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Inelastic neutron scattering in the weakly coupled triangular spin tube candidate CsCrF4
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We performed inelastic neutron scattering (INS) experiments to measure spin dynamics in a polycrystalline
sample of the spin tube candidate CsCrF4. The compound exhibits a successive phase transition from a
paramagnetic phase through an intermediate-temperature (IT) phase of a 120◦ structure to a low-temperature
(LT) phase of another 120◦ structure. An elaborate comparison of observed and calculated neutron spectra in the
LT phase reveals that the spin Hamiltonian is identified as antiferromagnetic spin tubes including perturbative
terms of intertube interaction, Dzyaloshinskii-Moriya interaction, and single-ion anisotropy. A phase diagram
for the ground state is classically calculated. A set of parameters in the spin Hamiltonian obtained from the INS
spectra measured in the LT phase is quite close to the boundary of the phase of the 120◦ structure of the IT
phase. The INS spectra measured in the IT phase are, surprisingly, the same as those in the LT phase on the
level of powder-averaged spectra, even though the magnetic structures in the IT and LT phases are different.
Identical dynamical structures compatible with two different static structures are observed. No difference in the
observed spectra indicates no change in the spin Hamiltonian with the temperature, suggesting that the origin
of the successive phase transition is a spin-entropy-driven mechanism in the spin system located near the phase
boundary.

DOI: 10.1103/PhysRevB.107.184405

I. INTRODUCTION

Geometrically frustrated magnets have attracted great in-
terest because of the nontrivial magnetic states induced at
low temperatures. The magnetic states of lattices, including
the triangular basic unit, are incompatible with Néel order,
and they are macroscopically degenerate [1]. An example of
a one-dimensional frustrated system is a triangular spin tube
in which antiferromagnetic spins on triangles are arrayed in
one dimension, which has been theoretically studied exten-
sively. In a regular triangular spin tube with Heisenberg spin,
the ground state is the dimerized nonmagnetic state with the
units of the two-site rung singlet [2]. The spin correlation
exponentially decays, and the excited state is separated by a
finite spin gap [3–8]. In an asymmetric triangular spin tube
in which Z2 symmetry is broken, the spin gap is suppressed,
and a Tomonaga-Luttinger liquid with vector chiral order is
predicted [9,10]. In contrast to the accumulative theoretical
studies, experimental study has been limited to an S = 3/2
spin tube candidate, CsCrF4 [11–16], for lack of a model
material.

In a real compound, exchange interactions between trian-
gular spin tubes are not negligible, and hence, the geometry
of the interactions between the tubes is important for deter-
mination of the ground state. An example of the geometry
is shown in Fig. 1(a), where the regular triangles form a
two-dimensional triangular lattice. The lattice is equivalent
to a kagome lattice with second-neighbor interaction, which
is called the kagome-triangular (KT) lattice, as shown in
Fig. 1(b). The ground state of a Heisenberg classical kagome
antiferromagnet is a magnetically ordered state, a 120◦ struc-
ture with macroscopic degeneracy which is vulnerable to
fluctuation. Coplanar 120◦ structures with large entropy, in
which spins are confined in a plane, are selected at finite
temperatures using the order by disorder mechanism [17–19].
Experimentally, various types of 120◦ structures with Q =
0 have been reported: A structure with positive chirality se-
lected by Dzyaloshinskii-Moriya interaction in Fe and Cr
jarosite [20–24], one with negative chirality in the semimetals
Mn3Sn and Mn3Ge [25], and a tail-chase structure selected
by magnetic dipole interaction in Mn2+ fluoride [26,27]. The
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FIG. 1. (a) An example of the geometry of coupled spin tubes
viewed from the tube direction. (b) Schematic description of the
kagome-triangular lattice. (c) Crystal structure of CsCrF4 projected
in the crystallographic ab plane. Blue circles indicate the Cr3+ ion.
Zα (α = A, B, C) is the Z axis locally defined on the α site of the Cr3+

ion, and d1(α, β )(α, β = A, B, C) is the DM vector. (d) Perspective
view of the spin tube of CsCrF4. (e) Magnetic structure of CsCrF4

in the LT phase. (f) Magnetic structure of CsCrF4 in the IT phase,
which is used for linear spin-wave calculations in the present paper.

introduction of a second-neighbor ferromagnetic interaction
in a Heisenberg KT lattice leads to a cuboc structure, a non-
coplanar multi-Q structure with 12 sublattices with the spins
directed along the 12 middle points of a cube, and the in-
troduction of a second-neighbor antiferromagnetic interaction
leads to a

√
3 × √

3 structure [28–30].
CsCrF4 is a candidate for the triangular spin tube in which

intertube and rung couplings form a KT lattice [11–16]. The
crystal structure of CsCrF4, where Cr3+ ions carrying spin
S = 3/2 are displayed and Cs+ and F− ions are omitted, is
shown in Figs. 1(c) and 1(d). As speculated from the bond
lengths, exchange interactions along the leg, J0, and the rung,
J1, in the spin tube would be dominant, and one between
the spin tubes, J2, would be weak. The Cr3+ network in the
ab plane shown in Fig. 1(a) is equivalent to the KT lattice
in Fig. 1(b), where the nearest-neighbor kagome interaction
corresponds to J2, and the second-neighbor one corresponds
to J1. The magnetic susceptibility of this compound has a
broad maximum at T � 60 K, and hysteresis is observed
below T = 4 K [11]. Neutron diffraction scattering experi-
ments probed a successive phase transition with the critical

temperatures TN1 = 2.8 K and TN2 = 3.5 K [15]. The mag-
netic structure for the low-temperature (LT) phase at T �
TN1 is a 120◦ structure with qm = (1/2, 0, 1/2), as shown in
Fig. 1(e), where qm is a propagation vector. The one for the
intermediate-temperature (IT) phase at TN1 � T � TN2 used
for the spin-wave calculation in the present paper is a 120◦
structure with qm = (1/3, 1/3, 1/2), as shown in Fig. 1(f).
The correlation length was reported to be 100–200 Å [15].
The structure of the LT phase is different from the theoretical
prediction of cuboc or

√
3 × √

3 structure in the Heisenberg
KT lattice [28–30]. It was proposed that small perturbations,
including intertube interaction, Dzyaloshinskii-Moriya (DM)
interaction, and single-ion anisotropy, select the observed
magnetic structure in the LT phase. Nevertheless, the spin
Hamiltonian has not been identified yet.

