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The magnetic behavior of two-dimensional (2D) periodic ensembles of dipole-coupled nanoparticles (NPs)
is investigated theoretically by considering all possible structural organizations in 2D Bravais lattices, namely,
square, triangular, rectangular, rhombic, and oblique lattices. The different interaction-energy landscapes (ELs)
are characterized by determining the local minima that define the stable and metastable magnetic configurations
as well as the transition states connecting them. The topology of the resulting ergodic ensemble of stationary
states is analyzed from both local and energy perspectives by calculating the corresponding kinetic networks and
disconnectivity graphs. For all lattices, the magnetic orders of the ground-state and low-lying metastable con-
figurations are identified, including the elementary relaxation processes between them. A remarkable profound
dependence of the collective magnetic behavior on the structural arrangement of the NPs is revealed. Square and
triangular nanostructures are extremely good structure seekers, showing starlike kinetic networks and discon-
nectivity graphs with palm-tree form. Their continuously degenerate ground states are throughout-reaching hubs
connected to nearly all excited magnetic configurations over a single first-order saddle point. Rhombic ensembles
have double-funnel ELs in which the time-inversion-related ground states play the role of hubs with exceedingly
high connectivity densities. These systems need to undergo very few elementary transitions with small downward
energy barriers to relax from any configuration towards one of the ground states. However, the energy barriers
between the two funnels are quite large and, furthermore, they increase as the number of particles in the unit cell
is increased. Therefore, ergodicity breaking is expected in the thermodynamic limit. Finally, the rectangular and
oblique lattices show contrasting ground-state orders, the former consists of an antiferromagnetic alternation of
head-to-tail chains of spins while the latter is ferromagnetic. Nevertheless, the ELs of these nanostructures are
qualitatively very similar. In both cases, all excited magnetic configurations consist of independent flipping of the
chains of spins that are formed along the direction of the shorter Bravais vector. The whole energy spectrum of
metastable magnetic configurations can thus be mapped to a one-dimensional Ising model. As a result, the kinetic
network of stationary points is latticelike and the disconnectivity graphs have a willow-tree form. In conclusion,
the collective magnetic behaviors of nanostructures having different point-group symmetries are contrasted and
related by varying the parameters of the lattices that interpolate between them.
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I. INTRODUCTION

Recent advances in nanoparticle (NP) synthesis, auto-
organization, and structuring have made it possible to create
artificial two-dimensional (2D) materials consisting of ensem-
bles of nanoscale magnets [1–5]. These systems represent
an extremely active and challenging research area from both
fundamental and technological viewpoints. Indeed, finite-size
effects, reduced dimensionality, and competing interactions
lead to novel magnetic behaviors which are most relevant for
potential applications, for example, in the fields of spintronics,
memory devices, and high-density data storage [6–8]. The
magnetic properties of NP ensembles are known to depend
on the size and composition of the NPs, on the nature and
strength of their interactions, as well as on their geometrical
arrangement. Early studies of magnetism at the nanometer
scale have been focused on understanding the dependence
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on size, structure, and composition. Thus, remarkable en-
hancements of the spin moments, orbital moments, and
magnetocrystalline anisotropy of small transition-metal clus-
ters have been revealed [9–18]. Furthermore, in more recent
years, the interest in the global magnetic response of NP
ensembles has been growing steadily [4,5,19–24]. From this
perspective, two qualitatively different regimes need to be
distinguished, depending on the relative importance of single-
particle local energies and interparticle coupling strengths.
In weakly interacting ensembles the magnetic properties are
dominated by single-particle contributions such as the NP
magnetization and magnetic anisotropy. The dynamics of the
ensemble is largely the result of local reorientations of the
magnetic moments of individual NPs. Therefore, the details
of the underlying geometry of the NP arrangement play a
secondary role. A far more complex and challenging situation
arises in strongly interacting ensembles, for instance, in sys-
tems consisting of closely packed, highly symmetric NPs with
weak magnetocrystalline anisotropy. In this case, changes in
the orientation of the magnetization of one particle inevitably
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induce changes in the magnetic order at the surrounding par-
ticles. The cooperative many-body nature of the ensemble
manifests itself even in the most basic transitions between
two nearby metastable magnetic configurations. Therefore, it
conditions the magnetic response of the ensemble as a whole
[25–27]. Under these circumstances, the structure of the en-
semble of nanoparticles, the existence of translational and
point-group symmetries or, in contrast, their absence due to
some degree of disorder, become crucial since they define the
local environment and long-range spatial correlations of the
magnetic moments. The resulting physical consequences are
expected to be particularly important for the dipole-coupled
NPs considered in this work since this interaction is both
frustrating and long range [20,24–29].

Previous investigations of the magnetic properties of
two-dimensional NP ensembles have uncovered a variety
of fascinating physical behaviors including long-range-order
phase transitions, continuous ground-state degeneracies, and
order-by-disorder effects [19,20,28–30]. In addition, remark-
able nonequilibrium phenomena have been found, such as
dynamical slowing down, ergodicity breaking, memory ef-
fects, and aging [31–34]. Furthermore, it has been shown
how several of these effects are intrinsically related to the
qualitative changes in the interaction-energy landscapes of
these systems [35,36]. On the one hand, ensembles with a high
point-group symmetry and a small degree of disorder are good
structure seekers with a clear global energy minimum, long-
range order, and fast unhindered relaxation dynamics. On the
other, strongly disordered ensembles exhibit very rough and
frustrated ELs with an extremely large number of low-energy
local minima separated by large energy barriers, which thus
leads to glasslike relaxation dynamics [35,36]. These studies
demonstrate that the lattice structure in which the NPs are
organized, its point-group symmetry, or the absence thereof
play a central role in the equilibrium and dynamical properties
of magnetic NP ensembles. Nevertheless, our understanding
of the effects of lattice geometry and symmetry on the co-
operative magnetic behavior of these nanostructures is still
incomplete. It is the goal of this work to investigate the collec-
tive magnetic properties of NP ensembles by characterizing
the energy landscapes of dipole-coupled ensembles of mag-
netic NPs, which are located on the regular positions of the
five different 2D Bravais lattices. The distinctive features of
the ELs corresponding to each periodic lattice are revealed
by giving particular emphasis to analyzing how they correlate
with the specific symmetries of the various NP ensembles.
Aside from the fundamental theoretical interest of correlating
the magnetic order and collective magnetic behavior of 2D
nanostructures with the underlying structural organization of
the particles, this study of periodic systems is expected to
serve as a reference in order to understand the behavior of
more realistic situations including, for example, structural dis-
order, particle-size distributions, or random local anisotropy
fields.

The remainder of the paper is organized as follows. In
Sec. II, the theoretical background is presented. The consid-
ered model is introduced and the various methods employed
for the characterization of the ELs are illustrated. In Sec. III,
the different 2D Bravais lattices are investigated and dis-
cussed in some detail by contrasting their metastable magnetic

configurations, kinetic networks, and disconnectivity graphs.
The paper is closed in Sec. IV with a summary of the main
conclusions and by pointing out some relevant extensions and
implications of this study.

II. THEORETICAL MODEL AND METHODS

The Hamiltonian of a system of classical dipole-coupled
magnetic moments �μk located at the positions �rk reads as

H = μ0

8π

∑
k �=l

[ �μk · �μl

r3
kl

− 3
(�μk · �rkl )(�μl · �rkl )

r5
kl

]
, (1)

where the vector �rkl = �rk − �rl connects lattice sites k and l , rkl

is the corresponding Euclidean distance, and μ0 the vacuum
permeability. Each magnetic moment �μk has a fixed modulus
μk and its direction is characterized by the polar and azimuthal
angles θk and ϕk . In this work, the NPs carrying the local
moments are located at the regular positions of 2D Bravais
lattices, whose primitive cells and point-group symmetries are
illustrated in Fig. 1. In practice, the extended nanostructures
are modeled by considering N particles in a unit cell with
periodic boundary conditions.

