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We study the response of a quantum magnet with spin-orbit coupling (SOC) to a Zeeman field by constructing
effective actions and performing renormalization group (RG) analysis. There are several novel classes of quan-
tum phase transitions at a low hc1 and an upper critical field hc2 driven by magnon condensations at commensurate
(C) or incommensurate (IC) momenta 0 < k0 < π . The intermediate IC-skyrmion crystal (IC-SkX) phase is
controlled by a line of fixed points in the RG flows labeled by k0. We derive the relations between the quantum
spin and the order parameters of the effective actions which determine the spin-orbital structures of the IC-SkX
phase. We also analyze the operator contents near hc1 and hc2 which determine the exotic excitation spectra inside
the IC-SkX. The intrinsic differences between the magnon condensations at the C and IC momenta are explored.
The two critical fields hc1 < hc2 and the intermediate IC-SkX phase could be a generic feature to any quantum
magnets with SOC in a Zeeman field. Experimental implications to some materials or cold atom systems with
SOC in a Zeeman field are presented.
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I. INTRODUCTION

In 1938, the Bose-Einstein condensation (BEC) was first
observed in the superfluid state of 4He which is a strongly
interacting system [1]. In 1995, it was also observed in a dilute
gas of alkali atoms which is a weakly interacting system [2,3].
In the BEC, the global U (1)c symmetry corresponding to the
boson number conservation is spontaneously broken, which
leads to the Goldstone mode with a linear dispersion. It was
known that the magnon condensation tuned by a Zeeman
field in a quantum magnet [4–10] can be mapped to the BEC
with the spin U (1)s symmetry mimicking the charge U (1)c

symmetry of the bosons. Here, inspired by many recent ex-
perimental studies on the response to a Zeeman field of some
chiral magnets [11] and 4d or 5d Kitaev materials [12,13]
with strong spin-orbit coupling (SOC), we study the magnon
condensation in a quantum magnet with SOC in a Zeeman
field and find it leads to dramatically new phenomena outlined
in the abstract and Fig. 1.

The system is the interacting spinor bosons at integer
fillings hopping in a square lattice in the presence of non-
Abelian gauge fields studied in [14]. In the strong-coupling
limit, it leads to the spin S = N/2 rotated ferromagnetic
Heisenberg model (RFHM), which is a new class of quan-
tum spin models to describe quantum magnetisms in cold
atom systems or some materials with strong SOC. There is
an exact U (1)soc symmetry along the anisotropic line (α =
π/2, 0 < β < π/2) of the 2-dimensional SOC. Along the
line, we identified a new spin-orbital entangled commensurate
ground state: the Y-x state. It supports not only commensu-
rate magnons (C0, Cπ ), but also a new gapped elementary
excitation: the incommensurate (IC) magnon. The existence

of the C-IC above a commensurate phase is a salient feature
of the RFHM. They indicate the short-ranged incommensu-
rate order embedded in a long-range ordered commensurate
ground state. The IC magnons may become the seeds to
drive possible new classes of quantum C-IC transitions under
various external probes. In [15], by performing the micro-
scopic spin-wave expansion (SWE), we explored the effects
of an external longitudinal Zeeman field H applied to the
RFHM Eq. (1) along the anisotropic SOC line which keeps the
U (1)soc symmetry. However, the microscopic SWE approach
used in [15] is essentially a semiclassical approach. It may not
apply to a small quantum spin S in real materials, and will also
break down near all the quantum phase transitions in Fig. 1. A
completely independent symmetry-based phenomenological
effective action is needed to study the nature of these novel
quantum phase transitions.

In this work, starting from the general symmetry principle,
we construct various effective actions, then perform renormal-
ization group (RG) flows and carefully analyze the physically
accessible initial conditions to study all the quantum phase
transitions in Fig. 1. We also identify the relations between
the quantum spins in a lattice and the order parameters in
the effective actions, which are needed to identify the quan-
tum spin-orbital orders of the phases. When away from the
quantum critical points, we recover all these quantum phases
and their excitations discovered by the microscopic calcu-
lations in [14,15]. Most importantly, we explore the nature
of all the quantum phase transitions, and therefore provide
deep insights into the global phase diagram in Fig. 1. The
transition from the Z-x phase to the incommensurate skyrmion
crystal (IC-SkX) phase at h = hc1 is in the same universality
class as the z = 2 superfluid (SF)–Mott transition [7,9]. In
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FIG. 1. Renormalization group (RG) flow of Eq. (1) which ex-
plores many new features of magnetic systems with SOC. Z-FM is a
ferromagnet along the Zeeman field, IC-SkX is the incommensurate
skyrmion crystal, and Z-x is the ferromagnet alternating along the x
bond. There is a line of unstable fixed (or QPT) points labeled by the
BEC condensation C or IC momentum k0 in Eq. (2) and in Eq. (10)
near hc1 and hc2, respectively. There is also a line of stable fixed
points labeled by the 0 � k0 � π inside the IC-SkX phase. The RG
flows just follow the constant contour line of k0. The new universality
classes of all these QPTs and the corresponding operator contents at
or away from the two mirror symmetric points are analyzed in the
text.

addition to the well-known type-I dangerously irrelevant oper-
ator (DIO) [7,9,16], there is also a new type-II DIO [17] which
leads to one exotic Goldstone mode inside the IC-SkX phase
near hc1. At the mirror symmetry point β = π/4, the type-II
DIO is absent; the exotic Goldstone mode recovers to the
conventional one. The quantum phase transition (QPT) from
the Z-FM to the IC-SkX at h = hc1 is described by a novel two
component effective action with the dynamic exponent z = 2
and a U (1)soc × U (1)ic symmetry where the extra U (1)ic sym-
metry comes from the condensations of the magnons at the
two IC momenta. It was spontaneously broken down to its
diagonal [U (1)soc × U (1)ic]D leading one Goldstone mode in-
side the IC-SkX phase. By performing renormalization group
flow analysis, we find it is a novel universality class with
new operator contents. In addition to two type-I DIOs, there
are also two type-II DIOs which lead to one exotic gapless
Goldstone mode and one gapped exotic roton mode inside the
IC-SkX phase near hc2. At the mirror symmetry point, the
two type-II DIOs are absent, and the exotic Goldstone and
roton mode recover to conventional ones; a quartic umklapp
term breaks the extra U (1)ic symmetry explicitly to Z4 and
becomes the third type-I DIO and plays important roles. The
RG analysis on the effects of this umklapp term is performed.
These results may shed considerable light on the experimental
findings, especially the nature of the intermediate phases of
some materials with strong SOC such as the chiral magnets

and the Kitaev materials in a Zeeman field. Some perspectives
are outlined.

