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Emergent tricriticality in magnetic metamaterials
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Metallic disks engineered on the 100 nm scale have an internal magnetic texture which varies from a
fully magnetized state to a vortex state with zero moment. The interplay between this internal structure and
the interdisk interactions is studied in magnetic metamaterials made of square arrays of the magnetic disks.
The texture is modeled by a mesospin of varying length with O(2) symmetry and the interdisk interaction
by a nearest-neighbor coupling between mesospins. The thermodynamic properties of the model are studied
numerically and an ordering transition is found which varies from Kosterlitz-Thouless to first order via an
apparent tricritical point. The effective critical exponent characterizing the finite-size magnetization evolves
from the value for the 2D XY model to less than half this value at the tricritical point. The consequences for
future experiments both in and out of equilibrium are discussed.
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I. INTRODUCTION

Universality, phase transitions, and emergent magnetic
properties are examples of phenomena that have recently been
explored in metamaterials [1–10]. The ability to choose and
investigate the effect of a single parameter, such as spin or
spatial dimensionality [2–4,9], as well as the possibility to
directly observe individual magnetic elements, has been a
major impetus in this context [11–18]. These are indicators
that nanoengineered materials can, in analogy with cold atom
systems, become simulators of model many-body problems,
offering clear advantages over traditional condensed matter
systems operating on the atomic scale. In this regard, meta-
materials made up of magnetostatically interacting mesoscale
islands, or mesospins, are highly attractive. The multiscale
nature of the experimental setup allows for the emergence of
new degrees of freedom from the internal spin textures, giving
rise to rich behavior beyond that of standard magnetic models
[19–25]. Mesoscopic arrays of circular magnetic islands show
a vast ensemble of internal magnetic textures, which vary
strongly with the local environment. One of the most char-
acteristic textures is a vortex which can progressively unwind
from a state with zero magnetic moment into a collinear state
with maximal moment [26].

The change from vortex to collinear states was shown
to be driven by a competition between inter- and intrais-
land interactions so that in an emergent description the
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interactions between mesospins are self-consistently modi-
fied by the collective environment [26]. As a consequence,
mesospin ordering occurs via an emergent transition that de-
pends on interactions at both the meso- and atomic scales. In
the initial experiments the transition was shown to be kinetic
in nature, although a route toward true thermodynamic phase
transitions was also identified. This suggests that the interplay
between collective and internal energy scales could indeed
open the door to phases and phase transitions that are not at
present obtainable in atomic systems.

In this paper we present a simple model which captures
the essence of the interplay between the meso- and the
atomic length scales. The interisland interactions are allowed
to influence the net moment of the elements, which pro-
vides the coupling between the length scales involved. This
leaves an XY spin model with an internal degree of freedom:
the spin length, which can vary with an associated energy
scale. We find that, as a function of this internal energy
scale, the magnetic phase transition evolves abruptly from
Kosterlitz-Thouless (KT) [27] to first order at a point show-
ing a remarkable resemblance to a tricritical point. That is,
despite the absence of true long-range magnetic order and the
continuously varying spin length, the phase diagram closely
resembles that of the S = 1 Blume-Capel model [28,29]. In
this case, we observe an effective critical exponent, relevant
for finite-size systems, that varies continuously from that ob-
served in 2D XY magnets of finite size, β ≈ 0.23, toward a
value characteristic of a tricritical point.

II. MODELING THE MAGNETIC METAMATERIAL

The total magnetic moment of interacting circular islands
depends on the intrinsic material properties: internal mag-
netic texture, geometry, size, and separation. For instance,
above the inherent ordering temperature of the material there
is no magnetic order at any length scale, while below that
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FIG. 1. The black dots represent results from micromagnetic
simulations for an isolated island with Ec/Ev ≈ 1.1. The solid (col-
ored) lines represent the energy obtained from S [Eq. (2)] for an
isolated island for two different values of Ec/Ev. The red dashed lines
represent an island with four collinear neighbors when Ec/Ev = 1.1.
Bottom dashed line: All neighbors are parallel with the island. Top
dashed line: All neighbors are antiparallel. Intermediate dashed lines:
Mixture of parallel and antiparallel neighbors.

temperature, both thermal fluctuations and magnetic texture
on the mesoscale are essential elements dictating the mo-
ment of the islands [26]. As examples a vortex state is a
magnetic texture with a zero net in-plane moment, while a
collinear inner state of the islands yields the largest net mo-
ment. The single vortex state can be characterized by two
observables: a continuous change of the moment within the
disk and a shift of the position of the vortex core, as illustrated
in the top schematic of Fig. 1. In the vortex state with a
zero net moment, the vortex core sits at the center of the
disk. The moment on the disk increases from zero as the
vortex unwinds and approaches the disk edge. It is eventu-
ally annihilated as it moves across the edge of the magnetic
island [19,22,24–26,30].

