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There has been great interest in identifying a Kitaev quantum spin liquid state in frustrated magnets with
bond-dependent interactions. In particular, the experimental report of a half-quantized thermal Hall conductivity
in α-RuCl3 in the presence of a magnetic field has generated excitement as it could be strong evidence
for a field-induced chiral spin liquid. More recent experiments, however, provide a conflicting interpretation
advocating for topological magnons in the field-polarized state as the origin of the nonquantized thermal Hall
conductivity observed in their experiments. An inherent difficulty in distinguishing between the two scenarios
is that the phase transition between a putative two-dimensional spin liquid and the field-polarized state exists
only at zero temperature, while the behavior at finite temperature is mostly crossover phenomena. In this work,
we provide insights into the finite-temperature crossover behavior between the spin excitation continuum in a
quantum spin liquid and topological magnons in the field-polarized state in three different theoretical models
with large Kitaev interactions. These models allow for a field-induced phase transition from a spin liquid (or an
intermediate field-induced spin liquid) to the field-polarized state in the quantum model. We obtain the dynamical
spin structure factor as a function of magnetic field using molecular dynamics simulations and compute thermal
Hall conductivity in the field-polarized regime. We demonstrate the gradual evolution of the dynamical spin
structure factor exhibiting crossover behavior near magnetic fields where zero-temperature phase transitions
occur in the quantum model. We also examine nonlinear effects on topological magnons and the validity of
thermal Hall conductivity computed using linear spin wave theory. We discuss the implications of our results for
existing and future experiments.

DOI: 10.1103/PhysRevB.107.184418

I. INTRODUCTION

A tremendous effort has been made to identify quan-
tum spin liquid (QSL) states in real materials due to their
ability to host fractionalized excitations and emergent gauge
fields [1–4]. One way to achieve a type of QSL state known
as the Kitaev spin liquid (KSL) is through bond-dependent
interactions of Jeff = 1/2 moments on a honeycomb lat-
tice [5,6]. There have been substantial recent experimental
developments and debate surrounding α-RuCl3 [7–21], a can-
didate KSL material possessing a large ferromagnetic Kitaev
interaction. At zero field, α-RuCl3 is magnetically ordered
due to the presence of non-Kitaev interactions [22–27]. The
main controversy, however, involves the possibility of a field-
induced quantum spin liquid state [17,19,20,28]. In the pure
Kitaev model, a small magnetic field will induce a chiral
spin liquid with Majorana fermion edge modes, leading to
a half-quantized thermal Hall effect [5]. Recent experiments
reported a half-quantized thermal Hall conductivity when the
magnetic field is applied in the in-plane direction [19]. Since
then, however, there have been conflicting reports whose data
appear to be more consistent with topological magnons arising
in the field-polarized state [20,28].

From a theoretical point of view, a sufficiently high mag-
netic field leads to the field-polarized state which hosts

topological magnons [29–31]. Thus, an important ques-
tion about how one can distinguish between a putative
intermediate-field spin liquid and the field-polarized state re-
mains. A prominent difficulty in distinguishing between these
two phases at finite temperature is that the phase transition
between a possible two-dimensional spin liquid and the field-
polarized state exists only at zero temperature [5,32]. Hence,
the finite-temperature behavior near the transition would be a
crossover phenomenon. For example, the spin continuum—a
hallmark of a quantum spin liquid [33,34]—may crossover
to topological magnons as the magnetic field increases. The
central questions are therefore how such a crossover would
occur in the spin excitation spectrum and what one should
expect in the thermal Hall conductivity at finite temperature.