Here, we focus on the RFHM along the line (α = π/2, 0 <

β < π/2) in the Zeeman field along the longitudinal y direc-
tion [15] (see also Appendix A). After rotating the spin Y axis
to Z axis, it can be written as [18]

H = − J
∑

i

[
1

2
(S+

i S+
i+x + S−

i S−
i+x ) − Sz

i Sz
i+x

+ 1

2
(ei2βS+

i S−
i+y + e−i2βS−

i S+
i+y ) + Sz

i Sz
i+y

]

− H
∑

i

Sz
i , (1)

where J > 0 and the Zeeman field H is along the z direction
after the global rotation.

As shown in [14], Eq. (1) at H = 0 has the transla-
tional symmetry, the time-reversal symmetry T , and the three
spin-orbital coupled Z2 symmetries Px,Py,Pz. Most impor-
tantly, it also owns a hidden spin-orbital coupled U (1)soc

symmetry generated by U1(φ) = eiφ
∑

i (−1)xSz
i . The H breaks

the T ,Px,Py symmetries, but still keeps the translation, Pz,
the combinations T Px, T Py, and the hidden U (1)soc sym-
metry. Under the mirror transformation T M, where M =
R(x̂, π )R(ẑ, iyπ ), it maps (β, h) → (π/2 − β, h). So one only
needs to focus on the left half of Fig. 1. The mirror center
β = π/4 respects the mirror symmetry. In the following, we
will take 2SJ as the energy unit.

II. QUANTUM PHASE TRANSITION AT THE LOWER
CRITICAL FIELD hc1

The spin wave expansion (SWE) in the Z-x state below
hc1 was performed in [15]. Dropping the higher branch αk in
Eq. (A7), it is the βk magnon condensation at K0 = (0, k0)
which leads to the QPT from the Z-x state to the IC-SkX at
hc1 in the whole range of 0 < β < π/2:

βk = ψδk,K0 , αk = 0, (2)

where K0 = (0, k0) and ψ is a complex order parameter.
One must use the unitary transformation Eq. (A6) to estab-

lish the connection between the transverse quantum spin on
the lattice and the order parameter in the continuum limit:

S+
A,i =

√
2Sai = cψeik0iy , S−

B, j =
√

2Sb j = sψeik0 jy , (3)

where c = cK0 and s = sK0 are evaluated at K0 = (0, k0).
The Z-x state spontaneously breaks the translation along

the x direction by one lattice site to two lattice sites, i.e.,
Tx → (Tx )2, but still keeps all the other symmetries of the
Hamiltonian listed below Eq. (1). After incorporating this fact,
one can study how ψ transforms under the symmetries of
the Hamiltonian, especially under Ty as ψ → eik0ψ , U (1)soc

as ψ → eiφ0ψ . At the mirror symmetry point β = π/4, un-
der T M as ψ → −ψ∗. The symmetry analysis suggests the
following effective action in the continuum limit with the
dynamic exponent z = 2,

Lhc1 = ψ∗∂τψ + v2
x |∂xψ |2 + v2

y |∂yψ |2 − μ|ψ |2 + U |ψ |4

+ iV |ψ |2ψ∗∂yψ + · · · , (4)
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where · · · includes terms such as iψ∗∂3
y ψ and many other

terms which are subleading in the RG sense [19]. Our mi-
croscopic calculation shows that μ = h − hc1 which tunes
the QPT, U > 0, V ∝ sin(2k0) vanishes at β = π/4 dictated
by the mirror symmetry. In fact, its symmetry-breaking pat-
tern [20] and associated Goldstone mode are identical to
Eq. (13), to be discussed in Sec. III.

When h < hc1, μ < 0, it is in the Z-x state with 〈ψ〉 = 0.
Expanding the effective action up to second order in ψ leads
to the gapped excitation spectrum ωk = −μ + v2

x k2
x + v2

y k2
y

which matches the results achieved by the microscopic SWE
calculation in [15].

When h > hc1, μ > 0, it is in the IC-SkX state with 〈ψ〉 =√
ρ0eiφ0 where ρ0 = √

μ/2U and φ0 is a arbitrary angle due
to U (1)soc symmetry. Plugging the mean field solution into
Eq. (3), one obtain the spin-orbital order of the IC-SkX phase
above hc1:

〈S+
i 〉 = (

√
ρ0/2)[c + s + (−1)ix (c − s)]e(−1)ix i(k0iy+φ0 ), (5)

where 〈Sz
i 〉 can be fixed by the constraint |Si|2 = S2. It has a

nonvanishing skyrmion density Qi jk = Si · (S j × Sk ), where
i, j, k are three neighboring lattice sites in a square lattice.
Well inside the IC-SkX state, one can also extract its exotic
Goldstone mode due to the U (1)soc symmetry breaking:

ωk =
√

4Uρ0
(
v2

x k2
x + v2

y k2
y

) − V ρ0ky, (6)

which recovers the conventional Goldstone mode at the mirror
symmetry point β = π/4 where V = 0.

In the following, we use the Wilsonian momentum shell
method to derive the RG flow near hc1 and hc2 at or away from
the mirror symmetric point in Fig. 1. This method is the quick-
est one to achieve the RG flow at one-loop order. However, it
is not practical when there is a gauge field, because it is very
difficult to keep gauge invariance even at one-loop order [21].
It cannot be pushed into two loops either which can only be
achieved by the Field theory method. Fortunately, one-loop
order is enough to capture the physics in the present context.
We first study the single-component case near hc1 to set up the
scheme and notations, then investigate the more interesting
two component cases near hc2.

A. RG and operator contents at the mirror symmetric point

The effective action describing the magnon BEC in the
presence of SOC near h = hc1 at the mirror symmetric point
β = π/4 in Fig. 1 is

Shc1 =
∫

dτdd r

[
ψ∗(r, τ )∂τψ (r, τ ) + h̄2

2m
|∇ψ (r, τ )|2

− μ|ψ (r, τ )|2 + u|ψ (r, τ )|4 + · · ·
]
, (7)

where ψ is the complex scalar field. After adding back the
type-II dangerously irrelevant operator (DIO) V in Eq. (4), it
describes the QPT near hc1 away from the mirror symmetric
point in Fig. 1. As shown in Eq. (B2) in the Appendix B, it
also precisely describes the magnon BEC of the AFM in a
uniform Zeeman field.

