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Magnetic properties of hematite revealed by an ab initio parameterized spin model
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Hematite is a canted antiferromagnetic insulator, promising for applications in spintronics. Here we present
ab initio calculations of the tensorial exchange interactions of hematite and use them to understand its magnetic
properties by parametrizing a semiclassical Heisenberg spin model. Using atomistic spin dynamics simulations,
we calculate the equilibrium properties and phase transitions of hematite, most notably the Morin transition. The
computed isotropic and Dzyaloshinskii–Moriya interactions result in a Néel temperature and weak ferromagnetic
canting angle that are in good agreement with experimental measurements. Our simulations show how dipole-
dipole interactions act in a delicate balance with first and higher-order on-site anisotropies to determine the
material’s magnetic phase. Comparison with spin-Hall magnetoresistance measurements on a hematite single
crystal reveals deviations of the critical behavior at low temperatures. Based on a mean-field model, we argue
that these differences result from the quantum nature of the fluctuations that drive the phase transitions.
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I. INTRODUCTION

As a prototypical weak ferromagnet, the insulating iron
oxide hematite (α-Fe2O3), one of the main components of
rust and the most common iron ore, has interested physicists
for a long time. Despite its magnetic order being essentially
antiferromagnetic, it was shown by Morin [1] that a small
net magnetic moment emerges above a critical temperature
TM ≈ 250 K. An anisotropic magnetic interaction would later
explain this phase transition, the Dzyaloshinskii–Moriya in-
teraction (DMI) [2,3], which induces a small canting between
the magnetic sublattices. This canted antiferromagnetic state
is known as the weak ferromagnetic (WF) phase. In con-
temporary research on antiferromagnetic spintronics, hematite
has shown a remarkable propagation length of magnetic spin
currents [4,5], among many exciting properties [6].

The main purpose of this paper is to provide a microscopic
spin model for this important material. While earlier work
exists that estimates Heisenberg interaction parameters both
experimentally [7] and theoretically [8,9], our goal is both to
provide a full and detailed parametrization for an atomistic
spin model and to validate that model against measurements
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by simulating critical phenomena but also to shed light on the
microscopic origin of those phase transitions.

Our work begins by calculating tensorial Heisenberg inter-
actions for 170 neighbors (up to the 34th coordination sphere)
as well as the spin and orbital magnetic moment for each iron
atom in the unit cell ab initio. Dipole-dipole interactions can
then be computed from the crystal structure and the ab ini-
tio calculated magnetic moments. For the on-site anisotropy
parameters, the accuracy of the ab initio calculations has
proved insufficient. We solve this issue by fitting our model
to angle-dependent measurements of the spin-flop fields
instead.

The remainder of this paper is structured as follows: After
introducing the crystal structure and magnetic properties of
hematite, we begin by outlining the experimental methodol-
ogy of our spin-Hall magnetoresistance (SMR) measurements
in Sec. II. Section III then describes the ab initio calculations
and their results. In Sec. IV, we apply these results in atom-
istic spin dynamics simulations to discuss the equilibrium
properties of hematite and the origins of its phase transitions.
We then compare these results to measurements. Finally, in
Sec. V, we discuss how the quantum nature of the thermal
fluctuations leads to a critical behavior in the low-temperature
regime that is measurably different from a conventional clas-
sical prediction.

Hematite (α-Fe2O3) crystallizes in the corundum structure
(space group No. 167, R3̄c), which belongs to the hexago-
nal crystal family. Figure 1(a) visualizes the structure within
the hexagonal unit cell, whose c axis is the crystal’s highest
symmetry axis. It also shows the primitive rhombohedral
unit cell, whose diagonal lies along this symmetry axis. The
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Fe2 :O3::(a) (b)

FIG. 1. (a) The crystal structure of hematite with the conven-
tional hexagonal (gray) and the primitive rhombohedral (yellow) unit
cell. The primitive basis consists of four iron atoms (blue) and six
oxygen atoms (red). (b) Orientation of the spin vectors in the AFM
(left) and WF (right) state. The four Fe sublattices in the primitive
rhombohedral unit cell are labeled by A, B, C, and D.

oxygen atoms mediate the exchange interaction between the
iron atoms but do not carry permanent magnetic moments
themselves. Therefore, we do not treat them explicitly in the
spin model. The magnetic iron atoms are lined up along the c
axis and form four magnetic sublattices (labeled A–D). In the
antiferromagnetic (AFM) ground state, illustrated in Fig. 1(b),
the spins of all four Fe atoms are aligned collinearly along
the c axis, with A and D being antiparallel to B and C. The
resulting magnetic structure can be described as double layers
of ferromagnetic alignment parallel to the c plane, stacked
antiferromagnetically along the c direction. In the WF phase,
the magnetic moments reorient into the basal plane and the
DMI induces a small canting between the antiparallel sublat-
tices. The resulting weak magnetization lies in the basal plane
too, unless an external magnetic field with an out-of-plane
component is applied.

II. MEASUREMENTS

The SMR technique can probe the magnetic state of bi-
layer systems consisting of hematite (antiferromagnet) and
platinum (heavy metal). The spin-flop field is detectable using
this method as a first-order transition [10]. The single crystal
of hematite was obtained commercially with an R-cut orien-
tation (i.e., a 33 ◦ tilting between the crystallographic c axis
and the surface plane). The used Hall bars were patterned
perpendicular to the projection of the Néel vector using elec-
tron beam lithography. A subsequent deposition and lift-off
of 7 nm platinum were followed by a contacting procedure
using a bilayer of chromium (6 nm) and gold (32 nm). The
sample was coupled to a piezo-rotating element in a cryostat
with a superconducting magnet capable of variable fields up
to 17 T and cooled with liquid helium. The temperature sta-
bility during the measurements reached maximum variations
of ±0.05 K measured with a Cernox sensor element, and
the SMR magnitude is in the previously reported order of
10−4 [11].