In this work, we provide important insight into these ques-
tions by studying the crossover between the spin excitation
continuum and topological magnons in frustrated magnets
with bond-dependent interactions. Previous studies of the pure
Kitaev models showed that the dynamical structure factor
containing a spin excitation continuum in the quantum model
can be faithfully represented by the molecular dynamics (MD)
result of the corresponding classical model [35,36]. This
correspondence occurs because the momentum and energy
dependences of the continuum are mostly determined by the
structure of the degenerate ground state manifold. Thus, we
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FIG. 1. The x, y, and z bonds of the Kitaev model are in blue,
green, and pink, respectively. The local spin axis (Sx, Sy, Sz) is shown
coming out of the plane of the honeycomb, and the crystallographic
axis (a, b, c) is indicated in the basis of the spin axis. The high-
symmetry points of the first Brillouin zone �, M, and K are denoted
with pink, purple, and blue squares, respectively.

use MD to characterize the crossover behavior in various the-
oretical models with a dominant Kitaev interaction. We then
compute the thermal Hall conductivity of the field-polarized
state using linear spin wave theory (LSWT) and investigate
the limits of its validity and the causes of its breakdown.

We investigate three different models with a magnetic field
along the direction perpendicular to the honeycomb plane.
All three models possess a zero-temperature phase transition
from a spin liquid (or a disordered state) to the field-polarized
states as a function of magnetic field. First, we consider the
pure ferromagnetic Kitaev model, in which a direct transi-
tion from the chiral spin liquid to the field-polarized state
exists at zero temperature. In this case, a quantum Monte
Carlo result of the dynamical structure factor for the quantum
model is available [32]. We benchmark our MD results against
these quantum results and demonstrate excellent agreement,
validating our approach. Next, we consider the pure anti-
ferromagnetic Kitaev model, in which exact diagonalization
(ED) [37] and density matrix renormalization group (DMRG)
computations [38] find an intermediate spin liquid phase be-
tween a chiral spin liquid at low field and the polarized state
at high field. This intermediate spin liquid was proposed to
be a gapless U (1) spin liquid state [37]. Finally, we study a
realistic K��′ model for α-RuCl3 [22], in which intermedi-
ate phases exist between the low-field zigzag magnetic order
and the field-polarized state at high field [39,40]. Note that
extensive studies of realistic models for α-RuCl3 did not find
an intermediate quantum spin liquid when a magnetic field
was applied along the in-plane direction [41–43], which is
at odds with experimental reports of a half-quantized thermal
Hall conductivity [19]. On the other hand, various theoretical
works found that a c-axis magnetic field (see Fig. 1) leads
to an intermediate quantum disordered state [40], which was
recently reported to exist in pulsed magnetic field experiments
on α-RuCl3 [21]. In ED, DMRG, and tensor network studies
of the quantum model, this intermediate-field regime is identi-
fied as a possible quantum spin liquid [40,44]. For this reason,
we focus on the effect of a c-axis magnetic field.

In general, we find distinctive finite-temperature crossover
behaviors in the dynamical spin structure factor near the mag-
netic field where a zero-temperature transition from a spin
liquid to the field-polarized state is seen in the quantum model.
When a field-induced intermediate spin liquid (or a putative
spin liquid) is present in the quantum model, we see a redis-
tribution of spectral weight in the dynamical spin structure
factor. We then compute the thermal Hall conductivity in the
field-polarized state using the linear spin wave theory and
investigate its evolution near the phase boundary to a spin
liquid regime. We find that significant nonlinear effects in the
magnon spectrum in the crossover region exist. The details of
these crossover behaviors and thermal Hall conductivity are
discussed in the main text.

The rest of this paper is organized as follows. In Sec. II, we
present the model and a description of the numerical methods
used. Sections III and IV present the dynamical structure
factor and thermal Hall conductivity results for the pure Ki-
taev and K��′ models, respectively. Section V presents the
magnetic field dependence of the thermal Hall conductivity
for all three models. Last, Sec. VI discusses the key findings
of this work and provides a future outlook.

