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Magnetic interactions in intercalated transition metal dichalcogenides:
A study based on ab initio model construction

Tatsuto Hatanaka ,1,* Takuya Nomoto ,2,† and Ryotaro Arita 2,3,‡

1Department of Applied Physics, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
2Research Center for Advanced Science and Technology, University of Tokyo, Komaba Meguro-ku, Tokyo 153-8904, Japan

3RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan

(Received 21 November 2022; revised 8 March 2023; accepted 24 April 2023; published 15 May 2023)

Transition metal dichalcogenides (TMDs) are known to have a wide variety of magnetic structures by hosting
other transition metal atoms in the van der Waals gaps. To understand the chemical trend of the magnetic
properties of the intercalated TMDs, we perform a systematic first-principles study for 48 compounds with
different hosts, guests, and composition ratios. Starting with calculations based on spin density functional theory,
we derive classical spin models by applying the local force method to the ab initio Wannier-based tight-binding
model. We show that the calculated exchange couplings are overall consistent with the experiments, and the
chemical trend can be understood in terms of the occupation of the 3d orbital in the intercalated transition metal.
The present results give us a useful guiding principle to predict the magnetic structure of compounds that are yet
to be synthesized.
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I. INTRODUCTION

Transition metal dichalcogenides (TMDs) are two-
dimensional layered materials of the type T X2, where T is a
transition metal atom, and X is a chalcogen atom. They offer
a fascinating playground to study various physical phenom-
ena such as unconventional superconductivity, exotic charge
density waves, emerging spin, valley, and exciton physics
[1–4]. One of their characteristic features in bulk and thin
films with atomic-scale thickness is that they can serve as
an intercalation host. Namely, various guest elements can
be accommodated in the van der Waals (vdW) gaps be-
tween each layer of T X2, changing the physical properties
of the system dramatically. In particular, when 3d transition
metal atoms (M) are intercalated a variety of magnetic states,
such as helical spin states [5–10], half-metallic states [11],
noncollinear antiferromagnetic states [12,13], and anisotropic
in-plane ferromagnetic states [14,15], emerges for which in-
triguing transport phenomena like the anomalous Hall effect
[16–18] and crystalline Hall effect [19] have been investigated
intensively.

It is an interesting question whether such various magnetic
states and properties realized in the intercalated TMDs can
be reproduced from first principles and described/understood
in terms of a simple model. It is also a nontrivial challenge
to predict unknown magnetic properties for compounds that
are yet to be synthesized. For these problems, recently, sev-
eral ab initio studies have been performed. For example,
a calculation based on density functional theory (DFT) has
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successfully shown that the most stable state in M1/3NbS2

where M=(Fe, Co) has a noncoplanar magnetic structure for
which the topological Hall effect is expected to be observed
[20]. For M=(Cr, Mn, Fe), effective spin models were derived
from first principles, and the origin of the characteristic helical
magnetic structure has been discussed [21]. However, the
general chemical trend of the host and guest dependence of the
magnetic property of the intercalated TMDs is yet to be fully
understood, and a systematic study for various host T X2 and
guest M with different composition ratios is highly desired.

To determine the most stable magnetic structure for a given
material, there are several established approaches. One is of
course a calculation based on spin DFT (SDFT), which usu-
ally works successfully for transition metal compounds [22].
However, this approach is numerically expensive and not so
efficient when the magnetic unit cell is large. Another promis-
ing approach is deriving a classical spin model from SDFT
calculation for a magnetic state (typically the ferromagnetic
state) for which the numerical cost is not so expensive. Once
a classical spin model is derived, we can determine the stable
magnetic structures even when the magnetic unit cell is large.

The local force method, equivalently called the Liechten-
stein formula [23], is often used to construct such effective
spin models. With this method, we can evaluate the ex-
change interactions in the spin model by estimating the
energy change against spin rotations. This formula has been
successfully applied to the calculations for the magnetic tran-
sition temperatures of transition metals [24], noncollinear
magnets, and magnetic alloys [25]. While it was origi-
nally formulated for the multiple scattering theory with the
Green’s functions and implemented in SDFT calculations
with the Korringa-Kohn-Rostoker (KKR) theory, it is appli-
cable to the tight-binding model based on ab initio Wannier
functions [26–28].
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FIG. 1. Crystal structures of intercalated TMDs MxT X2 (a) for
x = 1/3 and (b) for x = 1/4. Green, yellow, and blue spheres repre-
sent T , X , and M elements, respectively.