III. AB INITIO CALCULATIONS

A. Self-consistent calculations

We performed first-principles calculations for hematite
in terms of the screened Korringa–Kohn–Rostoker (SKKR)
multiple scattering theory [12] in the atomic-sphere approxi-
mation (ASA). The bulk crystal structure is assembled using
the conventional hexagonal unit cell; see Fig. 1(a). The hexag-
onal lattice parameters a = 5.067 Å and c = 13.882 Å were
chosen to match the structure optimized by Rohrbach et al.
[13] using a generalized gradient approximation (GGA + U ).
According to the suggestion of Sandratskii et al. [14], to
achieve sufficient space filling within the ASA, we added
“empty” atomic spheres (ESs) between the Fe atoms labeled
by B and C, as well as between A and D. The hexagonal unit
cell in our calculations contained thus 36 atomic spheres (12
Fe, 6 ESs, and 18 O).

We carried out self-consistent field (SCF) calculations for
the ordered AFM state of hematite with the magnetic orienta-
tion pointing along the c axis, as well as for the paramagnetic
state by employing the disordered local moment (DLM) the-
ory [15,16]. We then used the spin-cluster expansion (SCE)
to extract spin model parameters from the DLM state by
mapping the adiabatic energy surface of the fluctuating state
onto a Heisenberg model [17,18]. This method has been used
successfully to describe AFM-FM interfaces such as exchange
bias systems [18,19], as well as bulk noncollinear antiferro-
magnets [20,21].

For the partial waves within the multiple scattering theory,
we used an angular momentum cutoff of �max = 2. The ef-
fective potentials and fields were constructed within the GGA
as parameterized according to Perdew, Burke, and Ernzerhof
[22]. To account for the strong Coulomb repulsion of the Fe
d electrons, we employed the Hartree–Fock approximation
(GGA + U ) with the parameters U = 6 eV and J = 2 eV. The
value U − J = 4 eV is commonly accepted in the literature
[8,13,23,24]. With this choice, we obtained a band gap of
2.29 eV in excellent agreement with experimental values of
2.14 eV to 2.2 eV [25]. The necessary energy integrations
were performed by sampling 16 points along a semicircular
contour in the upper complex semiplane. For reciprocal space
summation, we use a k grid built up as the Cartesian product
of a triangular 2D grid in the kx-ky plane and a uniform 1D
grid along the kz axis. During the self-consistent iterations at
every energy point, we used 9450 k points (21 kz values and
450 points in the kx-ky plane) in the hexagonal Brillouin zone,
whereas for the calculations of the spin model parameters and
the magnetic anisotropy, we gradually increased the number
of k points up to about 440000 (60 kz values and 7320 points
in the kx-ky plane) near the Fermi energy.

In our self-consistent calculations, the Fermi energy EF was
underestimated by about 0.5 eV compared to the bottom of
the insulating gap. This is a well-known shortcoming of KKR
Green’s function calculations due to the insufficient angular
momentum convergence in the evaluation of the charge
density. Unfortunately, using an angular momentum cutoff
higher than �max = 2 was not possible, as the combination of a
fully relativistic description and the very large unit cell led to
a memory demand we could not increase further in our SKKR
code. To tackle this problem, Zeller proposed a procedure
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TABLE I. Spin (mspin) and orbital (morb) magnetic moments of
the Fe and O atoms from the SKKR GGA + U calculations in the
AFM and DLM state using the SCF and the shifted Fermi level (see
text). The results of earlier ab initio calculations are also shown for
comparison. The value shared between an Fe and an O column refer
to the spin magnetic moment per Fe atom for the given method.
Experimental values refer to the total magnetic moment per Fe atom.
All values are given in μB.

mO
spin mFe

orb mO
orb

Source mFe
spin (×10−3) (×10−2) (×10−3)

AFM (E scf
F ) 4.04 7.08 0.49 0.31

AFM (E sh
F ) 4.17 0.41 1.13 0.40

DLM (E scf
F ) 4.07 0.00 0.39 0.00

DLM (E sh
F ) 4.23 0.00 1.06 0.00

AFM LSDA [14] 3.69 3
AFM LSDA + U [8] 4.1
AFM GGA + U [9] 4.09 0

Experiment [27,28] 4.6 − 4.9
Experiment [29] 4.22

to rescale the energy-dependent contributions of the charge
density by validating the total charge using Lloyd’s formula
[26]. However, for similar reasons as above, this approach is
computationally not feasible for our SKKR implementation.
As a consequence, our self-consistent KKR Green’s function
calculations resulted in a metallic ground state for hematite.

To mimic the insulating state of hematite, we simply
shifted EF to the bottom of the band gap by keeping the self-
consistently calculated effective potentials and fields fixed.
The validity of this choice of EF is also supported by the fact
that the spin model obtained using the self-consistent Fermi
level (E scf

F ) turned out to have a ferromagnetic ground state,
whereas the spin model derived by using the shifted Fermi
level (E sh

F ) provided the correct AFM ground state as sketched
in Fig. 1(b).