II. MODEL AND METHODS

For general discussion, we consider the nearest-neighbor
K��′ Hamiltonian with a Zeeman coupling given by H =∑

〈i j〉∈λ ST
i HλS j − hT

∑
i Si, where

Hx =
⎡
⎣K �′ �′

�′ 0 �

�′ � 0

⎤
⎦, Hy =

⎡
⎣ 0 �′ �

�′ K �′
� �′ 0

⎤
⎦,

Hz =
⎡
⎣ 0 � �′

� 0 �′
�′ �′ K

⎤
⎦, (1)

and an out-of-plane magnetic field h ‖ [111] is applied (see
Fig. 1). We treat the spins as classical vectors Si = (Sx

i , Sy
i , Sz

i )
with a fixed magnitude S and use finite-temperature Monte
Carlo techniques to take measurements of the thermally
fluctuating spin configurations [45]. For reference, we also
provide the zero-temperature phase diagrams compiled from
various sources [37,39] for the models used in Appendix A.

To capture the spin excitation spectrum, we compute the
dynamical spin structure factor (DSSF), a quantity directly
comparable to inelastic neutron scattering experiments. The
energy- and momentum-dependent spin correlations are de-
fined as

Sμν (q, ω) = 1

2πN

N∑
i, j

∫
dt e−iq·(ri−r j )+iωt

〈
Sμ

i (t )Sν
j (0)

〉
, (2)

where N is the number of lattice sites. We investigated the
spectrum with unpolarized neutrons, described by

S (q, ω) = 1

2

∑
μ,ν

[
ẑμ · ẑν − (ẑμ · q)(ẑν · q)

q2

]
Sμν (q, ω). (3)

Here, ẑμ are the basis vectors for the local Kitaev frame, as
shown in Fig. 1. We compute Eq. (2) using the measurements
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FIG. 2. Field dependence of the neutron scattering dynamical structure factor S(q, ω) obtained from molecular dynamics simulations for
K = −1, � = 0, �′ = 0 at T/|K| = 0.001. The intensities are normalized with respect to the maximum value of each plot, and the color bar is
presented on a logarithmic scale. The magnon bands of the polarized phase computed with LSWT are shown below the respective molecular
dynamics results in (b)–(f).

from the finite-temperature Monte Carlo calculations and
perform molecular dynamics simulations on them [45–48].
The details of the numerical techniques can be found in
Appendix B.

We then calculate the thermal Hall conductivity using the
framework of LSWT [49–52],

κxy = −k2
BT

h̄V

∑
n

∑
k∈FBZ

{
c2[g(εnk )] − π2

3

}
�nk, (4)

where FBZ is the crystal first Brillouin zone, c2(x) = (1 +
x)[ln(1 + x)/x]2 − [ln(x)]2 − 2Li2(−x), Li is the diloga-
rithm, g is the Bose-Einstein distribution, εnk is the dispersion
of the magnon bands, and �nk is the Berry curvature. κxy/T
was computed for the polarized state following the procedure
described in [30,31].

III. PURE KITAEV MODEL

A. Dynamical spin structure factor

First, we focus on the pure Kitaev limit with ferromag-
netic Kitaev coupling (K < 0, � = 0, �′ = 0). Figure 2 shows
the evolution of the dynamical structure factor with increas-
ing field strengths plotted along the FBZ path K → �0 →
M → �1 → K → M (see Fig. 1). We can classify three dis-
tinct regimes to describe the crossover between the highly
degenerate classical spin liquid state to the field-polarized
state. Regime I occurs near h = 0, where we observe a broad

excitation profile with high intensities concentrated around �0

at low energies and a broad intensity at high energies near
�1. This regime is where the excitation continuum can be
attributed to the fractionalization of the spins in the quan-
tum model [33,34]. In regime II, h is switched on, and the
spin continuum begins to show dispersive features, as seen
in Figs. 2(b)–2(d). In this regime, a weak continuum coexists
with weakly dispersing bands, and there are discrepancies
compared with the magnon bands from LSWT. Last, the sys-
tem is well polarized in regime III, where the sharp bands
from the DSSF agree well with LSWT, as seen in Figs. 2(e)
and 2(f). Remarkably, the same qualitative behavior can also
be seen in quantum Monte Carlo results at finite tempera-
ture [32]. This agreement in the crossover behavior for the
ferromagnetic (FM) Kitaev model thus validates our method-
ology when we apply it to the next two models.