In this paper we retain the variable moment length as the
main manifestation of the evolving magnetic texture, leaving
the effects of the evolution in the vorticity for future work.
The total moment on disk i then becomes an in-plane vector
�Mi, allowing for the definition of an in-plane, dimensionless

mesospin vector of length

ri = | �Mi|
Mmax

, (1)

where Mmax is the magnitude of the saturated total moment.
The islands can thus be viewed as mesospins whose variable
length depends on the internal spin texture of the disks. It
varies continuously between zero and one, depending on the
competition between internal and many-body energy scales
and a suitable model must include both these features.

The energy scale, E , associated with the variation of r of an
isolated disk has been studied in detail in previous work [26].
The internal magnetic energy landscape of a single disk, ob-
tained from micromagnetic simulations using MuMax3 [31],
is represented by the black dots in Fig. 1. Here we plot
E/Ev − 1 vs r, where Ev is the energy of the pure vortex state
(r = 0) and Ec is the energy of the collinear state (r = 1).
The energy landscape is highly asymmetric, with a maxi-
mum at approximately r = 0.8, corresponding to a vortex core

positioned inside but close to the edge of the island. As the
vortex core reaches the edge and moves outside the disk the
energy associated with the magnetic texture rapidly decreases
so that Ec lies well below the maximum energy. The ratio
Ec/Ev determines whether an isolated disk carries a moment
or not in its lowest energy configuration and this can be varied
either side of unity by changing the disk radius [26].

As shown in the figure, the landscape is qualitatively repro-
duced by the following function,

S = Ec

[
p

(
r

r0

)2

− p + 1

]
+ Ev

3
(2p − r2 + 1), (2)

where

p = 1

2

[
1 − erf

(
r − r0

a
√

2

)]
,

with a = 0.035 and r0 = 0.85.
The agreement between the fitting function, S/Ev − 1

(solid lines), and the micromagnetic simulations (black dots)
is found to be good, as seen in the figure. Also included in
the figure are the effects of interdisk interactions (red dashed
lines). Here the lines represent interactions of a disk with
spin length r with four fully collinear neighbors (r = 1). The
bottom dashed line represents the case when all four neighbors
are parallel with the island. For each subsequent dashed line
above, one neighbor has been reversed until they are all an-
tiparallel, as represented by the top dashed line. The difference
in energy is a measure of the many-body interactions that one
can expect in an array of disks. Of particular interest here is
the case of Ec/Ev = 1.1, which for the isolated disk indicates
preference for a vortex state. When including interactions,
however, a collinear configuration is instead favored with the
mesospins lying parallel to each other. This precursor illus-
trates how interdisk interactions can influence the collective
behavior of an array promising the emergence of rich many-
body behavior.

Magnetostatic interdisk interactions can be engineered
through island geometry and thickness as well as mate-
rial composition to produce a wide range of symmetries,
strengths, and interaction length scales [32–34]. Combining
this control with variable internal properties of the disks
offers access to rich possibilities for both equilibrium and
nonequilibrium behavior. To illustrate this, we study the test
case of a ferromagnetic interaction with continuous symmetry.
With this approach, the Hamiltonian describing interactions
between disks, placed on a square lattice taking into ac-
count both internal texture and many-body interactions, can be
written

H = −Jm

∑
〈i j〉

rir j cos(θi − θ j ) +
∑

i

Si(r). (3)

Jm is the interaction between nearest-neighboring islands and
θ is the in-plane orientation of the mesospin, 0 � θ < 2π .
The first term is similar to the 2D XY model, but includes
the varying spin length, 0 � r � 1, and the second term is the
parametrized r dependence defined by Eq. (2). The proposed
model is similar to the vector Blume-Capel model (VBCM)
[28,29,35,36] in which vector spins take discrete lengths (r =
{0, 1}). The modeling of the emergent mesospin interactions
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gives us, in addition, the continuous variation of r and the
phenomenological energy function S(r).