B. Atomic magnetic moments

The spin and orbital moments we obtained in terms of the
SKKR GGA + U method are shown in the first four rows of
Table I. Clearly, there is only a minor difference in the Fe
spin moments between the ordered AFM and the DLM states,
which may be attributed to the nearly occupied majority spin
band of Fe in both cases. The rows labeled by E scf

F and E sh
F cor-

respond to calculations with the self-consistently calculated
Fermi energy and to those where the Fermi level was shifted
to the bottom of the gap, respectively, as explained above.
The Fe spin moments calculated with E scf

F are in agreement
with earlier LSDA + U , or GGA + U calculations [8,9]. They
are further increased by about 0.15 μB when shifting the
Fermi level to the band bottom, bringing the result closer to
the experimental values [27–29]. The underestimation of the
magnetic moments seen in experiments is a common feature
of existing theoretical works in the literature. But compared
to more recent measurements by Hill et al. [29], our magnetic
moment seems to be in excellent agreement with experiments.

(deg)

FIG. 2. Energy as a function of weak ferromagnetic distortion
angle κ as obtained from magnetic force theorem calculations. Inset:
Magnetization vectors m1 and m2 of the magnetic double layers, net
magnetization m, and Néel vector n. The canting angle with respect
to the collinear configuration is denoted by κ .

Regarding orbital moments, we find that they are at least two
orders of magnitude smaller than spin moments.

Even with the SCF value of the Fermi level, our calculated
spin moments come considerably closer to measured values
than in early LSDA calculations [14], demonstrating the need
for incorporating electron correlations to describe the mag-
netism of hematite correctly.

C. Ground state and weak ferromagnetism

By fixing the SCF effective potentials and fields in the
AFM configuration with magnetization parallel to the c axis,
in the spirit of the magnetic force theorem [30,31], we cal-
culated the band energy by changing the angle ϑ of the
magnetization relative to the c axis,

Eband(ϑ ) =
∫ E sh

F

εbott

dε
(
ε − E sh

F

)
n(ε, ϑ ), (1)

where n(ε, ϑ ) is the density of states and εbott is chosen
below the bottom of the valence band. According to the
trigonal symmetry of the lattice, our calculations showed an
angle dependence Eband(ϑ ) = −d2 cos2(ϑ ) with high accu-
racy. We obtained a value for the uniaxial magnetocrystalline
anisotropy (MCA) energy of d2 = Eband(90◦) − Eband(0◦) =
40.49 µeV per Fe atom favoring a magnetization parallel to
the c axis. Thus, our calculations of the MCA predict an out-
of-plane AFM order as the ground state of hematite, matching
experimental findings.

Orienting the Fe moments in the plane allows us to further
decrease the energy of the AFM configuration by canting the
moments of the two Fe AFM sublattices into the perpendicular
in-plane direction, forming a WF state. By varying the canting
angle κ (cf. Fig. 2) we indeed obtain an energy minimum
at κ = 0.031 ◦ (or 0.54 mrad), in excellent agreement with
earlier theoretical findings [8,32]. The energy difference be-
tween the canted WF state and the collinear AFM state is only
74.7 neV per Fe atom, about three orders of magnitude smaller
than the uniaxial anisotropy. These energy scales underpin the
picture that the Morin transition is primarily a reorientation
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transition from the out-of-plane AFM order to an in-plane
orientation driven by the different temperature dependence of
various contributions to the anisotropy, and once the system is
in the in-plane state, the canting is induced by the DMI.

D. Exchange tensors

The SCE based on the relativistic DLM scheme [18] pro-
vides us with a bilinear tensorial Heisenberg model of the
form

H = −1

2

∑
i �= j

ST
i Ji jS j −

∑
i

ST
i KiSi , (2)

where Ji j is the exchange interaction tensor and Ki is the
on-site anisotropy matrix. The interaction term can be de-
composed into three parts according to the spherical tensor
components of Ji j , namely,

Ji j = J iso
i j I3 + J A

i j + J S
i j

= I3
1
3 trJi j + 1

2

(
Ji j − J T

i j

)
+ 1

2

(
Ji j + J T

i j − 2
3I3trJi j

)
, (3)

where the first term is the isotropic part with the identity
matrix I3, the second term is the antisymmetric part, and
the last term is the traceless symmetric part of the exchange
tensor. These terms correspond to the isotropic Heisenberg
interaction, the DMI [2,3], and the two-ion anisotropy, re-
spectively. In particular, the DM vectors can be defined as the
vector invariant of the exchange tensors,

Di j = (
JA

i j,zy, JA
i j,xz, JA

i j,yx

)
, (4)

corresponding to the energy term Di j · (Si × S j ). In line with
the uniaxial MCA energy, d2, the site-dependent uniaxial two-
ion anisotropy energy can be defined as

�Etia,i j = −σi j (Ji j,zz − Ji j,xx ) , (5)

where σi j denotes the sign resulting from the relative ori-
entation of the interaction partners (+1 for parallel, −1 for
antiparallel spins).

There are certain symmetry constraints that the exchange
tensors should fulfill: they should be invariant under symme-
try operations from the crystal’s space group and the DMI
component should satisfy Moriya’s five symmetry rules [3].
Reassuringly, the results from our ab initio calculations pos-
sess all these symmetries but there are tiny inaccuracies in
the neV order. These deviations, albeit small, can lead to
artifacts in the later spin dynamics simulations, such as lifting
the degeneracy between symmetrically equivalent states or a
ground state that is ever so slightly tilted to the crystal axis (by
0.37 ◦). To avoid these issues, we symmetrized the exchange
tensors by enforcing Moriya’s symmetry rules and taking the
mean of all symmetric equivalents for each interaction pair.