Next, we examine the antiferromagnetic Kitaev model
(K > 0, � = 0, �′ = 0) at varying field strengths in Fig. 3. We
observe one crossover between the low-field chiral spin liquid
and putative U (1) spin liquid state and another one as the
system polarizes at high fields. We can identify four distinct
regimes similar to the FM case, except with an additional
intermediate regime corresponding to the U (1) spin liquid.
Figures 3(a)–3(c) in regime I show a broad continuum with
suppressed intensity at �0 and enhanced intensity at �1 for
the low-energy mode and a reversed intensity profile for the
high-energy mode. This regime is stable until approximately
h/S|K| = 0.3, where we begin to see a qualitative shift in
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FIG. 3. Field dependence of the neutron scattering dynamical structure factor S(q, ω) computed with molecular dynamics for K = 1, � =
0, �′ = 0 at T/|K| = 0.001. The intensities are normalized with respect to the maximum value of each plot, and the color bar is presented on a
logarithmic scale. The magnon bands of the polarized phase computed with LSWT are shown below the respective molecular dynamics results
in (j)–(l). The lower band in (j) occurs as a flat band at ω = 0.

the intensity distribution when crossing over to regime II.
Figures 3(d)–3(g) demonstrate this progression in intensity
shifts. Namely, we observe the broadening of the spectral
weight at the high-intensity points such that the continuum is
almost uniform in intensity except for the small suppression
at the �0 point. We note that the transition between regimes
I and II is not a sharp one, but rather a subtle redistribution
of the spectral weight. Furthermore, regime II corresponds
to the region in the phase diagram obtained from exact di-
agonalization methods where there is a dramatic increase in
the density of states when crossing from the KSL state to the
gapless U (1) spin liquid state [37]. This state was observed at

similar field strengths in the quantum model, namely, between
approximately h/S|K| = 0.7 and 1.2; thus, our MD results
may apply in this region. Classically, this state is stable until
approximately h/S|K| = 1.5, where remnants of dispersive
bands begin to appear in Figs. 3(h)–3(j). This behavior is
characteristic of regime III, where although bands are present
in the DSSF, the system is not well described by LSWT. Note
that in Fig. 3(j), the lower magnon band is completely flat and
gapless at h/S|K| = 2.0. Finally, as the system fully polarizes
at h/S|K| = 2.2 in regime IV, as shown in Figs. 3(k) and 3(l),
we begin to observe good correspondence between the LSWT
dispersion and MD calculations.
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FIG. 4. Two-dimensional thermal Hall conductivity κ2D
xy /T as

a function of temperature due to magnons in the polarized state.
κ2D

xy /T is in units of π/6, and we set kB = h̄ = 1 here. (a) was
computed with interaction parameters (K, �, �′) = (−1, 0, 0), and
(b) was calculated with (K, �, �′) = (1, 0, 0), both under a field
h = h(1, 1, 1)/

√
3. The half-quantized values are indicated by the

gray dashed line.

B. Thermal Hall conductivity

We present the thermal Hall conductivities due to magnons
at different field strengths for the FM and antiferromagnetic
(AFM) Kitaev model in Fig. 4. The field strengths were cho-
sen to be near the phase boundary of the polarized phase.
Note that the FM case is consistent with McClarty et al. [29].
We first emphasize that for both cases, the magnitude of the
thermal Hall conductivity can peak above the half-quantized
value, especially close to the crossover regimes described
above. In other words, we are able to achieve similar or equal
magnitudes of κ2D

xy /T using only magnons in the polarized
phase, and the actual magnitudes are heavily dependent on
the parameter choice. We also note that the system polarizes
at much higher fields for the AFM Kitaev model than for the
FM Kitaev model, which is consistent with the quantum phase
diagrams [37].