Anticipating the situation where, below the bulk ordering
temperature, the array of interacting disks can be thermally
equilibrated, or that the nonequilibrium dynamics can be well
represented through an emergent effective temperature, we
study the thermal properties of the proposed model. The mag-
netization, M, is divided up into the mesospin density R and
orientation density �, defined

M = 1

L2

√√√√(∑
i

ri cos θi

)2

+
(∑

i

ri sin θi

)2

,

R = 1

L2

∑
i

ri,

� = 1

L2

√√√√(∑
i

cos θi

)2

+
(∑

i

sin θi

)2

. (4)

The susceptibilities are defined by χM = L2 〈M2〉−〈M〉2

T , χR =
L2 〈R〉2−〈R〉2

T , and χ� = L2 〈�〉2−〈�〉2

T . � and χ� correspond to
the magnetization and the magnetic susceptibility of the con-
ventional 2D XY model. It is also convenient to define the
parameter �E = (Ec − Ev − 2Jm )/Ev whose sign designates
the preference for broken symmetry or zero spin length in
the lowest energy configuration. The parameter �E could be
controlled experimentally by varying disk radius, thickness,
form, and separation. In this paper we report results with the
fixed ratio Jm = 0.2Ev, so that the degeneracy between the
vacuum state and the fully ordered magnetic state for the disks
is obtained when �E = −0.4, which marks a point of major
importance in this work.

III. METHODS

Arrays of L2 mesospins on a square lattice with periodic
boundaries were simulated using the Metropolis algorithm.
L = 32 unless otherwise stated. Each calculation was based
upon 40 000 thermalization full lattice sweeps prior to
400 000 measurement sweeps, to ensure thermal equilibra-
tion and statistically robust results [37,38]. A full lattice
sweep entails attempting to update both r and θ once for
each lattice site. The required thermalization timescales were
established through monitoring the relaxation timescale for
M. Ec/Ev was varied while always keeping Jm = 0.2Ev. The
initial state at each temperature was set to either a random
spin configuration with respect to both θ and r in a “hot
start” or an ordered, fully magnetized configuration in a
“cold start.”

IV. RESULTS

The magnetization, M, obtained from simulation is shown
in Fig. 2 for different �E values from a hot start. The results
reveal transitions from a high-temperature disordered phase to
a low-temperature quasiordered phase. For negative values of
�E , a ferromagnetic ground state is energetically favorable.
For �E large and negative the transitions are smooth, with the

T/Jm

M ΔE = -0.9

ΔE = -0.8

ΔE = -0.7
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ΔE = -0.5

ΔE = -0.4
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ΔE = -0.2

0.0 0.5 1.0
0.0

0.5

1.0

FIG. 2. Transitions for different values of �E . The transition
becomes sharper with increasing �E , and becoming discontinuous
for �E = −0.2.

finite-size magnetization resembling that observed through
the KT transition of the 2D XY model, or plane rotator model
[39,40]. Increasing �E causes a sharpening of the transition,
up to an apparent tricritical point with �E ≈ −0.3. Increasing
beyond this value, the finite-size magnetization undergoes
a discontinuous jump, as in a first-order transition; see for
example �E = −0.2. For higher values (�E � −0.1), the
transition into an ordered collinear phase does not occur.

The curves in Fig. 2 are fits to the data sets of the form
M = M0(T − Tc)β , where Tc and β are free parameters and
M0 = 1. Given this phenomenology, one should perhaps con-
sider these curves as guides to the eye, although for �E large
and negative the results are consistent with the zero parameter
fitting procedure outlined in Ref. [39] as well as with many ex-
perimental observations [41]. However, rather provocatively,
the observed effective exponent β does evolve in a way that
is perfectly compatible with observations in a finite system as
it crosses over from critical to tricritical behavior. The best-fit
exponents for a few values of �E are shown in the upper panel
of Fig. 3. Starting from the expected value for the finite 2D XY
model for �E < −0.9, the fitted β decreases continuously to
less than half its initial value, with β ≈ 0.1 close to the appar-
ent tricritical point. This evolution should be compared with
mean-field theory where the tricritical exponent βtri = 1/4,
down from β = 1/2 at the regular critical point, and with the
2D Blume-Capel model where βtri = 1/24 [42] is only one-
third of the 2D Ising critical exponent β = 1/8. We note that
the effective tricritical exponent is quite close to the critical
exponent for the Ising model, β = 1/8, although it is difficult
to incorporate this observation into a tricritical scenario for
quasiordering of the rotors.