A. Energy landscapes

The static and dynamic properties of a magnetic NP en-
semble are governed by its underlying EL, which in the
present case depends on 2N degrees of freedom {θk, ϕk|k =
1, . . . , N}. A meaningful simplification of such a complex
multivariable function is to discretize it into its stationary
states, namely, its local minima (LM) and first-order sad-
dle points or transition states (TS) [37–40]. These stationary
points form a connected network which, putting aside the
short-time fluctuations of the magnetic configurations around
the local minima, allows us to characterize the long-time
stochastic dynamics of the system. The LM and TS are de-
termined by the following algorithm, which is adapted from
Ref. [41]. To get started, an initial set of metastable states
is built. One or more local minima are found starting from
random magnetic configurations and using the L-BFGS algo-
rithm [42]. Subsequently, the following iterative procedure is
performed: (i) Choose a LM from the database of stationary
states that has not yet been used for locating new stationary
states. (ii) Perform an eigenvector-following search starting
along a specific eigenvector of the Hessian H at this LM
[39,40,43]. One usually chooses the eigenvectors associated
with the smallest eigenvalues of H since the energy increase
along these directions is smallest. (iii) Once a TS is found,
its two adjacent LM are identified by stepping off the TS in
the directions parallel and antiparallel to the single unstable
mode and, starting from there, by performing the correspond-
ing L-BFGS minimizations [42]. (iv) If one of the two LM
obtained in the previous step coincides with the initial LM, the
other LM and the TS are added to the database of stationary
states. (v) The algorithm proceeds by choosing a different
eigenvector and repeating the steps (ii)–(iv). Once a fixed
number of eigenvectors have been tried (in this work 10), the
algorithm loops back to step (i) and a new LM is considered.
The algorithm terminates after all LM in the database have
been used as initial states.
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FIG. 1. Illustration of the five different types of two-dimensional Bravais lattices. In (a) the basis vectors are characterized by their lengths
λx and λy and by the angle α between them. The longer and shorter diagonals dl and ds are also indicated here by dotted lines. For λx = λy we
have (b) the square lattice if α = π/2, (c) the triangular lattice if α = π/3, and (d) a rhombic lattice otherwise. For λx �= λy one obtains (e) a
rectangular lattice if α = π/2 and (f) an oblique lattice if α �= π/2.

B. Kinetic networks

The set of all LM and TS of an energy landscape forms a
connected network often known as the kinetic network of the
system. It can be illustrated by an undirected graph, where the
LM are represented by nodes and the elementary transitions
connecting two LM through an intermediate TS (first-order
saddle point) are represented by an edge between them. A
number of properties can be calculated in order to characterize
the various kinetic networks thus allowing us to compare the
topologies of the ELs in different physical situations. The
degree n(i) of node i is defined as the number of edges or
TS connecting node i with any other node. As networks may
vary strongly in size, i.e., in the number of nodes, it is sound
to introduce the local degree density of node i as

ρn(i) = n(i)

NLM − 1
, (2)

where NLM is total number of LM in the network. Nodes
having comparatively large values of ρn(i) are known as hubs.
When available, they are exceedingly important for the dy-
namical behavior of complex systems.

Another important network property is the distance di j

between two nodes i and j, which is defined as the minimum
number of steps or edges that are required to connect nodes i
and j. The average path distance 〈d〉 over all pairs of nodes
provides a measure of the extension of a network. Moreover,
it is often meaningful to quantify the clustering in a network.
A common measure of it is the transitivity

C = 3 × number of triangles

number of triads
, (3)

which represents the probability that in a triad of nodes (i �=
j �= k), where i is connected to j and j is connected to k, also
i and k are connected with each other [44].

Two simple reference models are particularly useful to
compare and classify network characteristics, namely, pe-
riodic lattice structures and random networks. They have
strongly contrasting properties. In a random network, the
nodes are connected randomly with each other according to
a given average degree [45,46]. They have relatively short
average path distances 〈d〉 and small transitivities C. In
contrast, in a latticelike network, all nodes have the same
number of close-by neighbors. This implies large average path

distances and non-negligible transitivities, unless the network
is bipartite.

A particular combination of these properties leads to the
notion of small-world networks. According to Watts and Stro-
gatz, a network can be regarded as a small world if it combines
the short average-path distance of random graphs with the
relatively large transitivity of lattice networks [47]. Small-
world networks are further characterized by the presence of
hubs having large local connectivity densities. Many naturally
occurring networks are small worlds, for instance, social and
neural networks. In our context, it is interesting to elucidate
under what circumstances the kinetic networks of magnetic
NP ensembles exhibit small-world behavior [45,46].

C. Disconnectivity graphs

Disconnectivity graphs (DGs), as proposed by Karplus
et al., allow us to analyze the properties of an EL from
the perspective of the energies of the metastable LM and
the energy barriers separating them [38]. Several examples
of DGs of magnetic nanostructures are shown in Sec. III.
The physical meaning of these graphs can be clarified by
describing the algorithm employed to construct them (see also
Refs. [38,40,48]). For any given energy E , the energetically
accessible local minima, i.e., the local minima having an
energy lower than E , are grouped into disjoint sets denoted
as superbasins. Two LM belong to the same superbasin if
there is a path, for example, the minimum energy path (MEP),
which connects the two LM without ever exceeding the energy
E . Usually, one starts by choosing E close to the energy of
the global minimum. In the absence of degeneracies, only
one superbasin, the one containing the global minimum, is
accessible for such low values of E . If the ground state is
N-fold degenerate, there are then N disjoint superbasins. As
the energy E is gradually increased, more local minima are
found with energies lower than E . However, in most cases,
these newly found LM cannot be connected to the ground
state without exceeding the energy E . Therefore, one usually
observes that the number of superbasins first increases. Never-
theless, at some point, the superbasins start to merge with each
other since the separating energy barriers along the connecting
MEP can be overcome. Eventually, for very high values of E ,
only one superbasin is left, which contains all local minima of
the system, provided that the energy barriers are finite.
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In practice, the DGs are obtained by performing the above-
described analysis at a discrete set of equidistant energies,
which are sometimes indicated on the y axis. At each energy
E , a superbasin is represented by a vertical segment. Two seg-
ments are connected with each other, if they share at least one
local minimum. The position of these along the horizontal x
axis is arbitrary. It is usually chosen in a way that superbasins
separated by lower-energy barriers are closer to each other
than those separated by larger energy barriers. In the end, the
result is a treelike graph, where the end point of each branch
gives the energy of the corresponding local minimum and the
merging point of two branches indicates the energy barrier
which separates them. See, for instance, the DGs shown in
Sec. III or in Refs. [35,36].

III. RESULTS

The goal of this section is to determine the magnetic
properties of dipole-coupled NPs organized in 2D periodic
arrangements having different lattice symmetries by exploring
the interaction-energy landscapes of these nanostructures. For
this purpose, we consider all the different Bravais lattices
which can be constructed in two dimensions: square, trian-
gular, rectangular, rhombic, and oblique lattices. Aside from
the fundamental interest of characterizing the properties of
the idealized periodic arrangements, the present investigations
are also important as a reference in view of assessing and
understanding the consequences of disorder inherent to exper-
imental samples [35].

The extended nanostructures are modeled with finite unit
cells having N = 36 magnetic dipoles and periodic boundary
conditions. In order for the energies to be comparable, the
surface coverage, i.e., the surface per particle, is the same
in all cases. Moreover, the energies are measured in units of
the interaction energy of a pair of parallel nearest-neighbor
(NN) magnetic moments pointing perpendicular to the vector
connecting them, which is given by

εDD = μ0

8π

μ2

r3
0

, (4)

where r0 is the NN distance. For example, in a system com-
posed of Fe particles with a diameter φ = 3 nm and μ �
2.6 × 103μB at a distance r0 = 5 nm one has εDD = 1.4 meV
[35].

