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Magnetic properties of chiral magnets with impurities
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In the framework of the spin-lattice model we investigate a role of impurity doping on the evolution of the
magnetic susceptibility and the development of the magnetic moment in magnetic field in chiral magnets. We
focus on a particular class of silicide—Fe- and Co-doped MnSi. We introduce two feasible models accounting
for different possible impurity arrangements in a real compound. Our calculations are based on the Monte Carlo
method for classical spins. We are interested in the magnetic response and the degradation of the magnetic
phase transition upon doping. We compare the calculated susceptibility with available experimental data in
these compounds. We illustrate features of the behavior of the magnetic susceptibility by the corresponding
spin patterns showing the deterioration of the spiral structure with temperature and the corresponding formation
of ring-shape patterns in Bragg intensity profiles.
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I. INTRODUCTION

Chiral helimagnets have a wealth of intriguing properties
involving itinerant magnetism [1], anomalous behavior of
thermodynamic quantities [2,3], quantum phase transitions
[4–6], and transport properties [7,8]. Particularly interesting
is the investigation of the helimagnets under compositional
tuning in transition-metal compounds such as Mn1−xFexSi
and Mn1−xCoxSi [9–11]. Increasing impurity concentration
mimics the properties of a helimagnet under pressure and
enables one to get insight into the nature of the quantum
fluctuations and magnetic phase diagram at high pressure.

At low temperature these compounds exhibit long-
wavelength helimagnetic modulation with a sharp signature
of the first order transition which degrades with applying the
magnetic field, or increasing the concentration of impurities
[9,10]. Thermodynamic measurements indicate a puzzling
universal line for the difference between heat capacity at zero
magnetic field and heat capacity at B = 9 T as a function
of temperature [12]. This line exposes an independence of
the fluctuation contribution to the heat capacity on impurity
concentration [12].

Evolution of the helimagnetic fluctuations with doping
originates presumably from the existence of exotic magnetic
structures and the interplay of localized and itinerant mag-
netism. Experiments in Mn1−xFexSi and Mn1−xCoxSi show
[13,14] that with increasing doping (i) the transition tempera-
ture decreases monotonously and vanishes at xc ∼ 0.17; (ii)
the helimagnetic Bragg peaks (with long-range order) dis-
appear at a lower concentration x∗ ∼ 0.11; (iii) in the range
x∗ < x < xc the helimagnetic correlations are of short-range
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order; and (iv) there exists the precursor phase at temperature
slightly above of Tc, signaling that the chiral fraction of the
magnetic correlations sets in even in x∗ < x < xc.

In the present study we are interested in the behavior of the
magnetic susceptibility and the induced magnetic moment in
a helimagnet with impurities. Our consideration is based on
the assumption that magnetic properties of the system can be
well modeled by a picture of localized spins in the framework
of the lattice spin Hamiltonian. Our goal is to find out how
many results consistent with experiment can be deduced from
this simple base assumption. In our previous study [15] we in-
vestigated the dependence of the specific heat on the impurity
concentration. We demonstrated that the model of localized
spins correctly reproduces the evolution of the specific heat
and the degradation of the first-order magnetic transition with
increasing impurity concentration.

The behavior of the magnetic susceptibility found in the
present work shows similar degradation of the magnetic phase
transition. However, the description of magnetic properties is
more subtle as it involves the itinerant nature of the magnetic
moment in these compounds. The experiment shows a con-
siderable change of the value of the atomic magnetic moment
upon doping; the effective magnetic moment decreases from
μeff = 2.2μB f.u.−1 at x = 0 to μeff = 1.3μB f.u.−1 at x = 0.2
[11]. To be able to account for these changes we extend the
model of localized spins to include the effective magnetic
moment μ(x) depending on the impurity concentration.

This paper is organized as follows. In Sec. II we introduce
the model Hamiltonian that incorporates impurity spins as
localized spins coupled with the regular ones by modified
exchange and Dzyaloshinskii-Moriya coupling constants. We
introduce two feasible models for arrangement of impuri-
ties and their coupling with surroundings. In these models
an inherent itinerant nature of magnetic moment in doped
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compounds is ignored; the evolution of magnetic properties
originates solely from distorting the spin structure with dop-
ing. In Sec. III we present the corresponding results.

The model of localized spins predicts that the position of
the susceptibility peak is shifted to lower temperature with
increasing the concentration x. The induced magnetic moment
increases with magnetic field B with a rate depending on
x. We calculate an average spin configuration 〈Sr〉, which
enables us to illustrate changes taking place in the system
with doping. We find that the peak of the magnetic suscepti-
bility seen at zero and finite values of B correlates with the
transition from a one-spiral state to a multispiral structure
with increasing temperature as is revealed by Bragg intensity
profiles. To be able to compare with experiment we have to
account for the real change of the magnitude of the atomic
magnetic moment upon doping. We phenomenologically add
impurity-dependent magnetic moment for localized spins.
This is analyzed in Sec. IV.