In the lower panel of Fig. 3 we show the evolution of
the transition temperature as �E increases. For �E < −0.9,
TC slightly overshoots the extrapolated transition temperature
value for the plane rotator model TC ≈ 0.898Jm [43]. The
overshoot is consistent with the expected logarithmic shift in
the effective transition temperature with system size [39]. TC

then decreases with increasing �E reaching approximately
half the plane rotator transition temperature at the tricritical
point before dropping discontinuously to zero for �E between
−0.3 and −0.2.
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FIG. 3. Top panel: The effective critical exponent β as a function
of �E . The upper dashed line shows β = 0.231, the effective expo-
nent of the 2D XY model. The lower dashed line shows β = 1/8,
the value for the 2D Ising model. Bottom panel: The finite-size
ordering temperature, TC. The dashed line shows TKT = 0.898Jm,
the extrapolated value for the 2D XY model. The cross marks the
estimated tricritical temperature.

The continuous evolution of a measured critical exponent
from the critical to the tricritical value as tricriticality is ap-
proached is a crossover effect depending on corrections to the
scaling of the asymptotic regime. That is, the tricritical fixed
point of a renormalization group flow is unstable to approach
from any direction. As a consequence, flows from any point on
the order-disorder phase boundary will take the system back
toward the critical fixed point [44]. This crossover effect is
controlled by a crossover exponent φ, giving a characteristic
crossover length scale which diverges as the tricritical point is
approached. As a result, there is a continuous evolution of the
measured exponent (in this case the order parameter exponent
β) for fixed system size, as one enters the tricritical region.
At a fixed distance from the tricritical point, one can therefore
expect an evolution of this exponent with system size, back
toward its critical value.

For our system, as the order parameter exponent for the
BKT transition is itself an effective exponent, the finite-size
scaling is at present an open field of study. We have repeated
the approach to tricriticality for system sizes L = 16 and
L = 64 in addition to those for L = 32 presented above. In
Fig. 4 we show the evolution of the effective exponent β with
1
L for �E = −0.7 and �E = −0.4. In each case, there is
evolution of the exponent to higher values as 1

L decreases.
For �E = −0.7 the effective exponent extrapolates rather
spectacularly to β ≈ 0.23 as 1

L → 0 suggesting a crossover
exponent φ close to unity. However, this scaling is not re-
peated closer to the tricritical point. For �E = −0.4, with
some caution, we can again report linear scaling with 1

L , but
the extrapolated value falls well below 0.23. More detailed
and extensive studies are required but our results already raise

0 0.05 0.1
0.0

0.1

0.2

0.3

E = -0.7
E = -0.4

FIG. 4. Evolution of effective critical exponent β with inverse
system size, 1

L . Full lines show linear fits and the dashed line shows
β = 0.231.

the prospect of rich behavior, falling outside the confines of
critical finite-size scaling.

Figure 5 shows our estimation of the transition temperature
over the same range of system sizes. In both cases a small
evolution is observed toward lower temperatures for larger
system sizes. In Kosterlitz-Thouless systems, the effective
transition temperature, corresponding to that at which the
correlation length equals the system size [39,45,46], should
scale logarithmically with L,

TC (L) − T �E
KT = π2

c(ln L)2
. (5)

Our data for both �E = −0.7 and �E = −0.4 are consistent
with this, as shown in Fig. 5, although away from the �E →
−∞ limit T �E

KT is not known so that Eq. (5) has two fitting
parameters.