A. Square lattice

The periodic square lattice is defined by λx = λy and α =
π/2 (see Fig. 1). Its point-group symmetry with respect to
a lattice site is the direct product of the group D4 and the
inversion group {E , I}. It contains 16 symmetry operations.
First, we have the π/2 rotations E , C4, C2

4 , and C3
4 around

the axis perpendicular to the lattice plane and the four π

rotations U2 around the axes passing through the middle of
opposite sides or along the diagonals of the squares, which
comprise the group D4. The remaining symmetries are the
four reflections across the vertical planes defined by the U2

in-plane axes and the vertical C4 axis, the inversion I , the

reflection σh across the horizontal plane of the lattice, and the
two rotoreflections C4σh and C3

4σh.
In Fig. 2, representative magnetic configurations of the

ground state and of the first and second metastable states are
shown for a periodic square lattice with N = 36 magnetic NPs
in the unit cell. The ground-state magnetic configurations are
known to be microvortex (MV) states, where the orientations
of the magnetic moments �μk at each lattice site k are given by

�μk =
[
μx

k

μ
y
k

]
=

[
(−1)nyμ cos (ηMV)
(−1)nx μ sin (ηMV)

]
, (5)

where ηMV ∈ [0, 2π ] is the microvortex angle, nx and ny ∈ Z
indicate the position of site k along the x and y directions of
the square lattice, and μ = |�μk| is the modulus of the magnetic
moments [19,28,30]. For instance, ηMV = 0 corresponds to
the striped antiferromagnetic state shown in Fig. 2(a) and
ηMV = π/4 corresponds to a perfect vortex state shown in
Fig. 2(b). In the absence of lattice distortions, the MV state
is continuously degenerate with respect to ηMV. This can be
shown to be a consequence of the quadratic form of the dipole-
dipole interaction energy and the C4 rotational symmetry of
the square lattice [28,30]. The continuous ground-state degen-
eracy of the MV state can be broken by thermal fluctuations
because the curvature of the energy landscape is different for
different values of ηMV. It is also known to be broken by
structural disorder and distortions. The resulting stabilization
of a few states out of a continuous set of degenerate ground
states is known as the order-by-disorder effect [49–51].

In contrast to the ground state, the degeneracies of the
excited states are finite. They are a consequence of the point-
group and translational symmetries of the lattice. In Figs. 2(c)
and 2(d) one observes that in the lowest excited configurations
the magnetic moments arrange primarily in microvortices,
where the local magnetic moments �μk do not align along the
x and y axes defined by the Bravais vectors but rather along
the diagonals (i.e., ϕ = ±π/4 or ±3π/4). The first excited
configuration can be obtained from the ground state having
ηV = π/4 by interchanging two vertical and two horizontal
neighboring lines of magnetic moments with each other. Con-
sequently, the net magnetization is zero as in the ground state.
The periodicity of the configuration with respect to transla-
tions along the x and y axes, which in the ηMV = π/4 ground
state was two lattice spacings, is now completely removed
within the unit cell. The absence of any intrinsic translational
invariance implies that all 36 translations within the unit cell
yield different degenerate configurations. Moreover, due to
the time-reversal symmetry of the Hamiltonian, the energy
remains unchanged upon inverting locally all magnetic mo-
ments (i.e., �μk → −�μk). Since an inversion changes the sense
of the vortices (see Fig. 2) 36 new degenerate configurations
are obtained. This raises the total degeneracy of the first ex-
cited state to 72. The symmetry operations of the D4 group do
not yield any additional degenerate magnetic configurations
in this case since they result in states identical to some trans-
lation [see Fig. 2(c)].

The second excited state is obtained from the ground state
having ηMV = π/4 by interchanging the spin orientations of
two horizontal and two vertical lines of magnetic moments
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FIG. 2. Lowest-energy metastable magnetic configurations of a periodic square lattice with N = 36 dipole-coupled NPs in the unit cell. The
circles indicate the position of the particles while the arrows indicate the orientation of the magnetic moments within the xy plane. Examples
of the configurations of the continuously degenerate ground state are shown in (a) for ηMV = 0 and (b) for ηMV = π/4 [see Eq. (5)]. The
configurations of the first and second excited states are shown in (c) and (d), respectively.

as in the first excited state, and by rotating in addition the
magnetic moments on one of the horizontal and one of the
vertical interchanged lines by π . In contrast to the ground
state and the first excitation, the second excited state has
a finite in-plane net magnetization. The periodicity of this
configuration with respect to translations along the x and y
directions is three lattice spacings. As a result, nine different
degenerate configurations are obtained. For each of these,
the four elements of the C4 group yield different states since
they have different in-plane magnetizations. This explains the
36-fold degeneracy of the second excited state. Time inver-
sion does not yield any new states since the time-inverted
configurations can also be obtained through a π rotation
followed by an appropriate translation. Notice that for this
to be possible it is necessary that the average rotation of
the magnetic configuration vanishes. Further excited states
could not be found for the considered unit-cell size having
N = 36 particles.

The energy landscapes of ensembles of dipole-coupled
magnetic moments usually contain a large number of lo-
cal minima, which are connected through diverse transition
states [25–27,35,36]. Each LM-TS-LM triplet represents an
elementary transition or relaxation process, the combination
of which determines the stochastic dynamics of the system.
In the present case, as a consequence of the high symmetry
of the square lattice, we find only NLM = 109 local minima,
assuming that the degenerate ground state is counted as one,
and NTS = 288 first-order transition states connecting them. A
first insight into the topology of the EL of the square lattice is
provided by the kinetic network shown in Fig. 3(a). Here, the
nodes represent the LM and the edges the connecting TS, thus
demonstrating the connectivity among the LM. Remarkably,
the ground state (red node) is directly connected to all the ex-
cited states, while there are no direct LM-TS-LM connections
at all between any pair of excited states. Hence, the degree
density of the ground state is ρn = 1, i.e., it is a throughout-
reaching hub. One concludes that the basin of attraction of
the ground state is extremely large. This is a consequence of
its continuous degeneracy, which allows the system to always
adapt its lowest-energy configuration to the most suitable one
in order to reach all the different excited states over a single
energy barrier. The resulting network, denoted as a star S108

in graph theory, has some fascinating properties [52]. For
once, the distance between any pair of excited states is d = 2
elementary transitions, while the distance between any excited

state and the ground state is d = 1. This results in a average
path distance 〈d〉 = 1.99. Moreover, a star network is bipartite
since there are no loops, the continuous ground state building
one sublattice and the 108 excited states the other. Hence, the
transitivity of a star network is C = 0.

From a physical perspective, the starlike topology of the
kinetic network (KN) is the most clear sign of a very fast
relaxation from any excited state towards the ground state
since the latter is at the center of the network and only one
energy barrier has to be overcome. Furthermore, the dynamics
is completely funneled because there are no connections be-
tween the excited states. One concludes that the square-lattice
NP arrangement is an extremely good structure seeker [53].
As expected, the periodic arrangement shares many of its
characteristics with slightly disordered square-lattice ensem-
bles [35,36]. However, it may be interesting to note that the
kinetic network of periodic square-lattice ensembles shown
in Fig. 3(a) does not strictly match the usual definition of
small world behavior, in contrast to the slightly disordered
counterpart, despite the fact that the 〈d〉 is so small [35,36].
The reason for this is the vanishing transitivity. Nevertheless,
the fact that C = 0 is not expected to have any significant
impact on the unhindered relaxation dynamics of the system.

While the kinetic network reflects the connectivity of
the metastable states, it provides no insight on the energies
involved in the elementary transitions. A most needed comple-
mentary characterization of the energy landscape is provided
by the disconnectivity graphs. Here, the focus no longer re-
sides on the connectivity among the metastable states but on
their energies and on the energy barriers separating them.
In Fig. 3(b) the DG of the periodic square-lattice ensemble
illustrated in Fig. 2 is shown. In order to improve its read-
ability, degenerate states have been grouped by representing
them with a single branch. The energy barriers from any of
these configurations towards the ground state are the same.
The number of degenerate metastable states belonging to each
branch is indicated.

The continuously degenerate ground state is easily rec-
ognizable at the bottom of the disconnectivity graph, with
all excited states located at much larger energies. Notice
that the energy profiles are extremely asymmetric, as the en-
ergy barriers from any excited state towards the ground state
are very small, while the energy barriers from the ground
state to any excited state are about 102–104 times larger.
Therefore, starting from any given initial state, the system
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FIG. 3. (a) Kinetic network of local minima (nodes) and transition states (edges) and (b) disconnectivity graph of the energy landscape of
a periodic square lattice with N = 36 dipole-coupled NPs in the unit cell. In (b) degenerate states are grouped together and the degeneracy
is indicated at the corresponding branch. Energies are given in units of εDD [Eq. (4)]. The ground state shows a continuous degeneracy with
respect to the microvortex angle. See also Fig. 2 and Eq. (5).

relaxes most rapidly and irreversibly towards the ground state,
even at relatively low temperatures. The analysis of the DG
complements the information provided by the kinetic network
and is in qualitative agreement with the behavior found for
weakly disordered square-lattice ensembles [35,36].