II. MODEL

We use a standard lattice spin model [16–18] involving
the ferromagnetic exchange and Dzyaloshinskii-Moriya (DM)
spin-spin interactions

H = −
∑

r,r′
[Jrr′Sr · Sr′ + Drr′ (Sr × Sr′ ) · nrr′] − B

∑

r

Sz
r .

(1)

Variables Sr = (Sx
r , Sy

r, Sz
r ) are treated as classical spins of unit

length. Amplitudes of the exchange and DM interaction are
supposed to be nonzero only for the nearest neighbors, Jrr′ =
J and Drr′ = D. A unit vector nrr′ is directed from r to r′, r′
indexes a half of the nearest neighbors of r, r′ = r + x̂, r +
ŷ, r + ẑ, and the lattice spacing is taken to be unity, a = 1.
The third term is the Zeeman term; an external magnetic field
B is applied in the z direction.

We consider two models for an arrangement of doped
impurities. In the first model (model A) we assume that upon
doping a regular spin Sr is replaced by an effective impurity
spin Sc

r , which is similar to the regular one. The impurity spins
are coupled with neighboring regular spins by some modified
exchange and DM coupling constants Jrr′ = J ′ and Drr′ = D′.
If two impurity spins happen to occur in neighboring sites the
corresponding coupling constant is forced to be zero. As a re-
sult the effective Hamiltonian for a compound with impurities
is formally described by Eq. (1) with randomly chosen sites
for positions of the impurities and correspondingly modified
coupling constants Jrr′ and Drr′ .

In the second model (model B) impurity spins Sc
i are placed

at interstitial positions of the original lattice and we addition-
ally assume that there is no dynamics for these spins, i.e.,
they are considered effectively frozen. These interstitial spins
are coupled with their eight nearest neighbors by exchange
interaction

Himp = −
∑

i,r(i)

Jc
irS

c
i · Sr (2)

with some random coupling amplitude Jc
ir uniformly dis-

tributed over interval [0,1].

Models A and B ignore the difference in magnetic mo-
ments of impurity and regular atoms, which is essential in
compounds such as Mn1−xFexSi and Mn1−xCoxSi. Their pre-
dictions therefore have a limited range of applicability. The
end compounds FeSi and CoSi are not magnetic and cannot be
modeled by a picture of localized spins. We consider doping
levels less than x = 0.25. Nevertheless, models A and B are
interesting by their own as they describe transformations in
spin structures taking place totally due to disorder effects in
exchange and DM coupling constants.

The Monte Carlo (MC) simulation was carried out using
a standard single-site Metropolis algorithm on a L × L × L
lattice of size L = 30 with periodic boundary conditions. In
the calculation we fix the parameter J = 1 which serves as a
unit of temperature. We made 106 MC steps per spin (MCS) to
equilibrate the system and next 106 MCS (and up to 107 MCS
in separate runs) to gain statistics. Results are also averaged
over different impurity distributions; typically we consider
ni = 8 impurity distributions.

From the simulation we directly find the dependence of
the induced magnetization Mz = 〈mz〉, 〈mz〉 = 1/N

∑
r〈Sz

r〉,
N = L3, on the magnetic field. For the model A this aver-
age includes all spins of the lattice, both the regular and the
impurity ones. For the model B only regular spins are taken
into account. We find the magnetic susceptibility from the
corresponding variance, χ = N (〈m2

z 〉 − 〈mz〉2)/T .
Analyzing spin configurations 〈Sr〉, we find the corre-

sponding Bragg intensity profiles, I (q) ∝ |〈Sq〉|2, 〈Sq〉 =
1/N

∑
r〈Sr〉e−iq·r. A spin spiral with a wave vector k, Sr =

S⊥[e1 cos(k · r) + e2 sin(k · r)], is characterized by two sep-
arate peaks of the I (q) at points q = ±k. This and other
spin structures are convenient to analyze with the help of a
projected intensity, I∗(q̄) = ∑

qz (qy ) I (qx, qy, qz ), which shows
the profile of I (q) projected onto (qx, qy) or, respectively, onto
the (qx, qz ) plane. For a spin spiral the projected intensity
is I∗(q̄) = (S2

⊥/2)(δq̄,k̄ + δq̄,−k̄ ), where two-dimensional vec-
tors q̄, k̄ are projections of vectors q, k onto the corresponding
plane. In a magnetic field there appears an additional peak
at q̄ = 0 corresponding to a conical state, I∗(q̄) = S2

‖δq̄,0 +
(S2

⊥/2)(δq̄,k̄ + δq̄,−k̄ ). Presenting I (q) we set 2π/L as a unit
length in the q space.