We further observe that there is a sign change in κxy in
both Figs. 4(a) and 4(b), and the magnitude of κxy is large
at fields close to the critical field and at low temperatures. In
the regions where the LSWT and MD results do not agree, κxy

computed within the framework of LSWT may not be reliable,
especially at low temperatures. For example, in Fig. 4(a), κxy

becomes larger at low temperatures for fields below h/S|K| =
0.06, which coincides with the crossover regime II for the FM
Kitaev case described above. In this region, the magnitude
of κ2D

xy becomes larger than 0.5, which may be renormalized

with the inclusion of nonlinear effects. Similarly, for fields
lower than h/S|K| = 2.2, coinciding with crossover regime
III for the AFM Kitaev case in the MD calculations, κxy

becomes large below the temperature at which the sign change
occurs. We therefore believe that the crossover regions are
where higher-order nonlinear effects may need to be taken into
consideration when computing the thermal Hall conductivity.

IV. K��′ MODEL

Recent experiments using a pulsed magnetic field in the
c axis determined a quantum disordered phase at intermediate
fields [21]. To study this state, we examine the K��′ model as
a minimal model for α-RuCl3 with an out-of-plane magnetic
field. We choose an experimentally relevant parametrization
(K, �, �′) = (−1, 0.25,−0.02), where the classical ground
state is magnetically ordered with large unit cells at inter-
mediate fields between the zigzag and polarized phases [39].
Since the classical large unit cell magnetic orders are very
close in energy, these phases form a thermal ensemble at finite
temperature. Figure 5 shows the progression of the DSSF
at increasing field strengths. At zero field in Fig. 5(a), we
see a combination of sharp bands corresponding to the three
configurations of the zigzag order that arises from the C3

symmetry of the honeycomb. As the field is switched on, we
see the appearance of a large number of bands in Fig. 5(b)
corresponding to the frustration between several large unit
cell magnetic orders. These bands eventually blur into the
continuumlike excitations seen in Figs. 5(c) and 5(d). In this
regime, the large unit cell magnetic orders form a thermal
ensemble at finite temperature and behave as the degenerate
manifold for the intermediate state found in DMRG and tensor
network studies [40]. The blurring of the bands therefore
corresponds to a quantum paramagnet; whether this state is
indeed a spin liquid has yet to be determined in the study
of the quantum model. Finally, the system crosses over to
the polarized state, as shown in Figs. 5(e) and 5(f). The be-
havior of this crossover to the polarized state is similar to
those observed in the FM and AFM Kitaev models in that
there are regions well described and not well described by
LSWT. These results are consistent with a previous work that
computed the dynamical structure factor using a stochastic
Landau-Lifshitz approach that introduced finite-temperature
effects as thermal noise [53]. The thermal Hall conductivity
due to magnons in the polarized state is presented for the
K��′ model in Fig. 6 for fields near the crossover. Although
the peak of the thermal Hall conductivity is smaller than
the half-quantized value, the qualitative behavior is the same
as in the pure Kitaev models. Similar to the discussion for
the pure Kitaev model, the results for κxy are less reliable
near the crossover region where nonlinear effects are strong,
especially at low temperature. At higher fields where there is
good agreement between LSWT and MD, κxy computed with
noninteracting magnons is sufficient to describe the magnon
thermal Hall conductivity.

V. MAGNETIC FIELD DEPENDENCE OF THE THERMAL
HALL CONDUCTIVITY

We present the thermal Hall conductivity as a function of
field along with its second derivatives in Figs. 7–9. As made
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FIG. 5. Field dependence of the neutron scattering dynamical structure factor S(q, ω) computed with molecular dynamics for K =
−1, � = 0.25, �′ = −0.02 at T/|K| = 0.001. The intensities are normalized with respect to the maximum value of each plot, and the color bar
is presented on a logarithmic scale. The magnon bands of the polarized phase computed with LSWT are shown under the respective molecular
dynamics results in (e) and (f).

apparent in the second derivatives at low temperatures in all
three models, we see a sharp peak at fields corresponding
to a crossover between regimes. The peak positions in the
second derivatives specifically occur at the crossover field
strength between the regimes where there is a discrepancy
between MD and LSWT and the agreement shown in Figs. 2,
3, and 5. For example, the peak in the FM Kitaev case at
h/S|K| = 0.01 coincides with Fig. 2(d), where a continuum
becomes apparent on top of the dispersive magnon bands. A
similar comparison can be made between Figs. 8(b) and 3(j)