In this study, we first performed a systematic SDFT cal-
culation for MxT X2 where M = (V, Cr, Mn, Fe, Co, Ni),
T = (Nb, Ta), and X = (S, Se) with x = 1/3 and 1/4 (48
compounds in total). Starting with the calculations for the
representative ferromagnetic state of CrxT X2, we construct
classical spin models by applying the local force method to the
Wannier-based tight-binding model. We then determine the
most stable magnetic structure for each material by examining
the sign of the exchange interactions. In this approach, we
discuss the possibility of the intralayer AF states, which are
numerically expensive to investigate by SDFT calculation.
We show that the theoretical results agree well with the mag-
netic orders experimentally reported. Moreover, we find that
a simple model can give a unified explanation for the material
dependence of the stable spin configuration in terms of the
filling of the 3d orbitals of the intercalated transition metals.
This observation gives us a useful guiding principle to predict
magnetic properties of intercalated TMDs which are yet to be
synthesized.

II. METHOD

A. Spin density functional theory

In our calculation scheme, the SDFT calculation is per-
formed first. Then, based on the results, we construct a
tight-binding Hamiltonian using the Wannier function. After
that, we apply the local force method to the tight-binding
Hamiltonian and derive the effective spin model. Finally, the
stable magnetic order was determined. The results of mag-
netic order based on the effective spin model were compared
with the experimental results and SDFT calculations for each
compound.

We show the crystal structures of intercalated TMDs in
Fig. 1. There are two intercalated transition metals per unit
cell, which are located in different vdW gaps. The intercalated
transition metals are surrounded by a distorted octahedron
formed by chalcogen atoms. We can also see that intercalated
transition metals form a hexagonal close-packed lattice when
x = 1/3 and a triangular lattice stacked along the c axis when
x = 1/4. In the SDFT calculation, we performed structural
optimization for all target compounds. In this optimization,
we assumed that the spin configuration is ferromagnetic
(FM), and the lattice parameters and internal coordinates were

optimized, keeping the original space group symmetries
P6322 for x = 1/3 and P63/mmc for x = 1/4.

The results of the stable magnetic order of the SDFT cal-
culation were obtained by comparing the energies of the FM
and AFM states for optimized structures of each compound.
As mentioned before, there are two intercalated transition
metals per unit cell (see Fig. 1). In the SDFT calculations,
we focus on the magnetic structures that do not expand the
unit cell. Thus, we consider only the antiferromagnetic (AFM)
state having the interlayer antiferromagnetic and intralayer
ferromagnetic structure.

B. Local force method

In the local force method, each of the exchange interactions
(Ji j) are perturbatively evaluated by rotating a spin from the
ferromagnetic state and examining the changes of the total en-
ergy. Here, we summarize a formulation based on the Wannier
tight-binding models following Ref. [26]. Let us first consider
the classical Heisenberg Hamiltonian:

Hs = −2
∑

〈i, j〉
Ji jsi · s j, (1)

where 〈i, j〉 means all combinations of i, j(i �= j). We then
introduce δEi j as the energy change when we rotate the spin
at site i by θi and site j by θ j on the same rotation axis from
the ferromagnetic state. It should be noted that δEi j is directly
related with the exchange interaction:

∂2δEi j

∂θiθ j
= −2Ji j . (2)

Next, we consider the tight-binding Hamiltonian defined as
follows,

HTB =
∑

1,2

A12c†
1c2, (3)

where the indices 1,2 run over all degrees of freedom that
specify the Wannier functions, namely, site i, atomic or
molecular orbital �, and spin σ indices. Using the Green’s
function for the tight-binding Hamiltonian, we can calculate
the energy change due to the spin rotation. In the Green’s
functions formalism, the free energy F of the system (4) is
expressed as

F = −T
∑

ωn

eiωn0+
Tr ln[G−1(iωn)], (4)

where ωn = (2n + 1)π/β denotes the electronic Matsubara
frequency, and the Green’s function G is given by G−1

12 (iωn) =
(iωnδ12 − A12). Generally, A12 can be divided into a time-
reversal symmetric term t12 and antisymmetric term v12. Here,
following Ref. [26], we assume that v12 is local and can be
expressed as vi1�1σ1,i2�2σ2 = δi1i2 Bi

�1�2
σ z

σ1σ2
in a collinear mag-

netic phase, where Bi stands for the effective magnetic field,
namely, the spin splitting in the tight-binding model. Here we
use the atomic unit, i.e., the Bohr magneton μB = 1/2.