The change in the nature of the transition from KT to first
order is driven by the change in rotor length, as shown in the
upper panel of Fig. 6, where we plot R vs T for different
�E values. As �E passes through −2Jm = −0.4 the role
played in the free energy by the rotor length changes. For
�E < −0.4, placing a rotor of maximum length leads to a
gain in internal energy for both random and correlated spin
configurations. As a consequence, the internal energy favors
an ordered state with R = 1, while entropic forces drive R
below unity, with maximum entropy for R = 0.5. For �E
considerably greater than −0.4, energy costs are such that
R → 0 as T → 0 so that entropy drives the growth in R at all
finite temperatures. Between these two limits there is a small
window of �E for which finite R is energetically favorable if

0 50 100
L

0.0

0.5

1.0

T C

E = -0.7
E = -0.4

FIG. 5. Evolution of fitted transition temperature with system
size: �E = −0.7, black dots; �E = −0.4, red dots. Full lines show
fits to Eq. (5) and the dashed line shows TKT = 0.898Jm.
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FIG. 6. Top panel: The average mesospin length R vs tempera-
ture for different �E . Bottom panel: The orientation density � vs
temperature for different �E . The open symbols indicate values of
�E in the first-order region of the phase diagram.

symmetry is broken (or almost broken in the case of a KT tran-
sition); otherwise it is entropically driven and energetically
unfavourable. This phenomenology is well illustrated in Fig. 6
which shows R to be a monotonically increasing function as
temperature is reduced for �E < −0.6. For greater values of
�E , R dips below 0.5 and for �E = −0.3, the approximate
tricritical value R clearly decreases as T falls to intermediate
values before rebounding to large values through the phase
transition. It is this “elastic” resistance to large R values at
low temperature that drives the transition first order. At �E =
−0.2 the transition is clearly first order, while for �E = −0.1
no symmetry breaking is observed and R decreases monoton-
ically to zero as T → 0.

This phenomenology in which energy gain at large R de-
pends explicitly on symmetry breaking is generic to tricritical
systems. Similar behavior is observed for the VBCM in two
dimensions (see Appendix) and in systems with discrete sym-
metry [47]. However, there are effects specific to the model
studied here which allows for continuous variation of the rotor
length. Close examination of Fig. 6 shows that R drops below
0.5 at intermediate temperature, even for �E = −0.5 and
�E = −0.4, while in the equivalent figure for the VBCM (see
Appendix), R remains greater than 0.5 for all �E � −0.4.
This difference arises as the system profits from the entropy
associated with a continuous spread of rotor lengths, despite
the energy gain from placing rotors of fixed length r = 1. This

is clearly a nonuniversal effect depending on the form of S(r)
and could be modified in different nanoengineered arrays.

The KT transition is, from a thermodynamic point of view,
extremely special as there is no true magnetic symmetry
breaking and so no order parameter in the thermodynamic
sense. At first sight this might suggest that a first-order tran-
sition signaled by a discontinuous jump in such a parameter
should be excluded. However, the day is saved here by the pa-
rameter R, which is a scalar measure of the mesospin density
and which is a well defined intensive thermodynamic variable
at all temperatures. A thermodynamic signal of the first-order
transition is therefore a discontinuous jump in R. However,
the spin density remains coupled to the magnetization and
to the development of quasi-long-range orientational order
for the mesospins through the tricritical point and into the
first-order regime. This is illustrated in the lower panel of
Fig. 6, where we show the evolution of � with temperature
for different values of �E . The purely orientation order pa-
rameter mimics M, with the pseudocritical range narrowing
as the tricritical point is approached.

The development of tricritical coupling between spin den-
sity and spin rotation degrees of freedom is illustrated by the
three susceptibilities shown in Fig. 7. For �E < −0.6, which
is deep in the Kosterlitz-Thouless region, χM and χ� show a
finite-size rounded divergence at the same temperature, which
can be fitted to the characteristic exponential form for the KT
transition (not shown), while χR shows a rounded maximum
at temperatures that are decoupled from the KT transition and
two orders of magnitude smaller than the singular suscepti-
bilities. As �E increases into the crossover region toward
tricriticality, a sharp peak in χR emerges. It rapidly locks
onto the divergences in χM and χ� which also sharpen so
that, on arriving at the apparent tricritical point, the three
susceptibilities show the same sharply singular feature. This
can be taken as a signature of the coupling of the internal and
external degrees of freedom of the mesospins.