The ELs of two-dimensional square-lattice arrangements
of magnetic moments have been previously investigated in
the framework of the classical XY model [54,55]. Despite
the common focus on the collective behavior of interacting
local magnetic degrees of freedom, there are profound differ-
ences in the physics behind the XY model and the present
description of ensembles of magnetic nanoparticles. The latter
concerns spins interacting through NN ferromagnetic cou-
plings and therefore lacks long-range and competing effects.
Furthermore, the intrinsic continuous 2D spin-rotational sym-
metry is artificially removed in the calculations by keeping
one spin fixed [54,55]. This contrasts with the present NP
ensembles which are subject to dipolar magnetic couplings
which are anisotropic, long ranged, and frustrated. Never-
theless, it is interesting to observe that the EL of the XY
model corresponds to an efficient relaxation towards the
global minimum, i.e., to a good structure seeker. This be-
havior is qualitatively similar to what we observe in the
periodic square lattice, as well as in previous studies of
weakly disordered NP ensembles [35,36]. Moreover, the
downhill energy barriers separating the metastable minima
and the lower-lying spin arrangements are in both cases very
small. It would be interesting to extend the investigations
on spin models by characterizing the ELs corresponding to
other lattice structures and magnetic couplings, particularly
when competing interactions and magnetic frustrations are
present.

B. Triangular lattice

The triangular lattice is defined by λx = λy and α = π/3
and its point-group symmetry is the direct product of D6 and
the inversion group {E , I}. It consists of 24 operations (see
Fig. 1). First we have the D6 group: the six π/3 rotations
around the principal C6 axis perpendicular to the lattice plane
and the six π rotations U2 around the axis passing either
along a nearest-neighbor bond or through the middle of the
bonds between nearest neighbors. Combining them with the
inversion group gives the inversion I , the reflection across
the horizontal plane σh, four rotoreflections of the form S6 =
Cn

6 σh with n = 1, 2, 4 and 5, and the reflections across the
six vertical planes defined by the U2 axes and the principal C6

axis.
In Fig. 4 the ground-state magnetic configuration (a), the

first excited state (b), and the second excited state (c) are
shown. The ground state is known to be ferromagnetic and
continuously degenerate with respect to the orientation of
the magnetic moments [29,35]. This is a consequence of
the D6 point-group symmetry of the triangular lattice. As
in the square lattice, this continuous degeneracy is lifted by
thermal fluctuations, structural disorder, or distortions [35].
The first and second metastable states are low-symmetry vor-
texlike magnetic textures, in which the orientations of all
local moments change with respect to the ground state. These
configurations have a small or vanishing average magneti-
zation per particle (m = 0.15 μ and m = 0 for the first and
second excited states, respectively) which strongly contrasts
with saturated ground state (m = μ). The first excited state
shows no periodicity within the unit cell. Thus, translations
yield a 36-fold degeneracy. Furthermore, since the average
magnetization is finite all elements of the C6 group yield

184407-6



THEORY OF THE COLLECTIVE BEHAVIOR OF … PHYSICAL REVIEW B 107, 184407 (2023)

FIG. 4. Lowest-energy magnetic configurations of dipole-coupled NPs on a periodic triangular lattice with N = 36 particles in the unit
cell. The circles indicate the position of the particles while the arrows indicate the orientation of the magnetic moments within the xy plane.
One of the magnetic configurations of the degenerate ground state (a), first excited state (b), and second excited state (c) are shown.

different configurations, which brings the degeneracy to 216.
Finally, since the average rotation of the magnetization field
is finite [see Fig. 4(b)], it follows that time inversion en-
hances the degeneracy by an additional factor 2. This accounts
for the observed 432-fold degeneracy of the first metastable
state.

In the case of the second metastable state, the degeneracy
due to translations is also 36. However, in this case, only a
π/3 rotation around the principal C6 axis results in different
magnetic configurations. Further rotations around the C6 axis
yield states that can be obtained through a translation, a π/3
rotation, or a combination of both. Notice that such an intrin-
sic invariance is possible only when the average magnetization
vanishes. Finally, as in the first excited configuration, the
average rotation of the magnetization field is finite. Therefore,
time inversion leads to new states, which raises the degeneracy
of the second excited state to 144. Two further metastable
states are found at comparable or somewhat higher energies,
the symmetry of which is very low, as in the first excited state.
Analogous considerations show that the degeneracies of these
states are also equal to 432.

In order to investigate the connectivity and elementary
transitions among the metastable states of the triangular-
lattice system, we have determined the corresponding kinetic
network, which is shown in Fig. 5(a). The network consists
of NLM = 1650 local minima (represented by the nodes) and
NTS = 5280 transition states (represented by the edges). One
observes that the continuously degenerate ground state, high-
lighted by the red circle, is at the center of the network.
Most of the excited states are directly connected to it. How-
ever, in contrast to the square lattice [Fig. 3(a)] one finds
here direct connections between pairs of excited states, i.e.,
first-order saddle points allowing for elementary transitions
between metastable configurations. Hence, the kinetic net-
work of the triangular lattice is not strictly bipartite. Still, most
of the excited states are directly connected to the ground state,
which thus represents a hub with nearly maximum degree
density ρn = 0.91. Consequently, the average path distance
〈d〉 = 2.17 is remarkably small for a network of this size.
In addition, the transitivity C ≈ 10−3 is extremely small. One
concludes that the kinetic network of the triangular lattice is
very close to starlike. Therefore, the topography of the EL
remains qualitatively similar to what is observed for the square
lattice.

From a physical perspective, the results show that the re-
laxation dynamics of dipole-coupled NPs forming a triangular
lattice should be extremely fast since the vast majority of the
excited states are directly connected to the ground state. In
this regard, the kinetic networks of square and triangular en-

sembles share their main characteristics of very good structure
seekers. It has been shown that weakly disordered triangular
lattices also have this property [35]. Although the average
distance 〈d〉 = 2.17 between the LM is very small, one cannot
say that the KN of the perfect triangular lattice matches the
typical small-world behavior since the transitivity C ≈ 10−3

is very small. This contrasts with the properties found when
a weak degree of disorder in the NP positions is taken into
account. In fact, weak disorder lifts the degeneracies among
the LM and multiplies the possibilities for elementary tran-
sitions among them. Thus, the transitivity is raised in a most
significant way without significantly increasing 〈d〉 [35].

The disconnectivity graph of the triangular lattice with
N = 36 particles in the unit cell is shown in Fig. 3(b). As
before, degenerate states are grouped, representing them by
a single branch, provided that the energy barriers towards all
other states are identical. The ground state is easily recogniz-
able at the bottom of the DG, clearly separated from all the
excited states which are located at much larger energies. This
leads to a very asymmetric energy profile, as in the case of
the square lattice. The downhill energy barriers towards the
ground state are extremely small, while the energy barriers
in the opposite uphill direction are quite large. As a conse-
quence, the system relaxes most rapidly and irreversibly from
any excited state towards the ground state. This behavior is
consistent with the previously discussed properties of the KN.
One concludes that periodic triangular-lattice ensembles of
magnetic NPs are indeed remarkably good structure seekers,
as the periodic square-lattice ensemble or the previously stud-
ied weakly disordered ensembles [35].

C. Rectangular lattice

A rectangular lattice is characterized by λx �= λy and α =
π/2. It has a D2 point-group symmetry, as well as the general
time-inversion symmetry. One does not expect any continu-
ous metastable state degeneracies as, for instance, in periodic
square or triangular lattices, since the two-dimensional repre-
sentation (x, y) which is irreducible with the groups C4 and
C6 is now reducible. To be specific, we focus the following
discussion on a rectangular lattice having λx/λy = 1.05. The
results, however, are also representative of ensembles with
larger λx/λy. In fact, our calculations show that larger λx/λy

ratios do not lead to qualitative differences in the physical
behavior but only to a quantitative enhancement of the con-
sequences of breaking the symmetry of the square lattice. The
trends found in the transition regime, close to the square-
lattice arrangement (1 < λx/λy < 1.05), are pointed out at the
end of this section.
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FIG. 5. (a) Kinetic network of local minima (nodes) and transition states (edges) and (b) disconnectivity graph of the energy landscape of a
periodic triangular lattice with N = 36 dipole-coupled magnetic moments. In (b) the degenerate states are grouped together and the degeneracy
is indicated at the corresponding branch. The ferromagnetic ground state shows a continuous degeneracy with respect to the angle defining the
direction of the magnetization (see also Fig. 4).