If we rotate the spins as in the case of the Heisenberg
model, the changes in the free energy, i.e., δFi j , is given by
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the following equation:

∂2δFi j

∂θiθ j
= T

∑

ωn

Tr�[BiG
↑↑
i j (iωn)BjG

↓↓
ji (iωn)]. (5)

Here, Gσσ
i j (iωn) is defined as a submatrix of G12(iωn) with

(i, j) site and (σ, σ ) spin components. Tr� is a restricted trace
for the � index. By comparing these expressions with Eq. (2),
we can evaluate Ji j for the itinerant Hamiltonian [Eq. (4)]:

Ji j = −T

2

∑

ωn

Tr�[BiG
↑↑
i j B jG

↓↓
ji ]. (6)

III. COMPUTATIONAL DETAILS

A. DFT calculation

We used the Vienna Ab initio Simulation Package
(VASP) code [29] for SDFT calculations of intercalated
TMDs. The Perdew-Burke-Ernzerhof exchange-correlation
functional [30] and the projector augmented wave method
[31,32] were used.

For materials having no magnetization in the SDFT cal-
culations, we performed SDFT+U calculations. The value of
U was set as U = 3 eV for Fe1/4XSe2 (X = Nb and Ta), the
Co-, and Ni-intercalated compounds. The effects of the value
of U are discussed in Appendix A. The energy cutoff for the
plane-wave basis set was set to 500 eV, and a 12 × 12 × 8 k-
point grid for the primitive cell of the intercalated TMDs was
used in the structural optimization and the calculations of the
ground-state energies.

B. Construction of Wannier-based tight-binding model

Wannier functions were constructed by using the WAN-
NIER90 code [33]. In Fig. 2, we show the band structures of
Cr1/3NbS2 as a representative example. The inner window
to fix the low-energy band dispersion was set from −8 to
2 eV. The energy cutoff for the plane-wave basis was set to
500 eV. A 12 × 12 × 8 k-point grid was used in calculating
FM reference states, and a 6 × 6 × 4 sampling k-point grid
was used for constructing Wannier functions.

C. Evaluation of exchange interactions

We applied the local force method to the Cr-intercalated
compounds, and the exchange interactions for the other transi-
tion metal-intercalated compounds were evaluated by shifting
the Fermi level, which corresponds to the rigid band approx-
imation. In order to validate this approximation, we show the
band structures of MxNbS2 in Appendix B. According to the
results of the DFT calculation, only intercalated transition
metals have a sizable magnetic moment, and those of the other
atoms are negligibly small in the FM order. Thus we ignored
interactions other than those between intercalated transition
metals and extracted the spin model, whose interactions are
finite only between intercalated transition metals. This ap-
proach works most successfully for the case in which Cr
is intercalated. In other cases, spin polarization in the host
TMD makes the applicability of the rigid-band approximation
worse.

-6

-4

-2

 0

 2

 4

A H L A Γ K M Γ

E
n

er
g

y
 (

eV
)

-6

-4

-2

 0

 2

 4

A H L A Γ K M Γ

E
n

er
g

y
 (

eV
)

FIG. 2. Band structures of (upper) majority spin and (lower)
minority spin of Cr1/3NbS2 in the ferromagnetic state. The energy is
measured from the Fermi level. Blue lines are calculated from DFT
calculations, and red lines are from the Wannier functions.

An 8 × 8 × 8 k-point grid was used in the evaluation of
Eqs. (5) and (6). Inverse temperature β was set to 500 eV−1.
In order to reduce the computational cost, we use the inter-
mediate representation of the Green’s function [34,35] in the
local force method.