The major simplification of z = 2 over the relativistic case
z = 1 is that when performing RG in the z = 2 theory, one

k1

u u

k2

k3

k4

q

k1 + k2 − q

(a)

w w

ψ1

ψ1

ψ1

ψ1

ψ2

ψ2

(b)

FIG. 2. The renormalization of the self-interaction u. The 3-
momentum k = (�k, ω) is indicated in (a), and the red line and the
blue line in (b) denote ψ1 and ψ2, respectively. The internal line is on
the 2-momentum shell �e−δl < q < �. (a) Due to u2, (b) due to w2.

must separate the frequency ω from the momentum �k, then
the frequency integral

∫
dω
2π

will kill many Feymann diagrams
which will otherwise make a contribution in a relativistic
quantum field theory. Figure 2(a) is the only surviving dia-
gram. Similar simplifications also apply to the two-component
cases to be discussed in Secs. III and IV.

The Wilsonian RG flow equation at one loop is given by
Fig. 2(a):

∂lμ = 2μ,

∂l u = εu − cu2, (8)

where ε = 2 − d and c = Kd�
d−22m/h̄ with Kd =

Sd/(2π )d = 2/[(4π )d/2�(d/2)]. In fact, we expect that
Eq. (8) is exact to any loop order due to the exact U (1)soc

symmetry and z = 2. Our field theory RG analysis [21] on u
confirms this expectation up to two loops.

In the present context of Fig. 1, u is marginally irrelevant
near hc1, but becomes relevant below the line of fixed points
inside the IC-SkX phase in Fig. 1. Equation (8) has been
extended to a finite temperature in [7]. The type-I DIO u leads
to the logarithmic violations of scalings [7] to the conserved
density n = |ψ |2. Then using the relation between the quan-
tum spin and the order parameter in Eq. (3), one can determine
the logarithmic violations of scalings to various quantum spin
correlation functions.

At the mirror symmetry point β = π/4, V = 0, so the
effective action Eq. (4) is in the same universality class [22]
as the z = 2 zero density SF-Mott transition where the inter-
action U term is marginally and dangerously irrelevant at the
up-critical dimension du = 2. It determines the nature of the
symmetry-breaking ground state and also leads to the loga-
rithmic violation of scalings [7] to all the physical quantities
at a finite temperature.

B. RG and operator contents away from the mirror
symmetric point

When away from the mirror symmetry point, the V term
in Eq. (4) moves in. Simple power counting shows that it is
irrelevant near the SF-Mott QPT. However, inside the IC-SkX
phase, as shown in Eq. (6), it modifies the spectrum of the
Goldstone mode by an extra linear term, so it plays a crucial
role inside the phase. We call this new type of DIO as type
II [17], while the known one such as U as type I [7,9,16]. So
there are one type-I DIO u and one type-II DIO V below the
line of stable fixed points inside the IC-SkX (Fig. 1).
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Away from the mirror symmetry point, one needs to add
back the type-II dangerously irrelevant operator (DIO) V in
Eq. (4), just by simple power counting, one finds at d = 2:

∂lV = −V, (9)

which is clearly irrelevant near hc1, but it changes the Gold-
stone mode into the exotic form inside the IC-SkX phase.
So it becomes marginal below the line of fixed points inside
the IC-SkX phase in Fig. 1. As shown below Eq. (4), the
microscopic calculation finds V ∼ sin(2k0) which is indeed
exactly marginal along the RG flow in Fig. 1 until hitting the
line of fixed points labeled by k0 inside the IC-SkX phase.

So we conclude that away from the mirror symmetry point,
the operator content is one type-I DIO u and one type-II DIO
V . At the mirror symmetry point, the operator content is one
type-I DIO, no type-II DIO.

In Fig. 1, there are also two trivial lines of fixed points at
h = 0 and h = ∞ which correspond to the Z-x state and FM
state, respectively. Even it is just the same ground state, the
line of fixed points characterized by 0 � k0 � π still has clear
physical meanings: it indicates the minima position of the IC
magnons above the ground state. Of course, the Z-x state is
an exact ground state, so it does not contain the IC magnons
at T = 0. However, the lowest excitation is the IC magnons.
The FM ground state contains the quantum fluctuations from
the IC magnons even at T = 0. So it is justified to use k0

to distinguish “different kinds” of the Z-x state at h = 0 and
“different kinds” of FM at h = ∞ in Fig. 1. These could also
be one the salient features of incommensurability due to SOC.

III. QUANTUM PHASE TRANSITION AT THE UPPER
CRITICAL FIELD hc2, THE INCOMMENSURATE CASE

The SWE in the FM state above hc2 was also performed
in [15]. It is the αk magnon condensation in Eq. (A13) which
leads to the QPT from the FM state to the IC-SkX at hc2 in the
middle range β1 < β < β2 [23]:

αk = ψ1δk,K1 + ψ2δk,K2 , (10)

where K1 = (0, k0), K2 = (π, k0), and ψ1, ψ2 are the two
complex order parameters.

One must use the Bogoliubov transformation Eq. (A12) to
establish the connection between the transverse quantum spin
and the two complex order parameters:

S+
i ∝ u[ψ1 + (−1)ix ψ2]eik0iy + v[ψ∗

1 − (−1)ix ψ∗
2 ]e−ik0iy ,

(11)

where u = uK1 = uK2 and v = vK1 = −vK2 .
Because the Z-x state breaks no symmetry of the Hamil-

tonian, one can study how ψ1 and ψ2 transform under the
symmetries of the Hamiltonian listed below Eq. (1), especially
under Ty as (ψ1, ψ2) → (eik0ψ1, eik0ψ2), under U (1)soc as
(ψ1, ψ2) → (ψ1 cos φ + iψ2 sin φ,ψ2 cos φ + iψ1 sin φ), and
at the mirror symmetry point β = π/4, under T M as
(ψ1, ψ2) → (−ψ∗

1 ,−ψ∗
2 ).