FIG. 6. Two-dimensional thermal Hall conductivity κ2D
xy /T as a

function of temperature due to magnons in the polarized state of the
K��′ model.

for the AFM Kitaev case and between Figs. 9(b) and 5(e) for
the K��′ case. Thus, in addition to the disagreement between
MD and LSWT, these peaks in the second derivatives serve
as an additional signature of the crossover between regimes
where nonlinear effects become important, corroborating the
above results.

VI. DISCUSSION

We first summarize our main results. (i) In the pure ferro-
magnetic Kitaev model at finite temperature, we investigated
the evolution of the dynamical spin structure factor as a func-
tion of magnetic field and demonstrated the gradual crossover
from the spin excitation continuum to topological magnons.
(ii) In the pure antiferromagnetic Kitaev model, we found
two crossovers in the dynamical spin structure factor at finite
temperature, which is consistent with two transitions at zero
temperature in the quantum model [37]. The spectral intensity
distribution of the spin excitations is shown to be quite dif-
ferent between the low-field chiral spin liquid regime and the
intermediate-field putative U (1) spin liquid regime. Although
many candidate Kitaev materials possess a ferromagnetic
Kitaev coupling, recent studies have unveiled the potential
realization of an antiferromagnetic Kitaev interaction in f -
electron honeycomb materials [54,55], polar spin-orbit Mott
insulators [56], and d7 compounds such as Na3Co2SbO6 and
Na2Co2TeO6 [57]. Whether these materials are proximate to
the KSL or putative U (1) spin liquid remains to be explored.
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FIG. 7. κ2D
xy vs (a) h/S|K| and (b) 1

T

d2κ2D
xy

dh2 for K = −1 for various
temperatures.

(iii) In the K��′ model, we again showed roughly two differ-
ent crossover regimes marking the transition from the zigzag
order to an intermediate-field regime of high frustration (a
putative spin liquid state may exist here in the quantum model)
and then the transition to the field-polarized state. (iv) In

FIG. 8. κ2D
xy vs (a) h/S|K| and (b) 1

T

d2κ2D
xy

dh2 for K = 1 for various
temperatures.

FIG. 9. κ2D
xy vs (a) h/S|K| and (b) 1

T

d2κ2D
xy

dh2 for K = −1, � =
0.25, �′ = −0.02 for various temperatures.

the pure ferromagnetic and antiferromagnetic Kitaev models,
we showed that the thermal Hall conductivity in the field-
polarized state can be larger than the half-quantized value.
Interestingly, the peak value of the thermal Hall conductiv-
ity is close to the half-quantized value near the crossover
regime. In the K��′ model, the peak value of the thermal
Hall conductivity is smaller than the half-quantized value,
although it depends on the precise values of the spin exchange
interactions.

We note that the results for the thermal Hall conductiv-
ity due to magnons in the FM Kitaev case [Fig. 4(a)] were
presented in a previous work [29]. McClarty et al. [29] also
studied the high-field topological magnon dynamical structure
factor at zero temperature using LSWT, nonlinear spin wave
theory using a 1/S2 expansion, and DMRG. In addition to
the consistency of our MD results with theirs at high fields,
we emphasize that our work is able to describe the entire
crossover regime at finite temperature, especially at lower
fields where magnon-based descriptions become unstable.

Comparing the MD result for the dynamical spin struc-
ture factor and linear spin theory, we showed that there are
significant nonlinear effects on the lower magnon band of
the topological magnon spectrum in the crossover regime,
whereas LSWT works well in higher magnetic fields. In ad-
dition, we saw signatures of this crossover in the second
derivative of the field-dependent thermal Hall conductivity.
κ2D

xy is computed from LSWT, and it is currently not known
how nonlinear effects can be taken into account. Hence, it
is conceivable that the very low temperature behavior of the
thermal Hall conductivity in the crossover regime (or close
to a phase transition) would deviate from the prediction of
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LSWT. Indeed, in a recent experiment with in-plane magnetic
field [28], in which thermal Hall conductivity was fit using
topological magnon contributions, the very low temperature
part of the data deviated from the LSWT prediction when
the system was close to the critical magnetic field for the
transition to the zigzag ordered state.