IV. RESULTS AND DISCUSSION

A. Stable magnetic order according to DFT calculation

We first summarize the experimentally observed magnetic
structures in Table I. Table II shows the results of the DFT
calculations, where we compare the energies of the FM and
AFM states. We can see from Tables I and II that the exper-
imental magnetic structures in 13 out of the 23 compounds
are successfully reproduced in the DFT calculations. For
three compounds that exhibit helimagnetic structures, namely
Cr1/3NbS2, Mn1/3NbS2, Cr1/3TaS2, and Mn1/4NbSe2, the dis-
crepancy is due to the nonrelativistic approximation where
the spin-orbit coupling is absent. The remaining six com-
pounds except for Fe1/4TaS2 (namely, Co1/3NbS2, Co1/3TaS2,
Cr1/4NbS2, Cr1/4NbSe2, and Fe1/4NbSe2) are known to be
AFM in the experiments but predicted to be FM in the
DFT calculation. It should be noted that we did not consider
intralayer AFM states in the DFT calculation because the
magnetic unit cell becomes too large. Thus the intralayer
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TABLE I. Stable magnetic structure in the experiments. F, HM, and AF stand for ferromagnetic, helimagnetic, and antiferromagnetic
structures, respectively.

x = 1/3 x = 1/4

V Cr Mn Fe Co Ni V Cr Mn Fe Co Ni

NbS2 AF [36,37] HM [5,8,9] HM [9] AF [38,39] AF [12,40,41] AF [42] NbS2 – AF [46] F [47,48] AF [49,50] – –
NbSe2 – F [6] – AF [43] – – NbSe2 – AF [51] HM [47] AF [51,52] – –
TaS2 AF [37] HM [10,14] F [44] F [17] AF [12] AF [45] TaS2 – – F [47,52] F [18,53,54] – –
TaSe2 – – – – – – TaSe2 – – – – – F [55]

magnetic structure is always FM, and only the interlayer mag-
netic structure can be AFM. We will see later in Table III
that we obtain the correct AFM ground states in Cr1/4NbS2

and Cr1/4NbSe2 based on the spin model calculations derived
by the local force method. On the other hand, in the case of
Fe1/4TaS2, the AFM state is more stable than the FM state in
the DFT calculation, while it is FM in the experiment. We will
discuss this discrepancy in Sec. IV B.

B. Exchange constant

We show the filling (the number of electrons in the unit
cell) dependence of the interlayer Figs. 3(a) and 3(b) and
intralayer [Figs. 3(c) and 3(d)] exchange constants evalu-
ated by the local force method. Jintra, Jinter are defined as the
nearest-neighbor inter- and intralayer exchange interactions,
respectively. It should be noted that we can calculate long-
range interactions, including Jintra, even though we start with
the calculation for a unit cell with one atom per plane because
the spin rotation in evaluating Ji j is infinitesimally small. We
here apply the nearest-neighbor approximation to the effective
spin model and thereby only consider Jintra and Jinter. The
effect of distant interactions is discussed in Appendix C. As
we described in Sec. III C, we start with the most representa-
tive case, i.e., the ferromagnetic state for M = Cr. We shift the
position of the Fermi level and look at the energy change due
to a spin rotation. While we neglect the detail of the guest (M)
dependence on the electronic structure, as we see below, the
rigid-band approximation successfully reproduces the overall
chemical trend of the experimental results.

Figures 3(a) and 3(c) are the results for x = 1/3, and
Figs. 3(b) and 3(d) are those for x = 1/4. Let us first look
at the former. We see that both the intralayer and inter-
layer interactions have a similar filling dependence. When
the number of electrons is small or large, the exchange con-
stants tend to take a positive small value (FM). On the other

hand, when the filling is close to half-filling (as in the cases
of Mn, Fe, and Co), the interactions tend to be negative
(AFM). This result is consistent with the previous study for
the Fe- and Co-intercalated x = 1/3 system in which non-
coplanar AFM structures were shown to be favored [20] since
the hexagonal close-packed lattice is magnetically frustrated
when all the nearest-neighbor interactions are negative. Note
that higher-order exchange interactions could be important for
this compound and discussed in Appendix D. Our result is also
consistent with Ref. [21] where the fully relativistic Korringa-
Kohn-Rostoker (KKR) Green’s function method was em-
ployed, indicating that the present computational method
works successfully and the effect of spin-orbit coupling is
irrelevant.

Next, let us move on to the case of x = 1/4. We see that
the interlayer exchange constant shown in Fig. 3(b) does not
show a significant host (T X2) dependence for M=(V, Cr, Mn,
Fe). We see a similar behavior for the intralayer exchange
constant [Fig. 3(d)]. Another distinct feature is that the energy
scale of the intralayer exchange constant is much smaller
than that of the interlayer exchange constant. Namely, the
system has a strong coupling along the c axis rather than in
the ab plane.