Within the first-order regime, the three regions—the high-
temperature entropic regime, the unfavorable intermediate-
temperature regime, and the broken-symmetry ordered
phase—are illustrated in Fig. 8 in the upper panel. The fig-
ure shows snapshots for different temperatures, for �E =
−0.2. As we are in the regime where, in the absence of
interactions, the vortex state is favored, the low-energy mag-
netic state is generated through many-body interactions. In
region III both orientational disorder and a wide range of rotor
lengths can be observed. In region II while the rotors remain
disordered their mean length is clearly reduced, reflecting the
energy cost of creating full length rotors while remaining in
the disordered phase. In the low-temperature phase, I, the
symmetry breaking allows for an energy gain on generating
extended rotors. In the lower panel we show χR on a linear
scale over the same temperature range. Entry into the inter-
mediate range is marked by a broad maximum at around T =
0.5Jm signaling a rapid reduction in mean rotor length. Below
this point, χR decreases until it hits the first-order disconti-
nuity at T ≈ 0.25Jm below which the rotor length remains
more or less fixed near the maximum value. Also shown is
the rotor susceptibility for a noninteracting system (Jm = 0).
The peak at intermediate temperature is lower and broader
when interactions are switched off, illustrating that rotor-rotor
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FIG. 7. Susceptibility vs temperature for different �E . Top
panel: The magnetic susceptibility χM. Middle panel: The mesospin
density susceptibility χR. Bottom panel: The orientation density
susceptibility χ�. The vertical dotted lines show the peak positions
overlapping in χM and χ�, but not in χR, for the three lowest values
of �E .

interactions offset the energy cost of finite spin length, helping
to maintain their presence down to lower temperatures.

The data shown in Figs. 2, 6, and 7 are for hot starts for
fixed �E . Following this protocol, the symmetry-breaking
transition disappears between �E = −0.2 and −0.1 even
though the ground state of an ordered configuration with ro-
tors of unit length remains lower than any disordered state
for �E < 0. The loss of the transition in this range is a
nonequilibrium result characteristic of a first-order transition
and the presence of metastable states. Making runs from cold
starts exposes hysteresis in M, due to the loss of ergodicity as
shown in Fig. 9. For �E = −0.1 the ordered state survives a
cold start up to T = 0.15Jm and the metastability survives up
to around �E = −0.3 in the tricritical region.

The hysteresis can also be observed by ramping �E in
loops from negative values upward and back again, while
holding the temperature fixed [38]. The full phase diagram in
the �E , T plane from loops ramping �E at fixed temperature

FIG. 8. Upper panel: Snapshots of mesospin configurations at
high (III), intermediate (II), and low temperatures (I). In (III) a full
range of r values is observed, while in (II) the range is limited
to small values. Transformation from (III) to (II) is a crossover.
Evolution from (II) to (I) is via a first-order transition for Jm 	= 0.
Lower panel: χR as a function of temperature for �E = −0.2, with
and without interactions.

is shown in Fig. 10. This phase diagram is similar to that
observed for the VBCM [38]. The ordered phase resists finite-
temperature fluctuations up to �E ≈ 0.3, considerably above
the equilibrium threshold for stability of the ordered phase.
The figure therefore shows a finite region of metastability
in which the ordered and disordered phases, labeled I and
II, coexist for simulations of fixed timescale. The zone of
metastability closes at the tricritical point and ramping �E
gives an alternative measure of its position, which we esti-
mate to be �E = −0.26 ± 0.01, Ttri = 0.375 ± 0.025. This
is in good qualitative agreement with our estimate from the
evolution of the effective critical exponent. The true phase

T/Jm T/Jm T/Jm T/Jm

Hot start
Cold start

M

ΔE = -0.3 ΔE = -0.4ΔE = -0.2ΔE = -0.1

0.0

0.5

1.0

0.00 0.15 0.10 0.25 0.30 0.45 0.40 0.55 0.70

FIG. 9. M as a function of temperature for different values of
�E , starting at random (hot start) or collinear (cold start) spin con-
figurations at each temperature.

