 + [Aμ]3

2δe2
)
ẑ
] · Aμδe + 2Aμδe · ∂μδe (B20)

= ∂μδe · ∂μδe + [Aμ]1
2[Aμ]1

2δe2δe2 + [Aμ]1
2[Aμ]1

2δe1δe1 (B21)

+ ([Aμ]3
1δe1 + [Aμ]3

2δe2
)(

[Aμ]3
1δe1 + [Aμ]3

2δe2
)

(B22)

+ 2[Aμ]1
2δe2∂

μδe1 − 2[Aμ]1
2δe1∂

μδe2 (B23)

= ∂μδe · ∂μδe + aμaμ(δe1δe1 + δe2δe2) + 2aμ(δe2∂μδe1 − δe1∂μδe2) (B24)

+ ([Aμ]3
1δe1 + [Aμ]3

2δe2
)(

[Aμ]3
1δe1 + [Aμ]3

2δe2
)
. (B25)

Here, we define the texture induced gauge field by the longitudinal component of Aμ:

aμ ≡ [Aμ]1
2 = A3

μ, (B26)

which is dominant for the dynamics of high-energy magnons. Let us introduce a magnon wave function 	q ≡ δe1 − qiδe2, and
then the Lagrangian is written as

2LSW = ∂μ	∗
q ∂μ	q + aμaμ	∗

q 	q − iqaμ(	∗
q ∂μ	q − 	q∂μ	∗

q ) (B27)

+ ([Aμ]3
1δe1 + [Aμ]3

2δe2
)(

[Aμ]3
1δe1 + [Aμ]3

2δe2
)
, (B28)

= (Dμ	q)∗
(
Dμ	q

)+ ([Aμ]3
1δe1 + [Aμ]3

2δe2
)(

[Aμ]3
1δe1 + [Aμ]3

2δe2
)
, (B29)

where the covariant derivative is defined as

Dμ ≡ ∂μ + iqaμ. (B30)

In Eq. (B29), the covariant derivative term induces the kμ term while the last term does not. Here, we consider the high-energy
magnon limit, which means that the background texture varies slowly and this is equivalent to the adiabatic approximation. In
the high-energy-magnon limit, the derivative term in the Lagrangian is dominant, therefore we can neglect the last term. Hence
the Lagrangian of the magnon is given by

LSW = 1
2 (Dμ	q)∗(Dμ	q). (B31)

If we add the anisotropy term to the Hamiltonian, then the length scale of field configurations is given by

λ =
√

A

K
, (B32)

where A and K are exchange and anisotropy constants. For the adiabatic approximation, A � K and this is called the exchange
approximation. Thus, in this limit, we discard the anisotropy term in the Lagrangian, even if the system has an anisotropy.

Let {εi} be a local frame corotating with the spin texture and let {ei} be a fixed global frame. The twist of the frame is
given by

εi · ∂με j = Rei · ∂μRe j (B33)

= ei · R−1∂μRe j (B34)

= ei · Aμe j (B35)

= [Aμ]i j . (B36)
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The local rotation of a basis {ε1, ε2} endows a local phase rotation of the complex scalar 	q. Thus, naturally, [Aμ]12 = A3
μ

becomes the U(1) gauge field for the complex scalar 	q and generates the emergent electromagnetism.
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