A recent experiment on α-RuCl3 with out-of-plane mag-
netic field found a novel intermediate-field phase before the
system enters the field-polarized state [21]. The crossover be-
havior from the spin excitation continuum in an intermediate-
field frustrated regime (or a putative spin liquid regime) to
the topological magnon regime in the K��′ model with out-
of-plane field may be directly relevant to this experiment. In
this case, one may be able to see such a crossover in terahertz
optical spectroscopy, while scattering experiments at high
fields may be out of reach.

An important question remains regarding what the behav-
ior of the thermal Hall conductivity would be in the crossover
regime between a putative intermediate-field quantum spin
liquid and the high-field polarized state at finite temperature.
The difficulty of describing this crossover regime may be one
of the reasons why there have been conflicting experimental
results for α-RuCl3 and their interpretations. Hence, it will
be very useful to develop a general theoretical framework
for an unbiased computation of thermal Hall conductivity
irrespective of the nature of underlying phases or excitations.
Such a framework may give us an important clue as to how
one should interpret thermal Hall conductivity data in the
crossover region of the finite-temperature phase diagram if an
intermediate-field spin liquid state does exist.
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APPENDIX A: ZERO-TEMPERATURE PHASE DIAGRAMS
OF THE PURE KITAEV AND K��′ MODELS

The quantum and classical phase diagrams for K = 1 and
K = −1 are shown in Fig. 10. The quantum phase diagrams
were obtained using exact diagonalization in Hickey and
Trebst [37]. We note that the transition between the Kitaev
spin liquid phase and the gapless U (1) spin liquid for K = 1
is not observed classically at zero temperature. The phase
diagram for K = −1, � = 0.25, �′ = −0.02 was obtained in
Chern et al. [39].

FIG. 10. Zero-temperature phase diagrams as a function of field
for the pure Kitaev and K��′ models. The phase labels correspond
to the following: KSL = Kitaev spin liquid; PM = polarized param-
agnet; CSL = classical spin liquid; GSL = gapless U (1) spin liquid;
ZZ = zigzag ordered phase; and 32, 50, and 18 correspond to 32-site,
50-site, and 18-site ordered phases, respectively.

APPENDIX B: DETAILS OF THE MOLECULAR
DYNAMICS CALCULATION

First, we use finite-temperature Monte Carlo (MC) tech-
niques, specifically parallel tempering, to obtain the spin
configurations needed to compute the spin correlations. We
treat the spins classically; that is, we treat the spins as
vectors S = (Sx, Sy, Sz ), and we fix the magnitude to be
S. We study system sizes up to L = 36 × 36 × 2. We first
perform at least 5 × 106 MC thermalization sweeps. Then,
we perform another 1 × 107 MC measurement sweeps, with
measurements recorded every 2000 sweeps. The spin con-
figurations are then used as initial configurations (ICs) for
molecular dynamics [45,48], where each measurement is
time evolved deterministically according to the semiclassical
Landau-Lifshitz-Gilbert equations of motion [46],

d

dt
Si = −Si × ∂H

∂Si
. (B1)

The system evolves for up to t |K| = 700, with step sizes
of δt |K| = 0.05, to obtain Sμ

i (t )Sν
j (0), in which the ICs are

averaged over to obtain 〈Sμ
i (t )Sν

j (0)〉. These results are then
numerically Fourier transformed to obtain the momentum-
and energy-dependent dynamical structure factors S (q, ω).
Last, our classical results are rescaled by a factor of βω,
where β = 1/kBT , in order to reflect the classical-quantum
correspondence Sclassical(q, ω) = βωSquantum(q, ω) in the lin-
ear spin wave theory framework [45].
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