In fact, as suggested by Eq. (11), the physics may
become more transparent in the new basis ψ± = (ψ1 ±
ψ2)/

√
2. Under the whole family of T n

y , n = 1, 2, 3, · · · ,
(ψ+, ψ−) → (eik0nψ+, eik0nψ−). When k0/π is an irrational
number, θ0 = k0n becomes a continuous variable leading to a

new emergent U (1)ic symmetry. Under U (1)soc, (ψ+, ψ−) →
(eiφ0ψ+, e−iφ0ψ−). The symmetry analysis implies the effec-
tive action

Lhc2 =
∑
α=±

(
ψ∗

α∂τψα + v2
x |∂xψα|2 + v2

y |∂yψα|2 − μ|ψα|2)

+ U (|ψ+|2 + |ψ−|2)2 − A(|ψ+|2 − |ψ−|2)2 + · · ·
+ iV1(|ψ+|2 + |ψ−|2)(ψ∗

+∂yψ+ + ψ∗
−∂yψ−)

+ iV2(|ψ+|2 − |ψ−|2)(ψ+∂yψ
∗
+ − ψ∗

−∂yψ−), (12)

which enjoys a U (1)soc × U (1)ic symmetry when k0/π

is an irrational number. Our microscopic calculation
shows that μ = hc2 − h,U = h(u2 + v2)2 + 2(1 + h) > A =
(4 + h) > 0. Furthermore, V1,V2 ∝ sin(2k0), both of which
vanish at β = π/4 dictated by the mirror symmetry.

When μ < 0, it is in the Z-FM phase with 〈ψ1〉 = 〈ψ2〉 =
0. Expanding the effective action up to the second order in ψα

leads to two degenerate gapped modes ω1,2 = −μ + v2
x k2

x +
v2

y k2
y which matches the result achieved by SWE in [15].
When μ > 0, it is in the IC-SkX phase with 〈ψ1〉 =

±〈ψ2〉 = √
ρ0/2eiφ0 where ρ0 = √

μ/2(U − A) (equivalently
〈ψ−〉 = 0, 〈ψ+〉 �= 0 or 〈ψ−〉 �= 0, 〈ψ+〉 = 0). It is easy to see
the symmetry-breaking pattern is described by the coset:

U (1)soc × U (1)ic/[U (1)soc × U (1)ic]D, (13)

where the diagonal (D) means y → y + n, φ0 → φ0 − nk0
y

generated by T n
y × R(nk0

y ) for any integer n. The coset dic-
tates only one Goldstone mode [see Eq. (15)].

Plugging the mean field solution into Eq. (11), one obtain
the spin-orbital order of the IC-SkX phase below hc2,

〈S+
i 〉 =

√
ρ0/2[u + v + (−1)ix (u − v)]e(−1)ix i(k0iy+φ0 ), (14)

where 〈Sz
i 〉 can be fixed by the constraint |Si|2 = S2. It takes

the identical form as Eq. (5) after replacing the Bogoliubov
transformation matrix elements u, v by the unitary transfor-
mation matrix elements c, s. It is remarkable that one can
extend the unitary transformation matrix elements c, s in the
Z-x phase above hc1 and the Bogoliubov transformation ma-
trix elements u, v in the FM state below hc2 and reach the
same spin-orbital structure of the IC-SkX phase [20]. Well
inside the IC-SkX phase, one can identify one exotic gapless
Goldstone and one exotic gapped roton mode

ω+,k =
√

4ρ0(U − A)
(
v2

x k2
x + v2

y k2
y

) − V+ρ0ky,

ω−,k =
√

�2− + 8ρ0A
(
v2

x k2
x + v2

y k2
y

) − V−ρ0ky, (15)

where �− = 4ρ0A is the roton gap, V± = 4V1 ± 2V2. One can
see that the Goldstone mode achieved from below hc2 takes the
same form as that in Eq. (6) achieved from above hc1. While
the gapped roton mode corresponds to the higher branch αk
in Eq. (2) which is ignored in the effective action Eq. (4).
This match is a good check on the consistency between the
effective action from hc2 down and that from hc1 up.

In the following, we study the RG on the two-component
QPT near hc2 in Fig. 1 and also list the leading operator
contents away from the mirror symmetry point. We first derive
the RG flow equations at the mirror symmetry point with
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k1

k2

k3

k4

q

k1 + k2 − q

(a)

v v w w

ψ1 ψ1

ψ2

(b)

ψ2 ψ2

ψ1

FIG. 3. The renormalization of the mutual interaction v between
the two complex order parameters. The same notations as in Fig. 2.
(a) Due to v2, (b) due to w2.

w �= 0, then setting w = 0 to study its RG flow, while putting
the RG flow of w �= 0 to the next section.

A. The derivation of the RG flow equations with w �= 0

The effective action describing the magnon BEC in the
presence of SOC near h = hc2 at the mirror symmetric point
β = π/4 in Fig. 1 is

SMS =
∫

dτdd r
∑

α=1,2

[
ψ∗

α (r, τ )∂τψα (r, τ )

+ h̄2

2m
|∇ψα (r, τ )|2 − μ|ψα (r, τ )|2

]
+ · · ·

+ u[|ψ1(r, τ )|4+|ψ2(r, τ )|4]+v|ψ1(r, τ )|2|ψ2(r, τ )|2

+ w[ψ1(r, τ )ψ2(r, τ )]2 + w∗[ψ∗
1 (r, τ )ψ∗

2 (r, τ )]2,

(16)

where ψ1 and ψ2 are two complex scalar fields. From Eq. (21),
one can identify u = U − A > 0, v/2 = U + A > 0 and w =
B2. In fact, w can be made real and its the sign can be changed
simply by performing the transformation ψ1 → ψ1eiπ/2. So
the sign of w is irrelevant. Then the three parameters satisfy
A > 2B2, namely v/2 − u > 4w. After adding back the two
type-II dangerously irrelevant operators V1 and V2 in Eq. (12),
it also describes the QPT near hc2 away from the mirror
symmetric point in Fig. 1.

The Wilsonian RG equations up to one-loop are shown in
Figs. 2–4 and collected as

∂lμ = 2μ,

∂l u = εu − c(u2 + w2),

∂lv = εv − c
(

1
2v2 + 8w2),

∂lw = εw − 2c(u + v)w, (17)

where ε = 2 − d and c = Kd�
d−22m/h̄ is identical to that

in the single-component case Eq. (8). One can see that the

k1

k2

k3

k4

q

k1 + k2 − q

(a1)

wu w

ψ1

ψ2

ψ2

(a2)

ψ2

u

ψ1

ψ2

ψ2

(b)

v w

ψ1

ψ2

ψ1

ψ1

ψ2

FIG. 4. The renormalization of the umklapp interaction w. The
same notations as in Fig. 2. (a1) and (a2) Due to uw, (b) due to vw.

w2 term renormalizes the u and v, but not itself [24]. As
expected, the RG flow remains the same when w → −w. The
application to the mirror symmetry case will be presented in
Sec. IV.