In Fig. 6 the magnetic configurations of the ground state
and the three lowest metastable states are shown (N = 36 and
λx/λy = 1.05). One observes that the magnetic moments form
head-to-tail spin chains along the direction y with the shorter
NN distance. The ground-state configuration [Fig. 6(a)] con-
sists of an antiparallel arrangement of these chains whose
orientation alternates as we move along the x direction. The
continuous degeneracy of the square arrangement is broken
since λx �= λy yet the ground state belongs to the continuous
manifold of MV configurations defining the ground state of
periodic square lattices (Sec. III A). Out of the continuous
MV manifold, only the antiferromagnetic state with head-to-
tail chains along the direction with the shortest interparticle
distance remains stable. The degeneracy of the ground state
is thus twofold since the magnetic configuration is invariant
upon translations along y and time inversion is equivalent to a
translation along x [see Fig. 6(a)].

The following lowest-lying metastable LM can be obtained
from the ground state by reversing the orientation of two
neighboring chains of magnetic moments [cf. Figs. 6(a) and
6(b)]. This state has also a vanishing net magnetization but
is not directly connected to the ground state through a single
LM-TS-LM elementary transition. Translations of the first
metastable state along the x axis yield six different degenerate
configurations, whereas translations along the y direction do
not yield any new states [see Fig. 6(b)]. In addition, time
inversion enhances the degeneracy by a factor of 2, resulting
in a 12-fold degeneracy for the first excited state.

The second excited state can be obtained from the first one
by reversing the magnetic moments of one additional chain
of spins, thus resulting in a nonvanishing net magnetization
[cf. Figs. 6(b) and 6(c)]. The periodicity of this state with
respect to translations along x is three lattice spacings. To-
gether with time inversion, this yields a total degeneracy of

FIG. 6. Magnetic configurations of (a) the ground state, (b) the first excited state, (c) the second excited state, and (d) the third excited state
of a rectangular ensemble having N = 36 magnetic moments in the unit cell with periodic boundary conditions. The ratio between the longer
and shorter NN distances is λx/λy = 1.05 (see Fig. 1).
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FIG. 7. (a) Kinetic network of local minima (nodes) and transition states (edges) and (b) disconnectivity graph of the energy landscape of a
periodic rectangular arrangement of magnetic NPs with λx/λy = 1.05, N = 36 dipole-coupled magnetic moments in the unit cell and periodic
boundary conditions (see also Fig. 6).

six for the second excited state. It is interesting to note that
all other metastable states can be obtained in a similar way,
by flipping the magnetic moments of spin chains along y. For
example, the third excited state consists of reversing one chain
of spins in the antiferromagnetic ground state and is 12-fold
degenerate. In fact, the total number of local minima NLM in
all investigated rectangular lattices with λx/λy � 1.05 is 2L,
which corresponds to the number of distinct configurations
that one may construct with L chains of spins along the direc-
tion with the shorter NN distance. In the present calculation,
we have L = 6 and thus NLM = 2L = 64. One concludes that
the spin chains behave like Ising spins pointing either along
(0,1,0) or (0,−1, 0).

A detailed picture of the properties of rectangular dipole-
coupled systems is provided by the kinetic network and
disconnectivity graph shown in Fig. 7. The NLM = 64 local
minima or nodes of the kinetic network are connected through
NTS = 384 transition states or edges. Comparisons with the
square and triangular lattices reveal remarkable differences
(see also Figs. 3 and 5). In the rectangular arrangement
(λx/λy � 1.05) the elementary transitions or edges are evenly
distributed among the LM or nodes of the network. Indeed,
each LM is connected to precisely L = 6 other LM, which
are those obtained from the initial one by reversing one of the
L chains in the unit cell (see Fig. 6). One therefore expects
to find at least as many transition states as the number of
these pairs, namely, NLML/2 = 2LL/2 = 192. It turns out that
for each pair of LM differing by just one reversed chain of
local moments there are two different MEPs connecting them:
one in which the magnetic moments are rotated coherently
clockwise within the xy plane and the other in which the
rotation is counterclockwise. This explains the total number
of transition states NTS = NLML = 384. The transition rates

of different elementary transitions between the same pair of
LM can be summed up. Hence, the KN can be simplified
by representing them with a single edge. It is worth noting
that no direct elementary transition, one connecting two LM
through a single TS, has been found between LM that differs
by more than one reversed chain of spins. Transitions between
LM differing by more than one flipped chain are of course
possible since the KN is ergodic. They involve a succession
of single-chain flips.

The rectangular system for λx/λy � 1.05 can be regarded
as a 1D ring of Ising spins. The correlated nature of elemen-
tary transitions is extremely strong along the short-distance
direction and essentially absent in the perpendicular long-
distance one. Thus, the relaxation dynamics can be pictured
as the succession of individual, largely uncorrelated flips of
chains of spins. This implies that the KN is bipartite with a
transitivity C = 0 since only even loops are possible. Clearly,
there are no hubs although the degree of each node grows
linearly with system size. In fact, the degree density ρn =
L/2L, which is the same for all LM, vanishes exponentially
as the size L of the unit cell increases. Such a periodic
latticelike KN does not result in fast relaxation dynamics
because many elementary transitions are required to relax and
achieve equilibrium throughout the EL [45,46]. These trends
are consistent with the comparatively large values of the
average distance 〈d〉 = ∑L

i=1 i
(L

i

)
/(2L − 1), which are larger

than those of a random network having the same number
of nodes and edges. For instance, in the present case we
have 〈d〉 = 3.0 whereas the corresponding random network
has 〈d〉R = 2.5. Consequently, from the perspective of kinetic
networks, one concludes that rectangular systems are not good
structure seekers, in contrast to the square and triangular sys-
tems [35,56].
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The KN of rectangular magnetic NP arrangements having
λx/λy � 1.05 are qualitatively different from typical small-
world networks, in particular, due to the absence of hubs
and the vanishing transitivity. Nevertheless, it is interesting
to note that the average distance between the nodes grows
relatively slowly with the number of local minima, namely, as
〈d〉 ∼ ln NLM. This is not very different, though still somewhat
slower than the results found in small-world networks: typ-
ically 〈d〉 ∼ ln NLM/ ln〈n〉, where 〈n〉 is the average degree.
That 〈d〉 ∼ ln NLM in the rectangular arrangement is quite
remarkable for a latticelike network. The reason behind such
a slowly growing 〈d〉 in relation to NLM is the linear increase
of the degree n = L with increasing lateral dimensions.

The corresponding DG is shown in Fig. 7(b). One observes
that not only the ground state but also the excited states are
remarkably stable locally. In fact, all LM are separated by
energy barriers which are significantly larger than the energy
differences between the connected states. Moreover, there is
a clear hierarchy among the energies of the ground state and
the various groups of excited states. Notice, for example, that
the first, second, and third metastable configurations (alto-
gether 30 LM) have almost exactly the same energy since
they all involve two frustrated NN chains of parallel spins
[see Figs. 6(b)–6(d)]. Thus, the DG of the rectangular re-
semble corresponds closely to the so-called willow-tree type
[57]. Complex systems having this type of energy-landscape
topology are expected to exhibit a funneled relaxation towards
their ground states as in good structure seekers, although only
on a potentially much longer timescale or at relatively high
temperatures [57,58]. Indeed, once kBT is of the order of the
energy barrier involved in reversing one chain of head-to-tail
magnetic moments, the relaxation dynamics follows in an un-
hindered way. The same holds even at lower temperatures on
the corresponding longer inverse rate for such an elementary
transition. This behavior has been observed, for instance, in
C60 fullerenes [57,59,60]. Numerical simulations have shown
that these systems relax towards their ground states at a sig-
nificant rate, provided that the temperature is large enough to
allow overcoming the energy barriers [57,58]. However, one
should keep in mind that in rectangular NP ensembles the
average number of elementary transitions required to relax
towards the ground states, or to the statistical equilibrium
distribution, increases strongly with the system size N . Hence,
the situation is probably not as clear-cut as in C60. Further
investigations including explicit simulations of the relaxation
dynamics, as well as a size scaling analysis, would be neces-
sary to clarify their dynamical behavior.