In Table III, we summarize the stable magnetic structures
determined by the sign of the nearest-neighbor exchange
constants. In both x = 1/3 and 1/4 cases, the ferromagnetic
order is stable only if both Jinter, Jintra are positive, and oth-
erwise, antiferromagnetic order becomes stable. Among 23
compounds for which the magnetic structure is determined
experimentally, we can say that the theoretical magnetic struc-
tures of 14 compounds are consistent with the experiment.
Unlike SDFT calculations, we reproduce the stable mag-
netic order consistent with the experiment for Cr1/4NbS2 and
Cr1/4NbSe2. As mentioned in Sec. IV A, when we do not
expand the unit cell, we can only consider the simplest in-
terlayer antiferromagnetic structure so that SDFT calculations

TABLE II. Stable magnetic structure in the DFT calculations. Letters with an asterisk (*) denote that the theoretical results are inconsistent
with the experimental results in Table I. F and AF stand for ferromagnetic and antiferromagnetic structures, respectively. It should be noted
that AF denotes the interlayer antiferromagnetic configuration.

x = 1/3 x = 1/4

V Cr Mn Fe Co Ni V Cr Mn Fe Co Ni

NbS2 AF F * F * AF F * AF NbS2 F F * F AF AF F
NbSe2 AF F F AF AF AF NbSe2 F F * F * F * AF F
TaS2 AF F * F F F * AF TaS2 F F F AF * AF F
TaSe2 F F F AF AF AF TaSe2 F F F F AF F
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TABLE III. Stable magnetic structure in the classical spin model derived by the local force method. Letters with an asterisk (*) denote
that the theoretical results are inconsistent with the experimental results in Table I. F and AF stand for ferromagnetic and antiferromagnetic
structures, respectively. F/AF means we do not specify stable magnetic order because at least |Jinter| or |Jintra| is smaller than 0.2 meV, and the
Fermi level is located near the sign change of Ji j .

x = 1/3 x = 1/4

V Cr Mn Fe Co Ni V Cr Mn Fe Co Ni

NbS2 AF F * F/AF * AF AF F * NbS2 AF AF F AF AF AF
NbSe2 AF F F AF AF F NbSe2 AF AF F * AF AF AF
TaS2 AF F * F/AF AF * AF F * TaS2 AF AF F AF * AF AF
TaSe2 F/AF F AF AF AF F TaSe2 AF AF F/AF AF AF AF *

take into account only the interlayer magnetic interactions.
In the case of these three compounds, by including antiferro-
magnetic interactions in the intralayer direction, the accurate
order was obtained. Here, let us note that both the interlayer
and intralayer exchange constants change their sign around
M = Mn. Thus we do not determine which magnetic order is
stable for six compounds with M = Mn. Similarly, in the case
of Ni1/3NbS2 and Ni1/3TaS2, at least one of the intralayer or
interlayer interactions is close to zero, indicating that these
materials are located near the boundary between the FM and
AFM states.

On the other hand, for the case of FexTaS2, our approach
does not reproduce the experimental results. For x = 1/3, we
should note that while SDFT apparently reproduces the fer-
romagnetic ground state in the experiment [17], the intralayer
AFM state is not considered in the calculation. For x = 1/4,

neither the SDFT calculation nor the local force approach
reproduces the experimental ferromagnetic ground states. One
possible reason is the contribution of the orbital magnetization
of the intercalated Fe atoms. While it is shown that interca-
lated Fe atoms have a finite orbital moment of about 33% of
the spin moment [54], the orbital moment is not taken into
account in the present calculation. Regarding the reason for
the disagreement between theory and experiment, we leave it
for future study.

C. Interpretation of the material dependence
of the exchange constant

As we have seen in Fig. 3, the energy scale of the inter-
layer and intralayer exchange constants are similar to each
other for x = 1/3 but very different for x = 1/4. This result

FIG. 3. Exchange constants evaluated by the local force method. Panels (a) and (c) are results for x = 1/3, and (b) and (d) are for x = 1/4.
Six vertical black dotted lines correspond to the Fermi level of V-, Cr-, Mn-, Fe-, Co-, and Ni-intercalated compounds, respectively.
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FIG. 4. Filling dependence of J0 for the single-orbital Hubbard
model on the Bethe lattice.

indicates that while the intercalated TMDs are crystallo-
graphically two-dimensional, they are magnetically isotropic
(three-dimensional) for x = 1/3 but anisotropic (quasi-one-
dimensional) for x = 1/4. In this subsection, let us discuss
whether the material dependence of the exchange constant for
intercalated TMDs can be understood in terms of a simple
single-orbital Hubbard model on the Bethe lattice. When the
Coulomb repulsion (the Hubbard U ) is absent, the system
has a semicircular DOS (see the inset of Fig. 4). We set the