III. RESULTS AND DISCUSSION

To illustrate our results we set coupling constants for reg-
ular spins J = 1.0 and D = 0.75. This leads to a pitch length
of a spin spiral equal to � ≈ 10a. A similar magnetic behavior
occurs if the magnitude of the DM coupling parameter lies in
the interval 0.4 < D < 2 [19,20]. For the coupling parameters
of the regular and impurity spins we adopt J ′ = 0.1 and D′ =
0. This is consistent with the experimental findings that in-
dicate that impurities substantially suppress the helimagnetic
order. More details on the choice of the coupling parameters
of the effective model are given in Ref. [15].

Figure 1 shows the evolution of the temperature de-
pendence of the magnetic susceptibility χ with increasing
impurity concentration x. Results are shown in zero applied
magnetic field. We assume that the dopant concentration x in
Mn1−xFe/CoxSi is related to the fraction of impurity spins in
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(a) (b)

FIG. 1. Susceptibility as a function of temperature for different
values of doping concentration x for models A (a) and B (b).

model A. In model B parameter x corresponds to a fraction of
interstitial spins in the original regular lattice.

Both evolution dependencies have similar features. In
particular, the low-temperature part is characterized by a
shoulder; the shoulder is wider for a lower impurity con-
centration. There is a steplike peak at the temperature of
the magnetic phase transition, and then a further decrease
of χ with increasing temperature. Model A demonstrates a
substantial dependence of the peak position on the impurity
concentration; the peak shifts to lower temperature with in-
creasing x. For model B this shift is much less pronounced.
The shift of the peak is consistent with experimental findings
(compare, e.g., Fig. 14 in Ref. [10] and Fig. 1 in Ref. [11]). At
the same time there is a distinction; the experiment indicates
the lowering of the peak with increasing x while our results
demonstrate that the amplitude of the maximum gets a little
bit higher with increasing doping concentrations. We relate
this discrepancy with our model assumption that a doped
impurity spin possesses the same local magnetic moment as
a regular one. In reality such an assumption is a rather rude
approximation. In Sec. IV we take into account the doping
dependence of the local magnetic moment. This will result in
lowering the peak of χ with doping. The observed increase
of χ in Fig. 1 comes from a factor 1/T in the definition of
susceptibility via spin fluctuations, χ ∼ 〈(�mz )2〉/T .

To get insight into the behavior of the magnetic suscep-
tibility shown in Fig. 1 and understand the nature of the
susceptibility peak, we illustrate in Figs. 2 and 3 changes
happening in the spin system of models A and B with increas-
ing temperature. In Fig. 2 we show the results for model A;
the upper pattern is taken at temperature T = 0.70 which is
lower than Tc, and the bottom one at temperature T = 0.90
which is a little bit higher than Tc. At a lower temperature one
observes well-defined peaks of the projected Bragg intensity
I∗(q̄) coming from a formation of the spiral structure, which
appears as two separate peaks of I∗. At a higher temperature
one sees the formation of a pattern with ring-shape structure
of the Bragg intensity characteristic of helimagnets. Such
patterns are widely seen just above the Tc in numerous neutron
experiments [13,21–23].

FIG. 2. Spin configuration and profile of the projected Bragg
intensity for model A; doping concentration x = 0.15.

In Fig. 3 we show spin configurations for model B. We
want to illustrate changes in the spin configuration happening
at the left slope of the susceptibility peak presented in Fig. 1.
The lower temperature T = 1.00 corresponds to the base of
the slope and the higher T = 1.10 to the crest of χ . One sees
that the transition at Tc goes through the distortion of the spiral
spin structure. First magnetic vortices start penetrating into
the spiral pattern. This leads to a change of the form of the
Bragg spots; they becomes elongated quasipoints in q space.
Then with increasing temperature the structure of Bragg spots
is further distorted; elongated spots steadily transform into a
quasiwhirl structure that finally comes to a ring-shape struc-
ture of the projected Bragg intensity I∗(q̄).