The spatial distribution of the Fe-Fe interactions is shown
in Fig. 3. The isotropic couplings are about a hundred times
larger than the magnitudes of the DM vectors, and the two-ion
anisotropy is another order of magnitude smaller. Among the
abundance of isotropic exchange interactions the dominant
ones are the third- and fourth-nearest-neighbor shells, which
provide strong AFM couplings between Fe atoms on opposite
magnetic sublattices, robustly preferring the AFM order seen
in experiments. A mean-field estimate based on the Fourier

FIG. 3. Ab initio calculated interaction energy per atom, split into
(a) the isotropic exchange energy, (b) the out-of-plane component
of the DM vector, and (c) the two-ion anisotropy expressed as the
energy difference between out-of-plane and in-plane alignment of the
magnetic moments. The dashed vertical line marks the cutoff radius
of 6.8 Å used for the spin dynamics simulations.

transform of the exchange tensors predicts the same AFM
order with a mean-field Néel temperature of 1259 K.

The first five isotropic couplings are also collected in Ta-
ble II for comparison with earlier theoretical results. We find a
comparatively similar spatial dependence as Logemann et al.
[9], but the values of the dominant J3 and J4 interactions are
almost twice as large as what they found. This is also reflected
in the mean-field Néel temperature of 878 K in Ref. [9],
which is even lower than the experimental value. In contrast,
our dominant interactions are very similar to those found by
Mazurenko and Anisimov [8], however, the interactions for
the first two shells are less than half of theirs (and both AFM)
in our calculations.

The three-dimensional configuration of the DM vectors is
rendered in Fig. 4. The dominant contributions come from
the third and fourth shells surrounding the central atom, with
three and six sites on the shells, respectively. The threefold
rotational symmetry of the crystal is nicely reflected in the
DM vector configuration, implying that the effective DM
interaction only arises through the z component of the vectors.
Since the DM interaction prefers canting of the corresponding

TABLE II. Calculated isotropic exchange interactions for the five
nearest atomic shells, in meV units. The interactions are listed in the
same order (in increasing order of interatomic distance) as in Table I
of Ref. [8].

Sublattices This paper Ref. [9] Ref. [8]

J1 A–B −3.21 −3.5 −8.58
J2 A–D −3.84 −3.2 7.3
J3 A–B −26.10 −13.9 −25.22
J4 A–C −15.71 −9.8 −17.5
J5 A–D −0.17 0.07
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(a)

(b)

(c)

–

–

–

FIG. 4. Orientation of the ab initio computed Dzyaloshinskii–
Moriya vectors. Shown are all neighbors belonging to the first four
shells, relative to an atom of sublattice A (shown in black at the
center). The DMI between atoms belonging to sublattices A and D
is zero because there are inversion centers between the interaction
partners. Depicted are orthographic projections from the (a) [001]
and (b) [100] directions as well as a perspective projection (c).

spins in a plane perpendicular to the axis of the DM vector,
this also explains why the WF distortion only appears in an
in-plane state. We also note that there is an inversion center
between atoms B and C, as well as between A and D, in
the rhombohedral unit cell (cf. Fig. 1), implying that the DM
interaction between atoms B − C and atoms A − D in the unit
cell is exactly zero.

E. Magnetocrystalline anisotropy

As for the anisotropies, C3 symmetry restricts the second-
order on-site anisotropy to a uniaxial form, and further
considering space-group symmetries connecting the four Fe
sites in the rhombohedral cell, we only have

−
∑

i

ST
i KiSi = −d2

∑
i

S2
i,z. (6)

The total uniaxial two-site anisotropy is given by

�Etia =
∑
j( �=i)

�Etia,i j , (7)

and is the same for all sublattices.
From the SCE calculations, we obtain d2 = −2.24 µeV and

�Etia = −11.20 µeV normalized to one Fe atom. The sum of
the second-order anisotropy arising from the on-site and two-
ion contributions of the ab initio spin model is −13.44 µeV,
i.e., it favors an in-plane orientation for the ground state
magnetization. This contrasts with our magnetic force the-
orem calculations performed in the ordered AFM state (cf.
Sec. III C), which predicts an easy c axis anisotropy for the
ground state in agreement with the experiments.

This disagreement leads us to conclude that the SCE cal-
culations lack the necessary accuracy on the energy scale of
10 µeV relevant for the MCA. Furthermore, we know that the
description of the transversal spin-flop transition as a first-

order phase transition requires the presence of a fourth-order
anisotropy term in the Hamiltonian [33], but in our ab initio
force theorem calculations, this term has a completely negli-
gible magnitude.

Instead, we find the following approach more promising.
We parametrize the spin model with the tensorial interac-
tions as calculated within the SCE, since they provide a Néel
temperature and WF canting angle in good agreement with
experiments, as we shall see in the following (the energy
scales are also much larger here, in the meV range). The
on-site anisotropy parameters d2 and d4 will be treated as
adjustable parameters determined by comparison with exper-
imental measurements of the spin-flop transition. The dipolar
interactions are calculated from the ab initio lattice structure
and atomic magnetic moments.