B. The RG flow pattern and operator contents at w = 0

As said in the main text, the w term breaks U (1)ic → Z4,
so w = 0 must be a fixed point. If the umklapp term is absent,
w = 0, then the one-loop RG equations is simplified to

∂lμ = 2μ,

∂l u = εu − cu2,

∂lv = εv − cv2/2.

(18)

The RG flow of u and v decouples at the one-loop order. At
d = 2, the RG flow pattern 1/u − 2/v = C is given in the w =
0 plane of Fig. 6(a). Both are marginally irrelevant at d = 2
and lead to new logarithmic violations of scalings to all the
physical quantities at a finite T .

In fact, if one rescales v by 1/2, then v has the same flow
equation as u. This is expected, because after setting w = 0,
the u term is the self-interaction, while the v term is the only
the mutual coupling between the two complex fields, so v = 0
must be a fixed point also. Naively, one may think Eq. (12)
has an enlarged O(4) symmetry at A = 0. This is incorrect
due to the z = 2 term in Eq. (12) which explicitly breaks
the O(4) symmetry. If it had been z = 1, it would have the
enlarged O(4) symmetry at A = 0. This is just one aspect of
the tremendous differences between z = 1 and z = 2. In fact,
we expect that Eq. (18) is exact to any loop order due to the
exact U (1)soc × U (1)ic symmetry and z = 2. Our field theory
RG analysis [21] confirms this expectation up to two loops.

In the present case, u > 0, v > 0 satisfying v/2 > u, so
both u and v are type-I marginally irrelevant near hc2, but
become relevant above the line of fixed points inside the
IC-SkX phase in Fig. 1. It is important to extend Eq. (18) to a
finite temperature. Then the two type-I DIOs u and v lead to
logarithmic violations of scalings to the two conserved quanti-
ties n1 = |ψ1|2 and n2 = |ψ2|2 (or equivalently |ψ1|2 + |ψ2|2
and |ψ1|2 − |ψ2|2). Then using Eq. (11), one can determine
the logarithmic violations of scalings to various quantum spin
quantities.

The v > 0 means the repulsive interaction between the
two species. Imagine the interspecies interaction becomes
negative v < 0; Eq. (18) shows that it flows to −∞ which
indicates the formation of the tightly formed bosonic Cooper
pair between ψ1 and ψ2.

After adding back the two type-II dangerously irrelevant
operators V1 and V2 in Eq. (12), just by simple power counting,
one finds at d = 2

∂lV1 = −V1,

∂lV2 = −V2, (19)

which are clearly irrelevant near hc2, but change the gapless
Goldstone mode and the gapped roton into the exotic form
inside the IC-SkX phase. So V1,V2 become marginal above
the line of fixed points inside the IC-SkX phase in Fig. 1.
As shown below Eq. (12), the microscopic calculations find
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V1,V2 ∼ sin(2k0) which are indeed exactly marginal along the
RG flow in Fig. 1 until hitting the line of fixed points labeled
by k0 inside the IC-SkX phase.

We conclude that away from the mirror symmetry point
near hc2, the operator content is two type-I DIOs (u, v) in
Eq. (18) and two type-II DIOs (V1,V2) in Eq. (19) above the
line of stable fixed points inside the IC-SkX (see Fig. 1).

IV. QUANTUM PHASE TRANSITION AT THE UPPER
CRITICAL FIELD hc2, THE COMMENSURATE CASE AND

MIRROR SYMMETRY POINT

However, if k0/π = p/q where p and q are two co-prime
positive integers, then (Ty)2q = 1 and the effective action
Eq. (12) should include an extra umklapp term:

Lum = Bq(ψ+ψ−)q + c.c.

+ iCq(ψ+ψ−)q−1(ψ+∂yψ−) + c.c. + · · · , (20)

where Bq,Cq may be complex for β �= π/4 and · · · means
high-order terms with power 2nq (n > 1). It breaks explicitly
only the U (1)ic down to Z2q, but not the U (1)soc symmetry. In
the regime 0 � k0 � π/2 in Fig. 1, q � 2, so Lum becomes
higher order when β < π/4 with q > 2. It becomes highly
irrelevant, so can be dropped. All the above results in the IC
case also apply to the q > 2 C case.

At the mirror symmetry point β = π/4, k0 = π/2 with
q = 2, then Lum is quartic order in ψ1,2. So one must consider
this B2 term at β = π/4 where the mirror symmetry dictates
C2 = 0 and also the absence of the two type-II DIOs V1,V2.
Thus,

LMS =
∑

α=+,−

(
ψ∗

α∂τψα + v2
x |∂xψα|2 + v2

y |∂yψα|2 − μ|ψα|2)

+ U (|ψ+|2 + |ψ−|2)2 − A(|ψ+|2 − |ψ−|2)2

+ B2(ψ+ψ−)2 + c.c. + · · · . (21)

The microscopic calculations in [15] show A > 2|B2|, so the
B2 term does not change the mean field state. Following the
same procedures as those in the IC case, one can extract the
excitations as

ω+,k =
√

4ρ0(U − A)
(
v2

x k2
x + v2

y k2
y

)
,

ω−,k =
√

16ρ2
0

(
A2 − 4B2

2

) + 8ρ0A
(
v2

x k2
x + v2

y k2
y

)
, (22)

which recover to the conventional form. It also indicates the
umklapp term at β = π/4 does not affect the form of the
Goldstone mode, but decreases the roton gap. This is ex-
pected, because this B2 term breaks only the U (1)ic down to
Z4, but not the U (1)soc symmetry.

Now we study the QPT near h = hc2. The RG flow equa-
tions at one loop were already derived in Eq. (17) where w =
B2. w = 0 must be a fixed point. This is expected, because the
w term breaks U (1)ic → Z4. Setting w = 0 recovers Eq. (18).
As to be shown below, in the physically accessible parameter
regime v/2 − u > 4w > 0, RG flows to the Gaussian fixed
point (u∗, v∗,w∗) = (0, 0, 0). So (u, v,w) all lead to new
logarithmic violations of scalings to all the physical quantities
at a finite T . So there are three type-I DIOs, but no type-II
DIOs at the mirror symmetry point near hc2.