FIG. 5. (a) DOS and PDOS of the 3d orbitals for Cr1/3NbS2.
Black dotted line is DOS and blue (red) line is the PDOS of the
3d orbitals with the majority (minority) spin. (b) Enlarged plot for
the PDOS of the 3d orbitals. Six vertical black dotted lines denote
the Fermi level of V-, Cr-, Mn-, Fe-, Co- and Ni-intercalated TMDs
determined by the rigid band approximation.
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FIG. 6. Spin polarization (difference between the filling of the
majority and minority spins) of the 3d orbitals in M1/3T X2.

bandwidth W = 2D and U = W . In Fig. 4, we show the filling
dependence of J0(= ∑

i �=0 J0i ) [56]. When the filling is closed
to 1 (half-filling), the super-exchange mechanism is dominant,
and thus J0 takes a negative value. On the other hand, when the
filling is very low or high, the double exchange mechanism
makes J0 positive. Namely, the system is FM for low and high
filling but AFM for half-filling. Interestingly, this behavior
can be seen for both the interlayer and intralayer exchange
constant for x = 1/3 [see Figs. 3(a) and 3(c)].

In Fig. 4, we also plot the spin polarization (i.e., the differ-
ence between the filling of the majority and minority spins)
as a function of the filling. We see that AFM interaction
is strongest when the spin polarization is the largest. It is
interesting to see whether this behavior can also be seen for
the exchange constants of M1/3T X2. As a typical case, let us
look into the case of Cr1/3NbS2. In Fig. 5, we show the total
DOS and partial DOS (PDOS) of the 3d orbitals. The vertical
black dotted lines in Fig. 5(b) denote the Fermi level (EF ) for
M = V, Cr, Mn, Fe, Co, and Ni from the left, respectively. We
see that when EF = 0 (i.e., the case of M = Cr), the minority
spin is almost empty. When EF is higher than that of Mn
(∼0.4eV), the majority spin starts to be occupied. Thus the
spin polarization takes its maximum between M = Mn and
Fe. To clarify this situation, in Fig. 6, we plot the spin polariza-
tion for M1/3NbS2 together with the results for other M1/3T X2.
From these plots, we expect that the AFM interaction becomes
strongest for M = Mn or Fe, and indeed, it is the case seen in
Figs. 3(a) and 3(c).

On the other hand, the filling dependence of the exchange
interaction for x = 1/4 is apparently different from that for
x = 1/3. This behavior can be explained in terms of the crys-
talline electric field (CEF) splitting. Here, it should be noted
that the electronic structure of the x = 1/4 systems is quite
anisotropic, and the amplitudes of the interlayer and intralayer
interactions are very different.

Suppose there are five orbitals in an isotropic system.
The five orbitals have the same energy level, and the system
is considered to be half-filled when there are five electrons
occupying each site. However, if the electronic structure is
anisotropic, where the five energy levels are split into two
high-energy states and three low-energy states, the system is
(effectively) half-filled when eight electrons occupy each site,
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TABLE IV. On-site energies (eV) of the Wannier functions for d
orbitals of CrxNbS2 measured from the Fermi energy.

x d3z2−x2 dzx dyz dxy dx2−y2

1/3 0.052 0.092 0.099 0.175 0.129
1/4 −0.138 0.003 0.013 0.129 0.125
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FIG. 7. U dependence of the energy differences between the
ferromagnetic (EFM) and antiferromagnetic (EAFM) states.

with the two high-energy states being half-filled. Thus, in gen-
eral, the antiferromagnetic interaction is not necessarily strong
for Mn or Fe in anisotropic systems. Although this argument
is for the limit of large CEF, it is helpful to understand the
filling dependence of Jinter for x = 1/4. In fact, CEF plays a
crucial role in determining the spin configuration when it is
comparable to Hund’s coupling [57]. In Table IV, we list the
on-site energies of the 3d orbitals in CrxNbS2 measured from
the Fermi energy for x = 1/3 and 1/4. We can see that the
energy splitting in the x = 1/4 systems is larger than that in
the x = 1/3 systems, which is a possible reason why Jinter does
not take its minimum at M = Mn or Fe. It should be noted
that the ferromagnetic interaction is strong in the limit of low
and high filling, which is a feature common to Fig. 3(a). On
the other hand, the filling dependence of Jintra [Fig. 3(b)] is
difficult to understand due to its small energy scale.