IV. SPIN DYNAMICS SIMULATIONS

Our atomistic spin dynamics simulations are based on an
extended Heisenberg model of the form

H = − 1

2

∑
i �= j

ST
i Ji jS j − d2

∑
i

S2
i,z

− d4

∑
i

S4
i,z − μsB ·

∑
i

Si. (8)

Here, the Ji j are exchange tensors that contain the isotropic
exchange, DMI, and two-ion anisotropy from the SKKR cal-
culations (cf. Sec. III D) as well as dipole-dipole interactions
(see the following Sec. IV A). The next two terms model the
second- and fourth-order on-site anisotropies as discussed in
the previous section. The last term is the Zeeman energy from
the external magnetic field B and uses a magnetic moment per
iron atom of μs = 4.2313 μB, which is the sum of the spin
and orbital moments computed from the DLM state with the
shifted Fermi level (see Table I).

The spin dynamics are then simulated by integrating the
stochastic Landau–Lifshitz–Gilbert equation [34–37] with a
damping parameter of α = 0.001. This value is larger than
what is usually assumed for hematite [10], but it leads to a
faster relaxation toward equilibrium, and so long as we are
only concerned with equilibrium states, the choice of α does
not affect the results.

A. Dipole-dipole interaction

The energy contribution from dipole-dipole interactions
between the atomic magnetic moments has the form

Hddi = −μ2
s μ0

8π

∑
i �= j

3(Si · ri j )(ri j · S j )

|ri j |5 − Si · S j

|ri j |3 , (9)

where ri j is the distance vector between two lattice sites i
and j, and μ0 is the vacuum permeability. The effect of this
interaction is an energy difference, i.e., an effective two-site
anisotropy, between the out-of-plane and in-plane orientation
of the magnetic moments. Figure 5 shows the energy differ-
ence between the in-plane and the out-of-plane orientation
of the Néel and magnetization vectors as a function of the
cutoff radius. The sum of all interactions within a sphere of
1 µm radius amounts to �Edd = −101.15 µeV and −4.17 µeV
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FIG. 5. Effective anisotropy due to dipole-dipole interactions.
Shown is the energy difference per spin between the in-plane and
out-of-plane state for both antiferromagnetic and ferromagnetic
alignment of the sublattices, in dependence of the interaction range
|ri j |. The total bulk values given in the graph have been calculated
from the cumulative dipole-dipole energies up to a distance of 1 µm.
The negative sign of both values indicates that the dipole-dipole
interaction favors the in-plane orientation of both the Néel vector
and the magnetization. The dashed vertical line marks the cutoff
radius of 6.2 Å used for the spin dynamics simulations. The shaded
areas indicate the uncertainty interval resulting from a 1 % relative
uncertainty of the lattice parameters and a 10 % relative uncertainty
of the atomic magnetic moment.

for the AFM and FM states, respectively. These rather large
values are the result of the magnetic structure of hematite
consisting of double layers of ferromagnetic alignment. In
each of these layers, the magnetic moments can minimize
their energy by assuming a nose-to-tail rather than a broadside
configuration. Hence, the dipole-dipole interaction leads to a
preference for the in-plane state.

The effective anisotropy we calculated from the dipolar
interactions is about 30 % smaller than an earlier calculation
by Artman et al. [38]. Most of this deviation comes from the
assumed magnetic moment per Fe atom, which in our case is
10 % smaller than for Artman et al. Their calculations were
also based on a different set of lattice parameters [39] with
lattice constants that are slightly smaller (by less than 1 %).
To illustrate the dependence of the dipole-dipole anisotropy
with respect to these parameters, we also plotted in Fig. 5 the
range of �Edd for relative deviations in the magnetic moments
and in the lattice parameters amounting to 10 % and 1 %,
respectively.

For the spin dynamics simulations, dipole-dipole inter-
actions were taken into account up to a range of 6.2 Å to
reduce the computational effort. The resulting deviation from
the total dipole-dipole energy is below 8 %. This deviation
is acceptable when compared to the uncertainty of both the
dipole-dipole energies and the two-site anisotropy that results
from the anisotropic part of the SCE exchange tensors.

B. Anisotropy

We have seen that the two-ion anisotropies (dipole-dipole
interaction and symmetric anisotropic exchange) energetically
favor an in-plane alignment of the magnetic moments. These
must be compensated by larger, positive on-site anisotropies

FIG. 6. Contributions to the internal energy difference between
the WF and AFM state (without external fields). Both the dipole-
dipole interaction ddd and the two-ion anisotropy dtia favor an
in-plane orientation of the magnetic moments while the second- and
fourth-order on-site anisotropies lead to a preference of the out-of-
plane state in total. The isotropic exchange and DMI energy are also
affected by the transition from the AFM to the WF state but their
effect is much smaller than that of the anisotropy terms.

in the ground state, which has the magnetic moments aligned
out of plane. As discussed in Sec. III E, we have the second-
and fourth-order anisotropy energies, d2 and d4, left as free
parameters. There is also a sixth-order triaxial basal plane
anisotropy [40,41], which we neglect because it is very small
(around 1 neV) and it does not qualitatively alter any of the
phase transitions.

To determine d2 and d4, we look at SMR measurements of
the spin-flop transition. The spin-flop field Bsf depends both
on the angle ϑ between the applied magnetic field and the
crystal’s c axis and on the temperature T , becoming zero at
the Morin temperature TM.

By minimizing the Hamiltonian as defined in Eq. (8),
one finds that the longitudinal spin-flop field (ϑ = 0 ◦)
depends mostly on the sum of the anisotropy energies,
d2 + d4, while the transversal spin-flop field (ϑ = 90 ◦)
is very susceptible to the contribution of d4. Therefore,
angle-dependent spin-flop measurements are ideally suited to
determine these parameters.