184409-6



EMERGENT TRICRITICALITY IN MAGNETIC … PHYSICAL REVIEW B 107, 184409 (2023)

0.0 
T/Jm

0.5 1.0 

-0.4ΔE
0.6

-1.0

0.0

TCP

II

I

III

I/II

FIG. 10. The phase diagram showing the tricritical point (TCP)
separating the first- and second-order behavior. The dashed line
represents the phase boundary in region of first-order transitions
and the area between blue (cold start) and red (hot start) points marks
the region of metastability. The three X’s indicate the positions of
the broad maximum in χR (shown in Fig. 8 for �E = −0.2) for
�E = {−0.2, −0.1, 0.0}. The solid line connecting the crosses is a
guide to the eye.

boundary must run close to the line extrapolating between
�E = 0 at T = 0 and the tricritical point, as shown in Fig. 10,
although we have not attempted to evaluate it in detail. The
crossover between regions II and III in which the rotors are
confined to short lengths and in which a full spread of lengths
appear is also shown. The position of the broad maximum
in χR which characterizes the crossover is marked for �E =
{−0.2,−0.1, 0.0}.

V. DISCUSSION

We have shown that engineered two-dimensional arrays of
magnetic disks on the mesoscale offer interactions that map
convincingly onto a model system showing tricriticality. In
this development, we represent interdisk interactions and in-
ternal spin textures by an effective nearest-neighbor coupling
between magnetic mesospins of varying length. The energy
scale fixing the mesospin length is the magnetic vortex core
energy, giving a Blume-Capel type model [28,29] with both
continuous, in-plane rotor orientations [38,48] and continu-
ous rotor length. The tricriticality observed numerically is
rather special in that it marks the evolution from a Kosterlitz-
Thouless phase transition to a first-order transition [38,48,49].

Tricritical systems are the confluence of three phases
whose thermodynamics is governed by three independent

0.0 0.5 1.0 1.5
T/Jm

0.0

0.5

1.0

R

ΔE = -0.4

ΔE = -0.3

ΔE = -0.2

ΔE = -0.1

FIG. 11. Results from the discretized model where r = {0, 1}.

thermodynamic variables [50]. As a consequence their crit-
ical properties are characterized by three scaling variables
[51] and associated critical exponents [44]. This situation
is captured most simply by the Blume-Capel model (BCM)
[28,29], in which temperature and field conjugate to an or-
der parameter with Z2 symmetry are joined by an energy
scale or chemical potential associated with spin creation and
annihilation.

Archetypal examples of tricritical systems are the merger
of the superfluid transition of 4He and the critical point of
the demixing transition in 4He − 3He mixtures [52,53], or
the smectic-C∗–smectic-A transition, which evolves through
tricriticality on mixing two species of liquid crystal [54]. Ex-
perimental studies of the tricriticality are complicated by the
difficulty in accessing the three intensive thermodynamic vari-
ables. For example for 4He − 3He mixtures, while exquisite
temperature control is possible [55], the field conjugate to the
superconducting order parameter is inaccessible. The mixture
can be controlled by varying the 3He mole fraction which
serves as a second-order parameter, but the true intensive
variable, the chemical potential difference μ = μ3He − μ4He,
is also inaccessible. In principle, μ could be controlled in
ultrathin helium films [56] but the experimental environment
is extremely challenging. In other systems, the situation is
even more constrained. Arrays of Josephson junctions can be
diluted [57], allowing the approach to tricriticality, but the
procedure introduces quenched site disorder and the complex-
ity associated with it. First-order magnetic transitions occur,
for example, in FeRh films [58] or in spin ice materials
[59]. These transitions could be tuned to tricriticality [60,61],
but this would require control of both the coupling constant
and the chemical potential through applied pressure or site
dilution.

The magnetization of a system of finite size is a prime
experimental indicator of the Kosterliz-Thouless phase tran-
sition [39]. It changes in a characteristic manner though the
transition, with the emergence of an effective magnetic critical
exponent β ≈ 0.23 [41]. We have shown here that the effec-
tive magnetization exponent crosses over toward tricriticality
in an analogous manner to a thermodynamic exponent, with
an effective tricritical value less than half the critical value,
as is the case for the two-dimensional BCM [42,62]. Going
beyond this phenomenology would require more extensive
numerics and a deeper examination of the theory. This pa-
per provides a platform for this in future work, but more
importantly for the present, this straightforward approach pro-
vides a platform for experiments on arrays of mesoscale disks
in which order parameter crossover, effective or otherwise,
should be accessible to measurement.