In order to pursue our analysis of rectangular NP lattices,
it is useful to associate an Ising spin Si to each chain of
magnetic moments along the y direction, which corresponds
to the shorter NN distance λy. The interaction between the
chains can be approximated by the spin Hamiltonian

E = J
∑

i

Si Si+1, (6)

where J > 0 is the coupling between adjacent chains and
Si = ±1 is the Ising spin describing the ith chain along the
perpendicular x direction. Taking into account that in the
present case i = 1–6, the model predicts two degenerated
ground states with energy E0 = −6J , 30 first excited states

with energy E1 = −2J , 30 second excited states with energy
E2 = 2J , and two third excited states with energy E3 = 6J .
Comparison with the disconnectivity graph of Fig. 7(b) shows
that the model reproduces remarkably well the energy differ-
ences between the different groups of local minima by setting
J � 1.25 εDD. One concludes that the energy spectrum of the
metastable states in rectangular-lattice ensembles is indeed
quite accurately captured by a simple Ising model. Although
some of the degeneracies predicted by Eq. (6) are lifted by the
dipolar stray fields, these energy differences are always much
smaller than J for λx/λy � 1.05.

The Ising model also allows us to understand qualitatively
how the EL changes as a function of λx/λy. In general, the
coupling J between neighboring chains weakens as λx/λy

increases since dipole-dipole interactions between the chains
decreases as the distance between them increases. The re-
duction of J causes the energy differences between the local
minima of the actual EL to decrease since they are primarily
given by this coupling. In the limit λx/λy � 1, the individual
chains along the y axis behave nearly independently from each
other and all local minima have almost the same energies. In
practice, this limit is nearly reached already for λx/λy � 1.4.

Rectangular systems with ratios closer to unity (λx/λy <

1.05) have also been studied. Their behavior cannot be shaped
into a simple model as in the case of larger ratios since the
characteristic features of the square lattice become increas-
ingly noticeable as λx/λy approaches 1. On symmetry grounds
it is clear that the slightest deviation from λx/λy = 1 is suf-
ficient to lift the continuous C4-inherited degeneracy of the
ground state of the square lattice and to stabilize the twofold
degenerate antiferromagnetic state shown in Fig. 6. However,
for λx/λy � 1 one observes that the ELs are qualitatively very
different from those found for λx/λy � 1.05. For λx/λy � 1
most of the above-discussed magnetic configurations (Fig. 6)
are unstable. Furthermore, the energy barriers between the two
ground states, or between the excited states and the ground
states, are significantly smaller. The correlations between the
spin chains become important and the excitations can no
longer be described by an Ising-type model. Overall, as λx/λy

approaches unity, the general behavior of rectangular lattices
is found to resemble the one observed in weakly disordered
square lattices [35,36].

D. Rhombic lattice

The periodic rhombic lattices, also denoted as centered
rectangular lattices, are defined by λx = λy and π/3 < α <

π/2 (see Fig. 1). Since α = π/3 corresponds to the trian-
gular lattice and α = π/2 to the square lattice, varying α

allows us to interpolate between these two contrasting lim-
its, where the behavior naturally tends to the one observed
for the corresponding higher-symmetry arrangements. How-
ever, with increasing deviations of α from these extremes,
the properties of rhombic ensembles change qualitatively and
become very different from those of the triangular and square
lattices. All rhombic ensembles have a D2 point-group sym-
metry and the usual time-inversion symmetry. Consequently,
as the rectangular lattice, the continuous degeneracies found
in higher-symmetry square and triangular lattices are not
present. In order to discuss the specific energy landscapes of
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FIG. 8. Magnetic configurations of (a) the ground state, (b) the first excited state, (c) the second excited state, and (d) a higher-energy
antiferromagnetic configuration of the rhombic ensemble having α = 5π/12 and N = 36 NPs in the unit cell (see Fig. 1).

rhombic NP arrangements, we focus in the following on an
ensemble having α = 5π/12, which is the midpoint of the
[π/3, π/2] interval.

Figure 8 shows magnetic configurations of (a) the ground
state, (b) the first excited state, (c) the second excited state, and
(d) a particularly interesting higher excited state of a rhombic-
lattice ensemble having α = 5π/12, N = 36 magnetic NPs in
the unit cell, and periodic boundary conditions. The ground
state is ferromagnetic with the magnetic moments aligned
along the long diagonal of the rhombic lattice. This corre-
sponds to the ferromagnetic configuration having the smallest
energy curvature in the continuously degenerate ground state
of the triangular lattice. In other words, at this point changes
in the relative orientation of the magnetic moments cause the
smallest energy increase and the basin of attraction is locally
widest. In two dimensions, time reversal and a coherent π

rotation of such a homogeneous spin configuration yield the
same transformation. Consequently, the ground state is only
twofold degenerate, which corresponds simply to opposite
orientations of magnetization [see Fig. 8(a)].

The low-energy metastable excitations can be obtained
from the FM ground state by inverting the x components of
all magnetic moments of a row of NPs, by inverting the y
components of all magnetic moments of a column of NPs, or
by doing both. Thus, the first metastable excited configuration
shown in Fig. 8(b) is obtained by flipping, as described, the
spins of one row or one column of NPs in a ferromagnetic
ground state. Note that this is not a π spin reversal since one of
the spin components remains essentially unchanged. Since the
choice of the row or column is immaterial, one finds 12 such
excited states for a given FM state. Starting from the other
FM state or invoking time-inversion symmetry raises the total
degeneracy of the first excited configuration to 24. The second
excited state shown in Fig. 8(c) is obtained by flipping the
spins of one row and one column of NPs. Again, the choice of
the pair of row and column is immaterial. Taking into account
time-inversion symmetry, this leads to 72 different degenerate
configurations. The remaining low-energy excited states can
be obtained in an analogous way by flipping the spins of
additional rows or columns of NPs.

The fourfold degenerate antiferromagnetic state shown
in Fig. 8(d) is a metastable LM of the rhombic ensemble
provided that 1.27 < α < π/2. In particular, for α = 5π/12
the excitation energy of this configuration is about three
times larger than the first excitation energy [Fig. 8(b)]. As
α is increased, and the rhombic lattice comes closer to the
square lattice, the energy of the AF configuration decreases
monotonously until at some point it becomes the ground state.

On the other hand, if one approaches the triangular lattice
by decreasing α, the AF configuration becomes unstable. A
sharp transition from a ferromagnetic to an antiferromagnetic
ground state takes place at αc � 4π/9. Other more complex
noncollinear configurations have never been found to yield
the lowest energy, at least for the considered small unit cell.
While the limiting FM and AF ground-state configurations
are expected, the observed sharp transition between them as
a function of increasing α seems not obvious a priori. Fur-
thermore, notice that the transition from FM to AF ground
state occurs for an angle α = 4π/9 which is rather close to
the square lattice (α = π/2). This shows that the FM con-
figuration dominates most of the rhombic ground-state phase
diagram.

A more detailed picture of the energy landscapes of rhom-
bic dipole-coupled systems is provided by the kinetic network
and disconnectivity graph shown in Fig. 9. The kinetic net-
work consists of NLM = 198 local minima or nodes and NTS =
1422 transition states or edges. The segments highlighted in
black correspond to the transitions connecting a LM to an-
other one having a lower or equal energy and involving the
smallest energy barrier. Physically, they represent the transi-
tions that are most relevant in the stochastic dynamics [35].
One observes that the two ground states, indicated in red,
are at the center of the network with the excited magnetic
configurations being all funneled towards them. This becomes
particularly clear if one focusses on the dynamically dominant
transitions indicated by the black segments. Although the
kinetic network as a whole is ergodic, in practice the dominant
transitions show that the network tends to decompose in two
inversion-symmetry-related subnetworks, each associated to
the ground state that dominates it. This is a strong indication
of a separation of timescales in the dynamics of the system,
the relaxation being much faster within each subnetwork than
between the subnetworks.

The average path distance 〈d〉 = 2.43 of the kinetic net-
work of rhombic magnetic NP arrangements with α = 5π/12
is small. This means that most pairs of metastable states, how-
ever different in energy and configuration, can be connected
by a small number of elementary LM-TS-LM transitions. As a
matter of fact, the system needs to undergo only 1–2 elemen-
tary transitions to relax from most of the excited metastable
states towards one of the ground states. This is a consequence
of the extremely large local connectivity density ρn = 0.48 of
the latter. Furthermore, the finite transitivity C = 0.12 shows
the presence of a significant number of loops, which also
contributes to avoid trapping. In sum, the KN of rhombic
ensembles with α = 5π/12 have small-world behavior, even
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FIG. 9. (a) Kinetic network of local minima (nodes) and transition states (gray edges) and (b) disconnectivity graph of the energy landscape
of a periodic rhombic lattice having α = 5π/12 and N = 36 dipole-coupled magnetic moments in the unit cell (see also Fig. 8). In (a) the
ferromagnetic ground states are indicated by the red circles. Furthermore, the edges in black highlight the downhill transition with the lowest-
energy barriers. In (b) degenerate excited LM are grouped and the corresponding degeneracies are indicated.

though from a dynamical perspective it consists of two mostly
independent subnetworks.