Our approach is hence to first adjust our model’s anisotropy
parameters to angle-dependent measurements of the spin-
flop field Bsf(ϑ ) at temperatures closely below the Morin
temperature TM. Details on how the spin-flop transition is
simulated can be found in Appendix A. Having fixed the free
parameters, we can then evaluate the model’s critical behavior
across the whole temperature range (0, TM) and compare it to
temperature-dependent measurements of Bsf(T ).

The parameters we found are d2 = 112.8 µeV and d4 =
1.1 µeV. In Fig. 6, we compare these values to the other terms
in the Hamiltonian. In total, the energy difference between the
AFM and WF state for T = 0, B = 0 is only 9 µeV, which
is the sum of several competing terms, by far the largest of
which are the second-order on-site anisotropy and the dipole-
dipole interaction. The competition between these two is what
determines the equilibrium state of the material. The different
temperature dependence of the free energy associated with
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FIG. 7. Magnetization curve of the hematite spin model. The plot
shows data from two simulations: heating up from the ground state
(solid triangles pointing right) and cooling down from the paramag-
netic state (white triangles pointing left). The Néel vector length |n|
displays the Néel transition at TN = 989 K. The in-plane component
|n⊥| and the out-of-plane component |nz| of the Néel vector reveal
the Morin transition at a temperature of TM = 240(12) K.

each term leads to the Morin transition. The dipole-dipole
energy is the only contribution that has the same order of
magnitude as the second-order on-site anisotropy. Without it,
the system would not exhibit a Morin transition.

Compared to earlier estimates based on antiferromagnetic
resonance measurements [42], our fourth-order anisotropy
energy is about 25 % smaller, while the total second-order
anisotropy (the sum of the quadratic and bilinear terms) is
about 50 % larger. Our total anisotropy energy is hence ap-
proximately 30 % lower. We cannot expect better agreement
with those earlier estimates, since they are based on effec-
tive parameters derived from the comparison of experimental
results with mean-field models, e.g., the calculation used by
Morrison et al. is based on an effective exchange field that is
35 % lower than our ab initio result. While the resulting Néel
temperature seems close to the expected value in the mean-
field approximation, it would lead to an underestimation by a
third with our atomistic spin dynamics simulations. This un-
derlines the advantages of an ab initio approach, which greatly
reduces the number of free parameters in the model and hence
improves the estimation of the remaining parameter values.

C. Néel transition

To study the temperature-dependent phase transitions in
our model, the system is initialized in the ground state at
T = 0 K and then heated in steps of 23.2 K. In another simu-
lation, the system is initialized in a paramagnetic state above
the Néel temperature and then cooled down to 0 K. At each
temperature step, the system is given 50 ps to equilibrate and,
when equilibrium is reached, the relevant order parameters are
averaged over another 50 ps. The results are given in Fig. 7.

The norm of the Néel vector, |n|, shows a clear Néel
transition (from the WF to the paramagnetic state), at a
temperature of TN = 989 K. This is in good agreement with
literature values that range from 950 K to 970 K [33]. As the
Néel temperature is mainly determined by the total isotropic
exchange interaction in the system (other contributions, like

the anisotropy constant, are several orders of magnitude lower
and therefore negligible), we can be confident that this part of
the ab initio calculation is indeed reasonably accurate.

D. Weak ferromagnetic canting angle

While the Néel temperature is a good indicator for the
correctness of the isotropic part of the exchange interaction,
the antisymmetric part, i.e., the DMI, is reflected in the WF
canting angle κ . Based on the ab initio calculated isotropic
exchange and DM energies, we can calculate the canting angle
within our spin model to be

κ = 1

2
arctan

(
Deff

Jeff

)
. (10)

Here, the effective DM energy Deff is defined as the sum of the
xy components of all exchange tensors with respect to a given
lattice site and the effective isotropic exchange energy Jeff is
the sum of the xx components of all exchange tensors between
lattice sites of opposite spin alignment. Therefore, the normal-
ized magnetization in the WF state (without external field) is
given by

m = sin(κ ) = ±

√√√√√1

2

⎛
⎝1 −

√
J2

eff

J2
eff + D2

eff

⎞
⎠. (11)

The value produced by the spin model (κ = 0.038 ◦) is
slightly larger than the ab initio result (κ = 0.031 ◦). It is in
good agreement with earlier theoretical findings [8,32]. Ex-
perimental measurements, however, have previously reported
somewhat larger values (κ = 0.0554(8) ◦ [29]).

This shows that the ab initio calculated DMI values are
also, at least in total, quantitatively accurate, since, as Eq. (10)
shows, the canting angle in the WF phase is entirely de-
termined by the ratio of the DM energy and the isotropic
exchange energy.

E. Morin transition

To determine the Morin transition, we can look at a number
of different order parameters. In theory, the magnetization m
should be zero in the AFM phase and assume a finite value in
the WF phase. However, we can calculate from Eq. (11) that
the resulting weak magnetization in the absence of external
magnetic fields is only 0.000669 (normalized to the saturation
value), or 0.00283μB per iron atom, and therefore too small to
be visible in the simulation data without averaging over overly
large systems or long simulation times.

Instead, we focus on the magnitude of the in-plane and out-
of-plane components of the Néel vector (nz and n⊥). Since
the Morin transition is connected with a reorientation of spins
from the c axis into the basal plane, the transition should be
clearly visible in these two parameters. As shown in Fig. 7, we
observe the Morin transition at TM = 240(12) K, just slightly
lower than the experimentally found value of 255 K [10].