In such experiments all three intensive thermodynamic
variables relative to the tricritical phase diagram can be
controlled through the change of disk spacing, radius, and
thickness [26] and application of an external field. Further,
system size will be an independent control parameter of
these metamagnetic systems, providing experimental access
to finite-size scaling. This is a powerful tool for simula-
tion [62], but is generally outside the realm of experiment
in condensed matter systems. Artificial systems such as the
mesospin arrays presented here or cold atom platforms [63]
could provide future access to this essential phenomenology.
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Experimental arrays on a square lattice would most likely
retain anisotropic interactions, in which case we anticipate
a return to the original BCM model with a tricritical point
and critical behavior in the Ising universality class. Model
systems order antiferromagnetically [64] but disk arrays can
order differently, with chain formation [7,33,65], while lifting
of the cubic symmetry could lead to ferromagnetic states, as
is the case for their three-dimensional counterparts [66]. Con-
tinuous symmetry could emerge in triangular arrays [64,67]
and experimental systems can be ferromagnetic [33] so that
nanoarray tricriticality, a Kosterlitz-Thouless phase transition,
and even ferromagnetism, as reported here, are all experimen-
tal possibilities. The triangular system is potentially doubly
rich, as it offers two Kosterlitz-Thouless phase transitions [67]
delimiting the phase with emergent continuous symmetry. The
fate of this phase in the presence of variable spin length is an
interesting problem, pertinent for the long-standing problem
of two-dimensional melting [68–70].

BCM and vector-BCM (VBCM) models have been further
extended to Blume-Emergy-Griffiths (BEGM) type models
[35,36,44,71] to describe the full 4He − 3He phase diagram.
Here, a biquadratic interaction between spins is added cap-
turing isotropic interactions. The extra term introduces the
possibility of separating the demixing from the ordering of
the internal degree of freedom, allowing for liquid-gas-like
criticality, 4He − 3He tricriticality, and a triple point between
superfluid, normal 4He-rich and 3He-rich phases in both three
[35] and two dimensions [48,49,72]. The extra biquadratic
term could also be engineered in the nanoarrays by modi-
fication of the disk topology, leading to the development of
quadrupole interactions. This would allow for the experimen-
tal study of models resembling the BEGM and vector-BEGM
in two dimensions.

VI. CONCLUSION

The experimental realization of emergent tricriticality in
magnetic metamaterials with coupled intra- and interisland
excitations poses serious experimental challenges, notably the
creation of an environment showing equilibrium thermody-
namics (real or effective) and controlled departures from it.
However it offers a test case that prepares the ground for a vast
array of possibilities offered by nanoengineered metamagnets,
with both fundamental exploration and technological applica-
tions in mind. In particular, the identification of mesospins
of variable length in controlled out-of-equilibrium environ-
ments invites applications in adaptive matter [73] through
the dynamical modification of the many-body energy land-
scape [74]. The self-modification of the energy discussed

here is analogous to the interstitial self-trapping of hydro-
gen in metals, where the hydrogen interstitial and the local
strain field form a dynamic quasiparticle [75]. Local energy
landscape fluctuations within an array of mesospins could
also offer local sensing capabilities and long-term memory,
a further cornerstone of adaptive or intelligent matter [73].
Clever engineering of the metamaterials may therefore offer
pathways toward more advanced materials or even analog
logic mesospin components [76].

All data are available from the corresponding author upon
reasonable request.
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APPENDIX

In the context of our work, the Hamiltonian for the VBCM
is defined

H = −Jm

∑
〈i j〉

rir j cos(θi − θ j ) +
∑

i

Dri, (A1)

with D = Ec − Ev. The spin length ri now takes on one of
two values: ri = 1 or ri = ε, lim ε → 0. Taking the limit
ri → 0 attributes a phantom rotational degree of freedom to
the vacancy, ensuring that it occupies the same volume in
configuration space as a site filled with a classical spin. With
this precaution the integrals of the partition function can be
normalized by 2π [36], so that R → 0.5 at high temperature.
As before, the dimensionless energy shift is defined �E =
(D − 2Jm )/Ev.

The evolution of R vs temperature for different �E values
is shown in Fig. 11 confirming the predicted behavior at high
temperature. For �E � −0.4, R remains greater than 0.5 over
the whole temperature range. This is in contrast with the
model in the main text with continuous variation in ri, in
which R dips below 0.5 at intermediate temperatures for both
�E = −0.4 and �E = −0.5.
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