Another interesting feature seen in the behavior of a neu-
tron scattering function is the dependence of the pitch of
helical modulation � on impurity concentration; � decreases
monotonously from 18.2 nm for x = 0 to 6.2 nm for x = 0.14
[13]. Concurrently, the well-defined Bragg peaks smear and
completely disappear for x > x∗ = 0.11. Broad isotropic rings
of scattering intensity arise at x > x∗ = 0.11 which persist
down to the lowest temperature measured (see Figs. 1 and 2 of
Ref. [13]). Our results for models A and B do not demonstrate
such smearing with increasing the doping level x. We relate
it with inadequacy of the model of localized spins to capture
the real physics happening in the magnetic state upon doping
at x > 0.11. The picture of localized spins has some resem-
blance to experiment for impurity concentrations lower than
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FIG. 3. Spin configuration and profile of the projected Bragg
intensity for model B; doping concentration x = 0.012.

x ≈ 0.10. In this range it correctly predicts the smearing and
transformation of Bragg spots with temperature.

Next, we analyze the behavior of the magnetic susceptibil-
ity in a finite applied magnetic field. In Fig. 4 we illustrate
the evolution of the susceptibility for model A calculated for
various impurity concentrations x. Apart from a shoulder and
a steplike peak seen at B = 0, the features discussed earlier,
there appears another sharp peak superimposed on the first
broad one. This second sharp peak is seen at B = 0.05 and
B = 0.1; it moves towards lower temperature with increasing
x. With increasing field it merges with the first peak and
transforms into a broad hump similar to the hump seen in spe-
cific heat measurements [3,10,24]. The sharp peak observed at
B = 0.1 becomes wider with increasing x and gradually trans-
forms into a shoulder at x = 0.15 characterized by enhanced
fluctuations of χ due to the occurrence of various metastable
topological textures and mesophases [25].

The sharp peak signalizes a transition between spin pat-
terns of different spiral multiplicity. This is clearly seen from
an inspection of the corresponding Bragg intensity profiles. In
Fig. 5 we show I∗(q̄) at field B = 0.1 projected onto a plane
(qx, qz ) for selected temperatures in the vicinity of the sharp
peak. At x = 0.05 the sharp peak of χ is associated with a
transition from a single spiral spin state with two main peaks
of I∗(q̄) (a slight spot at q = 0 characteristic of conical mag-
netic structure is always present in nonzero magnetic field), to
one central peak at q = 0. With increasing x, at x = 0.10, the
transition goes from a one-spiral state to a multispiral state; at

FIG. 4. Susceptibility as a function of temperature for different
values of magnetic field B and doping concentration x for model A.

least three main peaks are seen in I∗(q̄) at T = 0.8. At even
higher concentration, x = 0.15, the transition is more compli-
cated. Here the multispiral state persists in a finite temperature
range due to proliferation of long-living metastable vortexlike
spin patterns. The transition goes into another multispiral state
that is characterized by a I∗(q̄) profile with five main peaks.

Next, we consider the dependence of the induced magnetic
moment in an applied magnetic field. We illustrate our results
for temperature T = 0.5 at which spins would be arranged
into a spiral in zero applied field. The dependencies of magne-
tization Mz for different x are given in Fig. 6. The dependence

FIG. 5. Profiles of the projected Bragg intensity for model A in
the applied field B = 0.1.
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(a) (b)

FIG. 6. Magnetic moment as a function of applied magnetic
field for different values of doping concentration x for models A
(a) and B (b).

Mz(B) demonstrates two regimes: the initial growth at B � 0.4
and the subsequent quasishoulder at which the magnetic mo-
ment shows the tendency to a saturation. For model A the
value of saturation is lower for higher x while for model B
the dependence of Mz(B) on the doping is less pronounced
and shows no sign of dependence of the quasishoulder on x.
For model A there are some irregular jumps in the magnetiza-
tion dependence originating from metastable spin structures
formed in a magnetic field. The magnitude of magnetization
at the quasishoulder is lower for a specimen with higher x,
which can be explained as higher dopant concentration in-
creases the disorder in the system. Significant temperature
fluctuations take place as well, leading to notable difference
of the magnetization at the quasishoulder from the saturation
value (Mz = 1). Experiments demonstrate behavior similar to
our results for model A, although with quite different value
of the saturation magnetization [9,11,26]. The value of the
saturation magnetization should also account for the change
of the local magnetic moment upon doping. We return to this
question in Sec. IV.

With increasing the applied magnetic field the polarization
of the system along z should proceed. In Fig. 7 we illustrate
spin patterns for model B (for model A spin patterns are very
similar). With increasing magnetic field the polarization of the
system takes place concurrently with the formation of whirls.
At a lower field B = 0.15 the spirals significantly distort due
to initializing whirls. At higher field B = 0.30 a part of the
system is almost polarized in the z direction while the rest of
the system is taken by vortices. At higher field all vortices
are melted and the system becomes fully polarized in the z
direction. The nonzero value of 〈Sz〉 shows itself as a separate
Bragg spot at qz = 0, which is seen in Fig. 7.