Now we study the RG on the two-component QPT near
hc2 in Fig. 1 and also work out the leading operator contents
at the mirror symmetry point. At the mirror symmetry point,
one can turn on the w term which breaks U (1)ic → Z4. At the
upper critical dimension du = 2, ε = 0, rescale u, v,w by the
positive number c in Eq. (17), i.e., u → cu, v → cv, w → cw;
the RG flow equations become

∂l u = −(u2 + w2),

∂lv = −(v2 + 16w2)/2,

∂lw = −2(u + v)w,

(23)

which gives a three-dimensional flow in (u, v,w) space.
For the RG flow Eq. (17) with the three couplings u, v, and

w, it would be nice to find an integral motion. Unfortunately,
in contrast to the case of the three couplings of fermions
near a Fermi surface studied in Ref. [25], we are not able to
find any integral motion of the RG flow of Eq. (17). In the
following, we find its RG flow pattern first analytically for a
small initial value of w0, then numerically for any initial val-
ues of (u0, v0,w0). Finally, we show that with the physically
accessible values of (u, v,w), it flows to the Gaussian fixed
point (u∗, v∗,w∗) = (0, 0, 0).

A. Analytic perturbation analysis for a small initial w0

Taking any general initial condition (u0, v0,w0) with w0 =
0, Eq. (18) can be solved analytically:

u(l ) = u0

1 + u0l
, v(l ) = 2v0

2 + v0l
, w(l ) = 0. (24)

For |w0| � u0, v0, assume the solution takes the form

u(l ) = u0

1 + u0l
+ u1(l ), v(l ) = 2v0

2 + v0l
+ v1(l ),

w(l ) = w(l ), (25)

where u1(l ), v1(l ),w(l ) → 0 as w0 → 0. Ignoring the higher
order [u1(l )]2, [v1(l )]2 terms, we reach a new set of differen-
tial equations

∂l u1 = − 2u0

1 + u0l
u1,

∂lv1 = − 2v0

2 + v0l
v1,

∂lw = −2

(
u0

1 + u0l
+ 2v0

2 + v0l
+ u1 + v1

)
w,

(26)

with initial condition u1(0) = 0, v1(0) = 0,w(0) = w0. The
solution is u1 = 0, v1 = 0, and

w(l ) = 16w0

(1 + u0l )2(2 + v0l )4
∼ 16w0

u2
0v

4
0

1

l4
, (27)

where the last ∼ shows the asymptotic behavior at a large
l . It is clear that with a small w0 and any positive u0, v0,
the RG flows to the Gaussian fixed point. In Fig. 5, we plot
the differences between the analytical solution and numerical
solution, which agree very well in the small-w0 limit.
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FIG. 5. The solution for RG equations with big initial u0, v0,
but relatively small initial value w0. The inset is the differences be-
tween the numerical solution and analytical solution Eqs. (25), (27).
The top panel is (u0, v0, w0) = (1, 1, 0.1), and the bottom one is
(u0, v0, w0 ) = (1, 1, 0.01). One can see the differences between the
numerical solution and analytical solution decrease with w0 → 0.

B. Numerical solution of the RG flow for any initial
values of (u0, v0, w0 )

To go beyond the small perturbation presented above, we
numerically solve the differential equations (23) for any gen-
eral initial values of (u0, v0,w0) and highlight the parameter
regime which flows to the Gaussian fixed point in Fig. 6(a).
Due to the w → −w symmetry, we only need plot the flows
with w > 0, and then there is a large stable regime of the
Gaussian fixed point inside the first octant.

Then we plot the initial condition wedge v/2 − u > 4|w|
and find that it falls within the stability regime in Fig. 6(b).
This shows that in the physically allowed parameter regime,
the systems flow to the Gaussian fixed point (u∗, v∗,w∗) =
(0, 0, 0). All the three operators (u, v,w) are type-I danger-
ously irrelevant which are marginally irrelevant at the mirror
symmetry point in the line of fixed points along hc2, but
relevant above the line of fixed points inside the IC-SkX phase
(Fig. 1).

It is important to extend Eq. (23) to a finite temperature.
Then the three type-I DIOs (u, v,w) lead to logarithmic vi-
olations of scalings to one conserved quantity |ψ1|2 + |ψ2|2
and also to |ψ1|2 − |ψ2|2 which is not conserved anymore
due to the w term breaking explicitly U (1)ic → Z4. Then
using Eq. (11), one can determine the logarithmic violations
of scalings to various quantum spin quantities.

We conclude that at the mirror symmetry point near hc2,
the operator content is three type-I DIOs (u, v,w), no type-II
DIOs.

–1.0

u
0.0

0.5
1.0

–0.5

w

1.0

–0.5
–1.0

0.5

0.0

v0.0
0.5

1.0

(a)

u
0.0

0.5
1.0

–0.5
–1.0

w

1.0

–0.5
–1.0

0.5

0.0

v0.0
0.5

1.0

(0,0,0)

(0,1,1/8)
(1/2,1,0)

v/2-u>4|w|

(0,1,0)
(b)

FIG. 6. (a) The renormalization group (RG) flow pattern in the
(u, v, w) space. The w = 0 plane recovers the RG flow 1/u − 2/v =
C in Eq. (18), and C = 0 gives the straight line flow 1/u = 2/v.
The black thick lines delineate the regime where the RG flows to
the Gaussian fixed point. (b) The physically accessible regime (thin
red lines) falls inside the stable regime (thick black lines).

V. DISCUSSION AND CONCLUSIONS

In this work, by constructing effective actions from general
symmetry principles, contrasting with the previous micro-
scopic calculations well inside a phase and performing RG
analysis near the QCPs, we study the BEC of magnons in the
presence of SOC which displays many more rich and novel
phenomena than those without SOC.

From symmetry analysis, plus some inputs from the micro-
scopic SWE calculations achieved in [14,15], we constructed
various effective actions to describe the two transitions driven
by the BEC of magnons with the dynamic exponents z = 2
at the low and high critical fields. There are one and two
type-II dangerously irrelevant operators which lead to exotic
excitations inside the IC-SkX phase. (1) The C-IC transition
from the Z-x to the IC-SkX at hc1: It has one complex order
parameter and one type-II dangerously irrelevant operator.
(2) The C-IC transition from the Z-FM to the IC-SkX at hc2

in the middle of SOC β1 < β < β2: It has two complex order
parameters with the dynamic exponents z = 2 and two type-II
dangerously irrelevant operators.