V. CONCLUSION

By means of first-principles calculations based on SDFT
and ab initio derivation of the classical spin model based
on the local force method, we systematically investigated
the material dependence of the magnetic interactions in 48
intercalated TMDs MxT X2, in which a variety of magnetic
structures is realized. For both x = 1/3 and x = 1/4, our cal-
culations overall succeeded in reproducing the experimental
results. We give a simple interpretation on the intercalated
guest-atom dependence in terms of the filling of the 3d or-
bitals. The present result will provide a useful guideline to
predict magnetic structures in compounds which have not
been synthesized.

FIG. 8. Band structures of M1/3NbS2. Each figure corresponds to the band structure of M = V, Cr, Mn, Fe, Co, and Ni from the upper left
to the lower right. SDFT+U was applied for M = Co and Ni cases. Black lines are the band structure of M1/3NbS2 and thickened red circles
are the weight of 3d orbitals.
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FIG. 9. Band structures of M1/4NbS2. Each figure corresponds to the band structure of M = V, Cr, Mn, Fe, Co, and Ni from the upper left
to the lower right. SDFT+U was applied for M = Co and Ni cases. Black lines are the band structure of M1/4NbS2 and thickened red circles
are the weight of 3d orbitals.
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APPENDIX A: EFFECT OF THE VALUE OF U
IN SDFT CALCULATION

In Sec. IV, we performed SDFT+U calculation when
SDFT did not find a ferromagnetic self-consistent solution.
While the value of U was fixed to be 3 eV in Sec. IV, here
we show the U dependence for the following compounds:
Fe1/4NbSe2, Co1/3NbS2, Co1/3TaS2, Ni1/3NbS2, Ni1/3TaS2,
and Ni1/4TaSe2, which we compared with the experimental
results in Table I. As was done in Sec. IV, we optimized the
atomic configuration and calculated the total energies of the
FM and AFM states for U=1,2,3,4, and 5 eV (see Fig. 7). We
can see that the energy relationship between the FM and AFM
states does not sensitively depend on the U value except for
Fe1/4NbSe2 and Co1/3NbS2. For Fe1/4NbSe2 and Co1/3NbS2,
as was shown for Fe1/3NbSe2 (Ref. [58]), the AFM state
observed in the experiment is stable for U smaller than ∼3 eV.

APPENDIX B: BAND STRUCTURES OF INTERCALATED
TMD AND THE VALIDITY OF THE RIGID BAND

APPROXIMATION

We show the band structures of the paramagnetic state of
MxNbS2 in Figs. 8 and 9, and the band structures for other

host TMDs hardly change. As we can see in Figs. 8 and 9, in
the energy window of ±2 eV, there are bands that originate
from the intercalated transition metal atoms. The dispersion is
very similar to each other, justifying the validity of the rigid
band approximation.

FIG. 10. Distance dependence of the exchange interactions in
Cr1/3T X2 and Cr1/4T X2. The horizontal axis is normalized by the
lattice constant along the a axis for each compound.
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FIG. 11. Exchange interactions in the reciprocal space J (q) for x = 1/3 systems.

APPENDIX C: EFFECT OF DISTANT EXCHANGE
INTERACTIONS

In Sec. IV, we employed the nearest-neighbor (NN) ap-
proximation to determine the stable magnetic structure. In
this Appendix, we discuss the effect of the distant exchange
interactions on the magnetic structure. In Fig. 10, we show
the distance dependence of the exchange interactions J (|R|)
for Cr1/3T X2 and Cr1/4T X2. The distance |R| between the site
i and j is normalized by the lattice constant along the a axis
for each compound. While only the NN exchange interaction
is dominant and the others are tiny in the x = 1/4 systems, the
second and third NN interactions have a comparable magni-
tude for the x = 1/3 systems. Let us now look into the effect
of these distant interactions on the stable magnetic structure.
Note that we used 8 × 8 × 8 k-point grid in the local force
method so that the exchange interactions in the real space J (R)
up to |R| = 4 are considered. In Fig. 10, we can confirm that
|J (R)| is sufficiently small and can be neglected for |R| > 3.
The exchange interactions in the reciprocal space J (q) are
calculated as