F. Spin-flop transition

Figure 8 shows measurements of the angle-dependent spin-
flop field Bsf(ϑ ) both at low temperatures close to zero and at
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(deg)

FIG. 8. Spin-flop field Bsf in dependence of the angle ϑ between
the magnetic field and the crystal’s symmetry axis. Shown are exper-
imental measurements at various low temperatures and at 200 K as
well as simulation results at 200 K. The experimental data at 200 K
were taken from earlier measurements published in Ref. [10]. For
the simulation data, the darker points represent the original data and
the lighter points are copies of those data points based on symmetry
considerations.

200 K. We expect that the spin-flop fields are largest at low
temperatures and then decrease toward TM. And, indeed, the
measured low-temperature spin-flop fields are clearly higher
than at 200 K, but only by a small amount. This indicates that
the spin-flop fields remain largely constant over this tempera-
ture range and only drop off close to TM, a behavior that has
been observed before [10].

Simulation results for Bsf(ϑ ) at 200 K are also shown in
Fig. 8 for comparison. These results are generally in good
agreement, although they slightly overestimate the transition
field.

Simulation results for temperatures close to zero are not
shown in Fig. 8, because here the critical fields range approx-
imately from 15 T to 95 T. So while the theoretical model
agrees well with experimentally measured spin-flop fields at
higher temperatures, it overestimates the spin-flop field at low
temperatures roughly by a factor of two in the longitudinal
case (ϑ = 0 ◦), and even more for transversal fields.

V. QUANTUM EFFECTS

To understand the reason for the large discrepancy of the
critical fields at low temperatures, we look at measurements
of the longitudinal spin-flop field as a function of tempera-
ture, which is shown in Fig. 9. As the temperature in the
experiment is decreased below the Morin temperature, the
critical field rises at first but then reaches a plateau below
approximately 150 K. This behavior cannot be reproduced by
the classical spin model, in which the critical field first rises
in line with experiments at temperatures close to TM but then
continues to increase linearly and hence overestimates the
spin-flop field at T = 0.

To ascertain the influence of quantum effects on the tem-
perature dependence of the spin-flop field, we compute the
spin-flop field within a mean-field approximation using both
a classical model and a quantum model with spin quantum

FIG. 9. Comparison of the temperature-dependent spin-flop
fields measured and simulated at ϑ = 0 ◦ with the rescaled theoret-
ical predictions from a classical (cl.) and quantum (qm.) mean-field
model. The experimental data were taken from earlier measurements
published in Ref. [10].

number S = 2 (for details, see Appendix B). The mean-field
models do not provide quantitative accuracy but they offer a
good qualitative picture of the expected shape of the curve.
For a direct comparison with our data, we therefore rescale
the resulting mean-field curves to match the respective Morin
temperatures and spin-flop fields, see Fig. 9. That way it
becomes apparent that only the quantum-model curve can be
brought into agreement with experimental data for lower tem-
peratures. On the other hand, the classical mean-field curve
follows the simulation’s behavior. Above 150 K, the classical
model is in reasonable agreement with the experiment.

VI. CONCLUSIONS

We have presented ab initio calculations of the ex-
change interactions in hematite and how they can be used
to parametrize an atomistic spin model that correctly repro-
duces this complex material’s magnetic phases and phase
transitions. In addition to isotropic exchange and DMIs, our
simulations incorporate the competing effects of second- and
fourth-order on-site anisotropies as well as relativistic and
dipolar two-ion anisotropies.

We have validated our model through comparisons with
experimental measurements on a hematite single crystal. Once
the anisotropy constants are fitted to the material, we find good
quantitative agreement of the Néel and Morin temperatures
as well as the WF canting angle predicted by our model and
measured in experiments.

At low temperatures, deviations between the classical
model and experimental results are expected and can be ob-
served. Through mean-field approximations, we demonstrate
the qualitative differences between a classical and quantum
model. At low temperatures, only the quantum nature of the
thermal fluctuations can explain the temperature dependence
of the spin-flop field satisfactorily. This allows us to delineate
the temperature range in which a classical model is applicable
and elucidate the deviations arising from quantum effects.
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APPENDIX A: SIMULATION OF SPIN-FLOP FIELDS

To determine the spin-flop field Bsf(ϑ, T ) in a simulation,
the system is first initialized in its ground state at the tem-
perature T . Then a magnetic field is applied at an angle ϑ to
the c axis. The magnitude of the field is steadily increased
up to a certain maximum field strength (chosen to be above
the highest expected Bsf) and then decreased again until it
reaches zero. Figure 10 shows two example simulations. It

FIG. 10. Simulations of the spin-flop transition at T = 200 K at
a magnetic field angle of (a) ϑ = 0 ◦ and (b) ϑ = 90 ◦. Plotted are the
squared in-plane (ip) and out-of-plane (oop) components of the Néel
vector. The black lines mark the determined spin-flop field Bsf.

is important to look at both increasing and decreasing fields
because a hysteretic behavior can be observed in many cases
[see, e.g., Fig. 10(a)]. We then take the value of Bsf as the mean
between the values determined for increasing and decreasing
magnetic field. The uncertainty is calculated as the empirical
standard deviation of the two values.