The RG flows, operator contents, and novel line of fixed
points labeled by the IC momenta 0 < k0 < π in Fig. 1 bring
out deep and profound connections between 2 + 1 dimen-
sional nonrelativistic quantum field theories (QFTs) with z =
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2 and the nature of the quantum magnets with SOC in a Zee-
man field. It remains interesting to construct an F theorem [26]
to characterize the RG flow from the UV unstable line of fixed
points at hc1 or hc2 to the stable IR line of fixed points labeled
by k0 inside the IC-SkX phase for such novel QFTs.

As argued in [14], Eq. (1) could be easily realized in recent
cold atom experiments [27–31] to generate 2D Rashba SOC
for cold atoms on optical lattices in a Zeeman field. The
spin-orbital structure of the IC-SkX and its exotic excitations
in Fig. 1 can be directly detected by all kinds of Bragg spec-
troscopy [32–38]. The IC-SkX phase was realized in some
materials with a strong Dzyaloshinskii-Moriya (DM) interac-
tion. Indeed, a 2D skyrmion lattice has been observed between
hc1 = 50 mT and hc2 = 70 mT in some chiral magnets [11]
MnSi or a thin film of Fe0.5Co0.5Si [11]. Figure 1 also sug-
gests that the “exotic” intermediate phase observed between
hc1 = 7 T and hc2 = 9 T in the so-called 4d Kitaev material
α-RuCl3 [12,13] could be nothing but just the IC-SkX phase
discovered here instead of a quantum spin liquid phase. It may
also shed some light on the magnon condensation in some
dimerized antiferromagnets with SOC [39].

In conventional quantum magnets, as discussed in the
Appendix B, the U (1)s symmetry is only an approximation
which can be explicitly broken by many interactions [8–10].
Here, the existence of U (1)soc plays a crucial role in these
phenomena which only holds along the (α = π/2, β ) SOC
line and the longitudinal Zeeman field. There could also be
many ways to break the U (1)soc symmetry explicitly. One way
is to apply transverse field. Another is to look at a generic
(α, β ), or one can apply both at the same time. In [40], we
showed that the Z-x state remains stable in a large SOC
parameter regime near α = π/2, and just changes from the
exact to the classical ground state. In fact, it is the most robust
quantum phase in the whole global phase diagram in the
generic (α, β ). It would be interesting to look at how Fig. 1,
especially the intermediate IC-SkX phase, changes when the
U (1)soc symmetry was explicitly broken. It is also important
to extend it to the honeycomb lattice where there are three
SOC parameters (α, β, γ ). It was found that U (1)soc also
exists along the anisotropic line (α = π/2, β, γ = 0). Then
the results to be achieved in [41] may be directly relevant to
the current trends to search for a quantum spin liquid driven
by a Zeeman field in 4d or 5d Kitaev materials.
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APPENDIX A: SPIN-WAVE EXPANSION TO ORDER 1/S:
UNITARY TRANSFORMATION AND BOGOLIUBOV

TRANSFORMATION

We first review some results from spin-wave expansion
(SWE) performed in [15]. Especially, we stress the unitary
transformation in the Z-x state below hc1 and the Bogoliubov
transformation in the FM state above hc2 which are crucial
to derive the relations between the quantum spin and the order
parameters inside the IC-SkX phase. As presented in Secs. A 1

FIG. 7. (a) Quantum phases and quantum phase transitions of
RFHM in a longitudinal Zeeman field Eq. (1) achieved by the
microscopic SWE in [15]. The main text focuses on constructing
various effective actions and then performing RG analysis on them
to study the QPT from the Z-x to the IC-SkX at hc1 and from the
Z-FM to the IC-SkX at hc2 at and away from the mirror symmetry
point at β = π/4. There are one and two type-II dangerously irrele-
vant operators, respectively, which disappear at the mirror symmetry
point. (b) The orbital ordering wave vectors of the two collinear, two
coplanar, and the noncoplanar phases. The constant contour plot of
the minima (0, k0

y ) of the C-IC magnons in the Z-x state at h < hc1

and Z-FM state at h > hc2, connected by the orbital ordering wave
vectors (dashed line) inside the IC-SkX.

and A 2, the former is from bottom-up and the latter is from
top-down.

1. Unitary transformation in the Z-x state in low field

The spin S = N/2 rotated ferromagnetic Heisenberg model
at generic SOC parameters (α, β ) in a Zeeman field �H along
any direction is [14]

HRH = − J
∑

i

[SiR(x̂, 2α)Si+x̂ + SiR(ŷ, 2β )Si+ŷ]

− H ·
∑

i

Si, (A1)

where the R(x̂, 2α), R(ŷ, 2β ) are two SO(3) rotation matrices
around the x̂, ŷ spin axis by angle 2α, 2β putting along the
two bonds x, y respectively, and H is the Zeeman field which
could be induced by the Raman laser in the cold atom setups.

Following [15], we focus on studying the phenomena
along the line (α = π/2, 0 < β < π/2) and in the Zeeman
field along the longitudinal y direction. After rotating the
spin Y axis to Z axis by the global rotation R(x̂, π/2) (or
equivalently, one can just put βσz along the y bonds in the
square lattice), the Hamiltonian Eq. (A1) along the line (α =
π/2, 0 < β < π/2) in the H field along the y direction can be
written as Eq. (1). The quantum phase diagram is summarized
in Fig. 7.

In a low magnetic field h < hc1, the Z-x state is an exact
ground state with the classical spin configuration:

Si = S(0, 0, (−1)ix ), (A2)

which breaks the translational symmetry along the x bond to
two sites per unit cell (so named as Z-x phase). Thus, one
can perform the Holstein-Primakoff transformation for the
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sublattice A [15]

S+
i =

√
2S

(
1 − 1

2

ni

2S
+ · · ·

)
ai,

S−
i =

√
2Sa†

i

(
1 − 1

2

ni

2S
+ · · ·

)
,

Sz
i = S − a†

i ai, i ∈ A;

(A3)

and for the sublattice B

S+
j =

√
2Sb†

j

(
1 − 1

2

n j

2S
+ · · ·

)
,

S−
j =

√
2S

(
1 − 1

2

n j

2S
+ · · ·

)
b j,

Sz
j = −S + b†

jb j, j ∈ B.