J (q) =
∑

R

J (R)e−iq·R. (C1)

In Fig. 11, we plot the exchange interactions J (q) of the
x = 1/3 compounds at the high symmetry points in the first
Brillouin zone measured from that at the 
 point J (q = 0).
When J (q)-J (0) takes a negative value for all q, the system
favors ferromagnetic states. We can see that while the ferro-
magnetic interaction at q = 0 is dominant for the high- and

low-filling compounds, the antiferromagnetic interactions are
stronger for the Fe- and Co-intercalated compounds. For M
= Fe and Co, it should be also noted that J (q) takes similar
values at different wave numbers, indicating that the spin con-
figuration is severely frustrated. These results are consistent
with the real-space analysis shown in Sec. IV B.

In Table V, we summarize the stable magnetic order de-
termined from the magnitudes of the exchange interactions in
the reciprocal space. By comparing the results with Table III,
we can see that the long-range exchange interactions have no
significant effects on the magnetic structure.

TABLE V. Stable magnetic structure in the classical spin model
in the reciprocal space obtained from the real space spin model
constructed by the local force method. Letters with an asterisk(*)
denote that the theoretical results are not consistent with the ex-
perimental results in Table I. F, AF stand for ferromagnetic and
antiferromagnetic structures, respectively, and F/AF means that the
stable magnetic structure is not determined because the maximum
exchange interaction of the wave vectors other than the 
 point is
very close to that of the 
 point.

V Cr Mn Fe Co Ni

NbS2 F/AF F * F/AF * AF AF F *
NbSe2 F/AF F F AF AF F
TaS2 F/AF F * F/AF AF * AF AF
TaSe2 F/AF F F AF AF F

184429-9



HATANAKA, NOMOTO, AND ARITA PHYSICAL REVIEW B 107, 184429 (2023)

APPENDIX D: EFFECT OF HIGHER-ORDER
EXCHANGE INTERACTION

We have performed spin model calculations by the
Landau-Lifshitz-Gilbert (LLG) equation, including higher-
order exchange interactions for some compounds. Primarily
we give attention to the difference between Fe1/3NbS2 and
Co1/3NbS2. Even though nearest-neighbor interactions are an-
tiferromagnetic in both compounds, the former is reported to
have the collinear AFM [38] in the ground state and the latter
to have the noncoplanar AFM [20]. These two AFM structures
degenerate as the ground state of the classical spin model with
only quadratic interactions on the hexagonal-close-packed lat-
tice. We considered the classical spin Hamiltonian with the
quadratic interactions in the main text. As the most natural
extension, we consider here the following Hamiltonian with
biquadratic exchange interaction terms,

Hs = −2
∑

〈i, j〉
Ji jsi · s j − 2

∑

〈i, j〉
Bi j (si · s j )

2, (D1)

where 〈i, j〉 means all combinations of i, j and we take into
account only the nearest-neighbor interactions again. Then we
simulated real-time and space dynamics of classical spins by
the LLG equation given below,

∂si

∂t
= −Beff

i × si − α

s

[
si × (

si × Beff
i

)]
,

Beff
i = −∂Hs

∂si
, (D2)

where α is the Gilbert damping constant.

FIG. 12. Examples of initial spin configurations used for spin
dynamics simulations by the LLG equation. 2 × 2 × 1 supercell of
the unit cell is considered.

We investigated the effects of the biquadratic term in the
spin Hamiltonian by changing the initial spin configurations
and the sign of the coefficients Bi j . As the initial spin config-
urations, the collinear AFM state and the noncoplanar AFM
state in Fig. 12 are included. In the simulations, we set α =
0.1, kBT = 0 meV, �t = 1h̄/meV, and the total time length
to be 1.5193 × 103h̄/meV. In addition, for simplicity, we
fix the nearest-neighbor Ji j as −1.0 meV for both interlayer
and intralayer directions and we also set the magnitude of
the biquadratic term |Bi j | to be the same as 0.1 meV for
both directions. According to the simulations, the collinear
AFM state was stabilized if B > 0; otherwise, a noncopla-
nar AFM state was stabilized. The results did not depend
on the magnitude of the biquadratic term. Therefore we can
conclude that the sign of the biquadratic term is crucial to
break the degeneracy of the collinear AFM and noncoplanar
AFM. First-principles derivation of higher-order interactions
[59,60], such as the biquadratic interaction, is left for future
work.
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