From two analyzed models it seems that only model A is
relevant for experimental situation for impurity concentrations
lower than x ≈ 0.1. In the next section we extend model A to
account for a change of a local magnetic moment with doping.
Model B shows properties that are far from experimental
results in doped MnSi. We think that experimental realization
of model B could be feasible in systems with frozen disorder.
A spin-glass ground state is possibly realized in Mn1−xCoxSi
at high doping level [27] although far beyond the scope of
model B.

FIG. 7. Spin configuration and profile of the projected Bragg
intensity for model B in applied fields B = 0.15 and B = 0.30.

IV. EXTENDED MODEL

The main drawback of the considered models is that they
ignore a change of the local magnetic moment upon a sub-
stitution of Fe or Co for a regular atom Mn. Experimental
data unambiguously show [10,11] that the atomic magnetic
moment substantially changes upon doping. Estimates based
on the Curie-Weiss constant give the effective magnetic mo-
ment μeff = 2.2μB f.u.−1 for x = 0 and it diminishes up to
μeff = 1.3μB f.u.−1 for x = 0.2 [11]. This change of the local
magnetic moment does not enter model Hamiltonian, Eq. (1).
To fix this shortcoming we extend model A and phenomeno-
logically include doping dependence into an atom magnetic
moment μ(x). We treat parameter μ as a ratio of μeff to
μeff(x = 0), where μeff is taken from the experimental data
of Ref. [11]. The resulting values of μ are given in Table I.
The extended Hamiltonian reads

H = −
∑

r,r′
[Jrr′Sr · Sr′ + Drr′ (Sr × Sr′ ) · nrr′ ] − Bμ

∑

r

Sz
r .

(3)

TABLE I. Parameters of the extended model. x is the doping,
μeff is the effective atom magnetic moment (in μB f.u.−1) according
to Ref. [11], and μ is the parameter of the extended model, Eq. (3).

x 0.0 0.05 0.10 0.15 0.20 0.25
μeff 2.2 1.97 1.6 1.3 1.3 1.3
μ 1.0 0.89 0.7 0.6 0.6 0.6
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(a) (b)

FIG. 8. Dependencies of susceptibility on temperature (a) and
induced magnetic moment on magnetic field (b) for different values
of doping x for the extended model, Eq. (3).

The evolution of the magnetization Mz = 〈μ/N
∑

r Sz
r〉 and

the susceptibility χ = 〈(�Mz )2〉/NT with increasing doping
concentration x is due to two effects. The first, doping Fe
makes neighboring Mn atoms lose their ordering due to per-
turbed couplings Jrr′ and Drr′ . This effect was analyzed in the
framework of model A. The second, explicit dependence of μ

on x comes from an itinerant nature of electron magnetism in
doped Mn1−xFe/CoxSi.

The temperature dependence of χ as well as a field depen-
dence of Mz is provided in Fig. 8. With increasing x, one sees
a gradual diminishing of the peak in χ and its shift to lower
temperatures that conform with experiment, as presented, e.g.,
in Fig. 1 of Ref. [11] and Fig. 14 of Ref. [10]. The doping

dependence of μ substantially changes the behavior of the
induced magnetization as well; the saturation value of Mz fol-
lows a notable decrease with x in accordance with experiment
[11,26]. This implies that doping involves significant changes
in the magnetic state of the system and the dependence of μ

on x should be considered for a successful description of the
magnetic properties of the Mn1−xFe/CoxSi family.

V. CONCLUSION

In summary, we considered a magnetic response of a he-
limagnet with impurities on an applied magnetic field. We
modeled the magnetic behavior in terms of localized classi-
cal spins on a lattice and introduced two feasible models of
arrangements of impurities. The first of two models, model A,
captures some of the main experimental features observed in
helimagnets. In particular, it predicts the impurity-dependent
peak of the susceptibility which is accompanied by a forma-
tion of vortexlike structures in a helimagnet. The calculated
dependence of the susceptibility on impurity concentration
supports the view that there is a cloud of helical fluctuations
spreading over a significant range of concentrations and tem-
peratures in doped compounds [12].

At the same time the presented models of localized spins
are incapable of describing the evolution of the Bragg inten-
sity profiles and the corresponding spin patterns with doping
levels greater than x = 0.10 at low temperature. The classical
models of localized spins do not allow one to infer definite
conclusions about the presence or absence of a quantum crit-
ical point in MnSi, and what is the nature of the true ground
state of an itinerant helimagnet with impurities.
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