A complementary perspective to the ELs is provided by
the disconnectivity graph shown in Fig. 9(b). One observes
two clearly distinct funnels, which reflect the invariance of
the energy upon reversal of all NP moments. Each ground
state, lying at the bottom of the funnel, is surrounded by rela-
tively large uphill energy barriers = 6.0, which render
them significantly more stable than any excited configuration.
These two funnels correspond to the two subnetworks which
were identified through the dominant transitions in the kinetic
network of Fig. 9(a). The downhill energy barriers ,
i.e., the barriers encountered when going from an excited state
towards the closest ground state are clearly smaller ( �
1.5). For comparison, the energy barrier between the ground
states is much larger [�E0 = 14.9, see Fig. 9(b)]. This implies
that the relaxation between the subnetworks is comparatively
much slower, in agreement with the previous analysis of the
kinetic network.

The DG of the rhombic ensemble with α = 5π/12 is an
example of what is usually known as a double-funnel EL
[61]. The large energy barrier between the two symmetric
funnels might seem surprising since it is not observed in any
of the limiting high-symmetry square (α = π/2) and triangu-
lar (α = π/3) ensembles between which the rhombic lattice
interpolates. To clarify the origin of this behavior, it is useful
to review some properties of the triangular lattice in more
detail. We know that all in-plane ferromagnetic arrangements
of the NP moments of a triangular lattice have the same
energy, thus forming a continuously degenerate ground-state

manifold. However, despite having the same energy, the to-
pography of the EL is not the same in the vicinity of different
FM configurations. Configurations with comparatively small
local curvatures, i.e., large spin-fluctuation entropies, are usu-
ally stabilized if the initial symmetry of the lattice is broken,
whereas configurations with comparatively large local curva-
tures are destabilized [19,28]. In the case of a triangular lattice
of dipole-coupled NPs one finds that the local curvatures are
minimal (maximal) when the magnetization �μ points along
the longer (shorter) diagonal of the lattice (see Fig. 1). There-
fore, breaking the symmetry of the triangular arrangement, for
instance, by distorting it into a rhombic lattice, generally leads
to the stabilization (destabilization) of the FM configurations
having �μ along the longer (shorter) diagonal of the lattice.

The C6 symmetry of the triangular lattice is broken by a
rhombic distortion. If the deviation from the triangular ar-
rangement is is not too large (π/3 < α < 4π/9) the ground
state remains ferromagnetic but it is no longer continuously
degenerate. In those cases one observes a continuous energy
distribution of the collinear FM states depending on the ori-
entation of the magnetization within the nanostructure plane.
The width of the energy distribution, i.e., the energy difference
�EFM between the FM ground state and the least stable FM
state, increases as the deviations δα = α − π/3 from the tri-
angular lattice increases. For instance, �EFM = 2.9 for δα =

1
240 and �EFM = 29.3 for δα = 1

12 . These changes in the be-
havior of the FM manifold as a function of α have interesting
consequences. If δα > 0 is very small, the energy barrier
associated to a coherent rotation of �μ, keeping the FM order,
remains small. Therefore, direct transitions between the two
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ground states having opposite orientations of the NP moments
�μ are possible within the FM manifold. This results in ex-
tremely funneled disconnectivity graphs in agreement with the
behavior observed for the perfect and weakly disordered tri-
angular lattices [35,36]. However, as δα further increases, the
coherent-rotation mechanism becomes energetically very dis-
advantageous because of the drastic increase of �EFM. Other
transition mechanisms become then much more important. In
the case of the rhombic ensemble with α = 5π/12 (δα = 1

12 )
shown in Fig. 8, magnetic rearrangements involving multiple
noncollinear transition states and intermediate local minima
yield the most efficient pathways for the transition between
the FM ground states. However, these MEPs involve multiple
elementary transitions with significant energy barriers. This
explains the double-funnel EL observed in Fig. 9. Results
on rhombic ensembles having larger unit cells (N = 64 and
100) indicate that the energy barrier between the two funnels
increases approximately linearly as a function of the system
size N . Therefore, ergodicity breaking seems most plausible in
the thermodynamic limit, where the separating energy barrier
cannot be overcome on experimental timescales.

Hitherto, the discussion has revolved around rhombic en-
sembles with a FM ground state, which holds for π/3 < α <

4π/9. Rhombic ensembles with 4π/9 � α < π/2 have AF
ground states. Some important qualitative differences between
these two types of ensembles are related to the contrasting
symmetry and degeneracy of their ground states. In the case of
a FM ground state, the degeneracy is twofold, corresponding
to states having opposite magnetization directions along the
longer diagonal of the rhombic lattice. In contrast, in the case
of an AF ground state, the degeneracy is fourfold since the
alternating chains of magnetic moments may be aligned along
the x or y directions (see Figs. 6). A direct consequence of
the higher fourfold symmetry of the AF order is that the
energy barriers associated to transitions in AF ensembles are
much smaller than in the FM case since the angle between
equivalent stable magnetization directions (easy axes) in the
AF case is half of the value in the FM case. In fact, the largest
energy barrier between AF ground states �Emax

AF = 1.4, found
for α = 4π/9, is an order of magnitude smaller than the
largest barrier observed for FM ground states �Emax

FM = 29.3.
It follows that a coherent rotation is the most efficient transi-
tion mechanism between the fourfold-degenerate AF ground
states, even for α = 4π/9, where the highest AF energy bar-
riers are found. Similar symmetry-related trends are known
to apply to magnetocrystalline anisotropies where, for exam-
ple, uniaxial anisotropies are usually much larger than cubic
anisotropies [62].

E. Oblique lattice

The least symmetric Bravais lattice in two dimensions is
the oblique lattice, which is defined by α �= π/2 and λx �=
λy (see Fig. 1). Its local symmetries are reduced to the C2

point group and time inversion. In this section we focus
on lattices having α and λx/λy significantly different from
π/2 and 1, respectively, since these limits correspond to the
rectangular and rhombic lattices which have been discussed
in detail in Secs. III C and III D. Specifically, we con-
sider an oblique lattice having α = 7π/18 and λx/λy = 1.05,

which are representative of a wide range of oblique-lattice
ensembles.

In Fig. 10, the ground-state magnetic configuration and the
first and second excited configurations are shown. In all cases
the magnetic moments form head-to-tail chains along the y
direction, which has the shortest NN distance. A very similar
behavior has been observed in rectangular lattices (Sec. III C).
However, notice that in the present oblique lattice the ground
state is ferromagnetic in contrast to the AF arrangement of
spin chains found in rectangular ensembles [cf. Figs. 6(a)
and 10(a)]. Whether the ground state of the oblique lattice
is ferromagnetic or antiferromagnetic depends in fact on the
angle α. Smaller α, closer to the triangular lattice, yield FM
order whereas larger α, closer to the rectangular lattice, yield
AF order. The actual transition from FM to AF ground state
occurs at αc � 4π/9, a value that is quite similar to the one
observed in rhombic ensembles (Sec. III D). According to our
calculations, αc is nearly independent of the NN-distance ratio
for λx/λy ∈ [1.0, 1.3].

The metastable configurations are obtained from the
ground state by flipping the orientation of chains of magnetic
moments along the y direction. For instance, the first excited
state is obtained by flipping one of the spin chains of the FM
ground state and the second excited state is obtained by flip-
ping a second chain beside the first one [cf. Figs. 10(a)–10(c)].
Since flipping the chains breaks the periodicity of the ground
state along the x direction, and taking into account the bound-
ary condition, six degenerate magnetic configurations are
obtained through translations. Including time inversion the de-
generacy of the first and second excited states is raised to 12.
As already observed for rectangular ensembles in Sec. III C,
all metastable states of the considered oblique lattice can be
obtained by flipping additional chains of magnetic moments
along the y direction. This behavior has been found in all
oblique ensembles having λx/λy � 1.05. Hence, as in the
rectangular lattice, the chains of head-to-tail moments can be
treated as Ising spins pointing along the ŷ = (cos α, sin α, 0)
or −ŷ directions. Since we have L = 6 chains in the unit cell
(N = 36) the total number of LM is NLM = 2L = 64.