APPENDIX B: MEAN-FIELD CALCULATIONS

We consider the Hamiltonian

H = −1

2

∑
i �= j,r,s

SirJ rs
i j S js −

∑
i,r

Kr
i (Sir ) −

∑
i,r

μrBSir ,

(B1)

where i, j and r, s denote site and sublattice indices, respec-
tively. J rs

i j is the exchange tensor between the spins, Kr
i is

the on-site anisotropy function containing second-order and
fourth-order terms, while B is the external field coupling to the
spin through the magnetic moment μr . Sir is a unit vector in
the classical case and the spin operator with quantum number
S in the quantum case, where μr = gμB is set with g the
gyromagnetic factor and μB the Bohr magneton.

In mean-field theory, the expectation values 〈Sir〉 = 〈Sr〉
are introduced, which are assumed to depend on the sublattice
but not the site. The spin operators are replaced by Sir =
〈Sr〉 + �Sir , and the Hamiltonian is approximated such that
all terms containing products of the spin fluctuations �Sir at
different sites are neglected. This results in

HMF = 1

2

∑
r,s

〈Sr〉
∑
i �= j

J rs
i j 〈Ss〉

−
∑
i,r

⎡
⎣Sir

1

2

∑
j

J rs
i j 〈Ss〉 + Kr

i (Sir ) + μrBSir

⎤
⎦ .

(B2)

Since Eq. (B2) is a sum of single-particle Hamiltonians, the
free energy per unit cell at inverse temperature β = (kBT )−1

may be calculated as a sum over the sites,

FMF = 1

2

∑
r,s

〈Sr〉J rs〈Ss〉 − 1

βNc

×
∑
i,r

ln tr e−β(Sir
1
2

∑
s J rs〈Ss〉+Kr

i (Sir )+μr BSir ), (B3)

where Nc denotes the number of unit cells and tr denotes an
integral over the unit sphere representing the possible spin
directions Sir in the classical case and the trace in a single-
particle basis in the quantum case. We introduced the notation
J rs = ∑

j J rs
i j , which only depends on the sublattice indices

due to translational invariance.
The parameters 〈Sr〉 are unknown at this point, and they

must be determined in such a way that they minimize the
mean-field free energy in Eq. (B3). Taking the derivative of
FMF with respect to 〈Sr〉 and setting it to zero leads to the
system of mean-field equations:

〈Sr〉 = trSire−β(Sir
1
2

∑
s J rs〈Ss〉+Kr

i (Sir )+μr BSir )

tre−β(Sir
1
2

∑
s J rs〈Ss〉+Kr

i (Sir )+μr BSir )
. (B4)
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Note that the right-hand side of Eq. (B4) indeed defines the
expectation value of Sir in the single-particle Hamiltonian
HMF if the 〈Sr〉 values are fixed. However, the meaning of
Eq. (B4) is that the 〈Sr〉 parameters have to be determined
from it self-consistently to determine the optimal average spin
configuration in the mean-field approximation. Since Eq. (B4)
typically has multiple solutions, the real minimum has to be
found by substituting these solutions back into Eq. (B3); this is
a sufficient condition for finding the minimum since the space
of the 〈Sr〉 parameters is compact.

Hematite consists of four sublattices, but on the level of
the sublattice exchange matrices J rs, the A and D sublat-
tices as well as B and C are equivalent. Since the mean-field
equations possess this symmetry, it can be assumed that
the solutions satisfy 〈SA〉 = 〈SD〉 = 〈S1〉 and 〈SB〉 = 〈SC〉 =
〈S2〉. Therefore, it is sufficient to treat the two effective sub-
lattices 1 and 2 with the interaction tensors:

J 11 = 1
2 (J AA + J AD + J DA + J DD)

=
⎡
⎣J 0 0

0 J 0
0 0 J + �J

⎤
⎦, (B5)

J 12 = 1
2 (J AB + J AC + J DB + J DC )

=
⎡
⎣ J ′ D 0

−D J ′ 0
0 0 J ′ + �J ′

⎤
⎦, (B6)

J 21 = 1
2 (J BA + J BD + J CA + J CD) = (J 12)T , (B7)

J 22 = 1
2 (J BB + J BC + J CB + J CC ) = J 11. (B8)

The form of the sublattice interaction tensors described by the
parameters J,�J, J ′,�J ′, and D is dictated by the system’s
symmetry. The anisotropy functions are Kr

i (Sir ) = d2S2
i,z +

d4S4
i,z for r = 1, 2. In the quantum case, we chose the spin

quantum number S = 2, which would result in a magnetic
moment of 4μB giving the closest agreement with the value
determined from the SKKR method in Table I. This is also the
lowest quantum number for which the fourth-order anisotropy
can be interpreted; for lower S values, S4

i,z may be expressed
by S2

i,z and constant terms. The expectation values were cal-
culated using a Lebedev–Laikov integration grid [43] of order
41 on the unit sphere in the classical case and in the stan-
dard basis of the eigenstates of Sz for S = 2 in the quantum
case.

For the magnetic field oriented along the c axis, we con-
sidered three different types of solutions of Eq. (B4). The
first one is 〈S1〉 = m1ez and 〈S2〉 = −m2ez describes the an-
tiferromagnetic state, with m1 > m2 > 0. The second one is
〈S1〉 = (mx, my, mz ) and 〈S1〉 = (mx,−my, mz ), correspond-
ing to the spin-flop or WF phase. The third configuration is the
paramagnetic one, with 〈S1〉 = 〈S2〉 = mez. Phase transitions
were detected at the temperature and field values where the
minimum of the free energy in Eq. (B3) switches from the an-
tiferromagnetic first to the spin-flop, then to the paramagnetic
configuration.
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