(A4)

In momentum space, the Hamiltonian takes the form

H = − 2NJS2 +
∑

k

[(4JS + H )a†
kak + (4JS − H )b†

kbk]

− 2JS
∑

k

[cos kxa†
kbk + cos kxb†

kak

+ cos(ky − 2β )a†
kak + cos(ky + 2β )b†

kbk]. (A5)

By performing a unitary transformation

ak = skαk + ckβk, bk = skβk − ckαk, (A6)

where sk = sin(θk,h/2), ck = cos(θk,h/2) satisfying c2
k +

s2
k = 1, and tan θk,h = cos kx/(sin 2β sin ky − h), the Hamilto-

nian can be put in the diagonal form:

H = −2NJS2 + 4JS
∑

k

[ω+(k)α†
kαk + ω−(k)β†

kβk], (A7)

where k is in the reduced Brillouin zone and the excitation
spectrum is

ω±(k) = 1 − 1
2 cos 2β cos ky

± 1
2

√
cos2 kx + (sin 2β sin ky − h)2. (A8)

The unitary transformation matrix elements sk = sin(θk,h/2)
and ck = cos(θk,h/2) are useful to establish the connections
between the transverse quantum spin and the order parameter
near hc1 in Eq. (3).

2. Bogoliubov transformation in the FM in the high field

In a high magnetic field h > hc2, the Z-FM state is the
classical ground state with the classical spin configuration:

Si = S(0, 0, 1). (A9)

One can perform the standard Holstein-Primakoff transforma-
tion

S+
i =

√
2S

(
1 − 1

2

ni

2S
+ · · ·

)
ai,

S−
i =

√
2Sa†

i

(
1 − 1

2

ni

2S
+ · · ·

)
,

Sz
i = S − a†

i ai.

(A10)

In momentum space, the Hamiltonian takes the form

H = − NHS + H
∑

k

a†
kak − JS

∑
k

[2 cos(ky − 2β )a†
kak

+ cos kx(aka−k + a†
ka†

−k )]. (A11)

By introducing the Bogoliubov transformation as

ak = ukαk + vkα
†
−k, a†

−k = vkαk + ukα
†
−k, (A12)

where uk = cosh ηk, vk = sinh ηk satisfying u2
k − v2

k = 1 and
tanh 2ηk = cos kx/(h − cos 2β cos ky), the Hamiltonian takes
the diagonal form

H = −NH

(
S + 1

2

)
+ JS

∑
k

[ω(k)α†
kαk + ω(−k)α−kα

†
−k]

= −NH

(
S + 1

2

)
+ JS

∑
k

ωk + 2JS
∑

k

ωkα
†
kαk,

(A13)

where k is in the Brillouin zone and the spin wave dispersion
is

ωk =
√

(h − cos 2β cos ky)2 − cos2 kx − sin 2β sin ky.

(A14)
The Bogoliubov transformation matrix elements uk and vk
are useful to establish the connections between the transverse
quantum spin and the order parameter near hc2 in Eq. (11).

APPENDIX B: THE BEC OF MAGNONS OF AN AFM IN A
UNIFORM FIELD: THE U (1)s CASE

An AFM Heisenberg model in a uniform field breaks the
spin SU (2)s to the spin U (1)s. A high h > hc leads to a fully
polarized state, the Z-FM state, which is not only the ground
state but also an exact eigenstate. A simple spin-wave calcu-
lation shows ω ∼ � + v2k2 near (π, π ) which is nothing but
a gapped FM mode; the order parameter is simply a complex
field ψ . Because the Z-FM is the exact ground state which
does not break the translational symmetry, neither the Bogoli-
ubov transformation nor unitary transformation is needed, and
thus the relation between the quantum spin in a square lattice
and the order parameter in a continuum is simply

〈S+
i 〉 = (−1)ix+iyψ, (B1)

which is much simpler than Eq. (3) and (11) for the U (1)soc

case. Of course, this mapping only works near the QCP h ∼
hc, and will break down near h ∼ 0.

The effective action consistent with the U (1)s symmetry
and the translational symmetries is

LU (1)s = ψ∗∂τψ + v2|∇ψ |2 − μ|ψ |2 + U |ψ |4 + · · · ,

(B2)

where μ = h − hc. It belongs to z = 2 zero density SF-Mott
transition universality class, and therefore confirms the as-
sumption used in [7].

When μ < 0, 〈ψ〉 = 0 the mean field ground state is the
Z-FM state (Fig. 8).

When μ > 0, 〈ψ〉 = meiφ0 where m =√
μ/2U , the mean field ground state is Si =

((−1)ix+iy m cos φ0, (−1)ix+iy m sin φ0,
√

S2 − m), which is
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h0

hc Z-FMC-AFMAFM

FIG. 8. Quantum phase transitions of an AFM in a Zeeman field.
C-AFM means the canted coplanar AFM state, Z-FM means the FM
along the Zeeman field direction. There is only one critical field hc,
no intermediate phase. The arrows indicate the RG flow, and there is
only one unstable (QPT) fixed point at hc. It is constructive to com-
pare with the mirror symmetry line with β = π/4 in Fig. 7(a) and
RG flow in Fig. 1.

the canted co-planar AFM state (Fig. 8). It supports one
gapless Goldstone mode ωk = ck due to the U (1)s symmetry
breaking.

As stressed in the main text, U in Eq. (B2) is the well
known type-I dangerously irrelevant operator. In fact, it is also
marginally irrelevant at the upper critical dimension d = 2,
but it is crucial to determine the symmetry-breaking ground
state and leads to the violation of the hyperscaling at or above
the upper critical dimension.

When comparing with Eq. (4), one can see it is identical to
Eq. (4) near h = hc1 at the mirror symmetric point β = π/4.
However, due to the dramatic difference between the Eq. (B1)
and Eq. (3) which express the very different quantum spin
order in terms of the identical order parameter, in the resulting
symmetry-breaking state the canted AFM in the former is
completely different than the IC-SkX in the latter, but the
Goldstone mode still takes the same form. However, away
from the mirror symmetric point β �= π/4, the DIO V term
in Eq. (4) moves in which does not touch the ground state, but
changes its excitation to the exotic form Eq. (6).

Furthermore, in the SOC case studied in the main text,
there are two critical fields hc1, hc2 and an intermediate phase
IC-SkX between the two critical ones. The Z-FM when h >

hc1 is just a classical ground state instead of an exact ground
state, so it supports strong quantum fluctuations, in sharp
contrast to the Z-FM in Eq. (B1) which is an exact ground
state with no quantum fluctuations. Here without the SOC,
there is only one hc which is very similar to hc1 at the mirror
symmetric point β = π/4, and no intermediate phase (Fig. 8).
These dramatic differences demonstrate the new features of
the SOC in magnetic systems.
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