Figure 11(a) shows the kinetic network of the oblique lat-
tice illustrated in Fig. 10. It consists of 64 nodes, representing
the LM, and 192 edges, representing the transitions across
first-order saddle points. Each LM is connected to exactly
six other LM, which are obtained by flipping a spin chain
along the y direction on the considered configuration. This
results in a latticelike KN, which is identical to the one ob-
tained for the rectangular lattice [cf. Figs. 7(a) and 11(a)].
Consequently, most of the considerations made in this context
for rectangular ensembles apply straightforwardly to oblique
ensembles. In short, the relaxation dynamics can be pictured
as the succession of largely uncorrelated flips of spin chains.
The KN is bipartite (C = 0) and without hubs. All nodes have
the same degree density ρn = 0.1. Together with the compar-
atively large average path distance 〈d〉 = 3.1, one concludes
that oblique-lattice NP ensembles are not good structure
seekers. Moreover, their KNs do not exhibit small-world
behavior.

The corresponding DG, shown in Fig. 11(b), is also very
similar to the one obtained for the rectangular system [cf.
Figs. 7(b) and 11(b)]. All metastable states are remarkably
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FIG. 10. Magnetic configurations of (a) the ground state, (b) the first excited state, and (c) the second excited state of an oblique-lattice
ensemble having N = 36 magnetic moments in the unit cell with periodic boundary conditions. The ratio between the NN distances is λx/λy =
1.05 and the angle between the Bravais vectors is α = 7π/18. See Fig. 1.

stable. They are clearly separated from the other LM by en-
ergy barriers that are much larger than the energy differences
between the connected configurations. Furthermore, a clear
energy hierarchy exists between the ground states and the
various groups excited states. In sum, the DG has all the main
features of the so-called willow-tree graph [57]. Such systems
are expected to be good structure seekers as soon as kBT is
of the order of the characteristic energy barriers [57,59,60].
However, as in the rectangular case, one has to keep in mind
that the average number of elementary transitions required
to relax from an arbitrary magnetic configuration towards
the ground state increases linearly with increasing unit-cell
size. This is a consequence of the lattice nature of the KN.
Therefore, it is not obvious at this point whether such a sys-
tem would be a good structure seeker in the thermodynamic
limit.

The physical behavior of oblique ensembles as a function
of α and λx/λy can be clarified by referring to the Ising model
given by Eq. (6). In this model, the interaction between the
chains of magnetic moments is characterized by the coupling

constant J , where J > 0 (J < 0) corresponds to antiferromag-
netic (ferromagnetic) ground-state order. Let us analyze the
dependence of J on α, keeping λx/λy = 1.05 fixed, by starting
with the above-discussed oblique lattice (α = 7π/18 � 1.22)
for which J = −1.4 gives a very good fit of the LM energies.
In this case the ground state is FM and the energy differences
between the different groups of excited states are significant
[see Fig. 11(b)]. As α is increased, the absolute value of J
decreases and the FM order becomes less stable. For instance,
for α � 1.34 we find J = −0.2. Accordingly, the energy dif-
ferences between the metastable states become significantly
smaller. A transition takes place at αc � 1.37, where the sign
of J changes and the ground state switches from ferromag-
netic to antiferromagnetic order. Close to the transition, the
energy differences between the metastable states remain very
small and in particular the AF ground state is not very sta-
ble. However, as α is further increased, J and the energy
differences between the metastable states grow. Finally, for
α = π/2, in the rectangular lattice, the maximum positive
value of J � 1.25 is reached.

FIG. 11. (a) Kinetic network of local minima (nodes) and transition states (edges) and (b) disconnectivity graph of the energy landscape
of a periodic oblique lattice having λx/λy = 1.05, α = 7π/18, and N = 36 dipole-coupled magnetic moments in the unit cell. In (a) the
ground-state nodes are highlighted in red. See also Figs. 1 and 10.
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Concerning the dependence of J on the NN-distance ra-
tio λx/λy, the same reasoning as for the rectangular lattice
applies. Increasing λx/λy weakens the coupling J between
neighboring chains irrespectively of α since the distance be-
tween the chains increases. This reduction of |J| manifests
itself as a decrease of the energy differences between the
metastable states, which are primarily conditioned by this
coupling. Finally, in the limit λx/λy � 1, J tends to zero and
the chains of magnetic moments decouple.

IV. CONCLUSION

The energy landscapes of two-dimensional ensembles of
dipole-coupled magnetic nanoparticles have been investigated
for the five different two-dimensional Bravais lattices, namely,
square, triangular, rectangular, rhombic, and oblique lattices.
The corresponding ergodic networks of local minima and
connecting transition states have been characterized. The
analysis shows that the underlying lattice structure has a
most profound influence on these physical behavior of these
magnetic nanostructures. Square and triangular lattices are
found to be extremely good structure seekers. In this case
almost any magnetic configurations being directly connected
to the continuously degenerate ground state. The kinetic
networks are starlike and show small-world behavior. The cor-
responding disconnectivity graphs resemble palm trees [48].
Rhombic ensembles, in contrast, have double-funnel energy
landscapes with two saturated ferromagnetic ground states
whose magnetization points in opposite directions. They lie
at the bottom of distinct funnels separated by a large energy
barrier, which grows linearly with unit-cell size N . Hence,
ergodicity breaking is expected in the thermodynamic limit.
Finally, it was shown that rectangular and oblique ensem-
bles behave very much like a one-dimensional chain of Ising
spins. The results for the KNs and DGs reflect comple-
mentary aspects of their ELs. The KNs suggest that these
systems are not efficient structure seekers since the number
of elementary LM-TS-LM transitions required to connect
different metastable configurations with each other, or with
the ground states, are relatively large. Nevertheless, the DGs
resemble willow trees with quite asymmetric energy profiles,
the downward barriers being significantly smaller than the
upward ones, which generally favors unhindered relaxation
once kBT becomes comparable to the characteristic energy
barriers. A detailed size-scaling analysis would be necessary
in order to elucidate their behavior in the thermodynamic
limit.

The present investigations have allowed us to identify a
number of characteristics of the energy landscapes of two-
dimensional ensembles of interacting magnetic NPs and in
particular to reveal the remarkable profound dependence of
the collective behavior on the underlying structural arrange-
ment of the nanostructure. A detailed description of the
actual relaxation dynamics for different experimentally rel-
evant initial conditions (e.g., high-field saturation, zero-field
quenching, etc.) seems therefore most worthwhile. This can
be done by taking advantage of the discretization of the con-
figurational space in the attraction basins associated to the
different LM and by following the time evolution of the statis-
tical distribution of the system among them in the framework
of a master equation (Markovian hypothesis). The central
transition rates can be estimated by applying transition-state
theory to coupled LLG equations as proposed in Ref. [63].
The Markovian dynamics of disordered ensembles of mag-
netic NPs have already been investigated in this way [35,36].
In particular for highly symmetric lattice structures showing
a continuously degenerate ground state, attention should be
paid to the contribution of fluctuations of the magnetic config-
uration in the directions perpendicular to the constant-energy
curves. These tend to favor specific magnetic configuration
within the ground-state manifold and therefore are expected to
significantly affect the dynamics at low temperatures [19,28].

The primary focus of this paper resides on the dipole-
dipole interaction between magnetic nanoparticles in two
dimensions. In view of more comprehensive comparisons
with experiment, it would be worthwhile to extend the present
investigations by taking other magnetic effects into account.
This includes, for instance, local energy contributions, such
as the magnetocrystalline and shape anisotropies of individual
NPs, a more detailed description of the interactions includ-
ing higher-order multipole moment contributions, which are
known to be important if the NPs are not spherical, as
well as the coupling of the NP moments to external mag-
netic fields [64]. Further interesting research directions to be
pursued in the present framework would be to investigate
three-dimensional nanostructures and to include other types of
interactions, such as exchange and Ruderman-Kittel-Kasuya-
Yosida (RKKY) couplings, which play an important role in
spin glasses [65,66].
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