In this study, we perform inelastic neutron scattering (INS)
experiments to measure the spin dynamics of a polycrys-
talline sample of CsCrF4. The spin Hamiltonian is identified
as weakly coupled antiferromagnetic spin tubes using KT
geometry. An intertube interaction, single-ion anisotropy,
and DM interaction play an important role in the selec-
tion of the ground state. The set of parameters in the spin
Hamiltonian suggests that the compound is located in the
phase of qm = (1/2, 0, 1/2) and is close to the boundary
of the phase of qm = (1/3, 1/3, 1/2). The spectra in both
IT and LT phases are measured, and they are qualitatively
the same. Identical dynamical structures compatible with dif-
ferent static structures are observed. A spin-entropy-driven
mechanism is suggested for the origin of the successive phase
transition.

II. EXPERIMENTAL DETAILS

To collect INS spectra in a wide momentum Q-energy h̄ω

space, INS experiments were carried out using the High Res-
olution Chopper (HRC) spectrometer [31] installed at BL12
at Japan Proton Accelerator Research Complex / Materials
and Life Science Experimental Facility (J-PARC/MLF). A
polycrystalline sample of CsCrF4 with a mass of 5.07 g pre-
pared with a solid-state reaction method was used [11,12].
The frequency of the Fermi chopper was 100 Hz. Neutrons
with incident energies Ei of 3.05 and 15.3 meV, which were
simultaneously selected using the repetition-rate multiplica-
tion technique, were used. A 3He cryostat was used to achieve
low temperatures. The data reduction was performed using the
HANA software [32]. After first lowering the temperature to
0.8 K, INS spectra were measured at increasing temperatures.

To measure the temperature dependence of low-energy
excitation, INS experiments were carried out using the high-
energy resolution cold neutron triple-axis spectrometer (HER)
installed at the C11 beam port at Japan Research Reac-
tor No. 3 (JRR-3). A polycrystalline sample with a mass
of 2.69 g was used. An orange-type cryostat was used.
The collimator setup was guide-open-radial collimator-open.
A Be/pyrolytic graphite (PG) filter for elimination of the
second-order harmonics of neutrons, which automatically
switches at Ei = 5 meV, was set in front of the sample.
A Be filter was used for Ei � 5 meV. A tunable PG
filter [33,34] was used for Ei > 5 meV. The final neu-
tron energy was fixed at Ef = 3.64 meV. The temperature
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FIG. 2. INS spectra measured by the HRC spectrometer. (a) Elas-
tic part of INS spectra measured at Ei = 3.05 meV, where the
integration range is −0.15 � h̄ω � 0.15 meV. Blue and red symbols
indicate 0.8 and 3.1 K, respectively. INS spectra measured with
Ei = 15.3 meV at (b) 0.8 K and (c) 3.1 K. INS spectra measured
with Ei = 3.05 meV at (d) 0.8 K and (e) 3.1 K.

dependence of INS spectra was measured under increasing
temperature.

III. EXPERIMENTAL RESULTS

The elastic part of the measured INS spectra with Ei =
3.05 meV at 0.8 K in the LT phase and at 3.1 K in the IT
phase using the HRC spectrometer is shown in Fig. 2(a). Mag-
netic peaks with qm = (1/2, 0, 1/2) are observed at 0.8 K,
and peaks with qm = (1/3, 1/3, 1/2) are observed at 3.1 K.
The absence of a peak with qm = (1/2,−1, 1/2) at 1.04 Å−1

at 3.1 K means the absence of the coexistence of IT and
LT phases at 3.1 K. The absence of a peak with qm =
(2/3, 2/3, 1/2) at 1.19 Å−1 at 0.8 K means the absence of
coexistence at 0.8 K as well. These results are consistent with
previous neutron diffraction measurements [15].

Figures 2(b) and 2(d) show INS spectra in the LT phase
measured at Ei = 15.3 and 3.05 meV, respectively. Magnetic
excitations up to 10 meV are observed, with flat intensities
at 0.5 and 1.5 meV and a continuous intensity at 6–8 meV.
The flat intensities modulate with a periodicity of about
1.6 Å−1, which coincides with the reciprocal lattice constant
in the c∗ direction. This fact implies that the system is
quasi-one-dimensional with strong interaction in the c direc-

FIG. 3. Constant Q scans at Q = 1.05 Å−1 collected in (a) the LT
phase, (b) the IT phase, and (c) the paramagnetic phase measured by
the HER spectrometer.

tion. Furthermore, the absence of intensity at Q smaller than
0.8 Å−1, which corresponds to c∗/2, indicates that the main in-
teraction is antiferromagnetic rather than ferromagnetic. Note
that Cr-Cr spacing along the c axis is the lattice constant
c, as shown in Fig. 1(d). Figures 2(c) and 2(e) show INS
spectra in the IT phase measured at Ei = 15.3 and 3.05 meV,
respectively. Surprisingly, no qualitative difference is found
in the energy range of h̄ω � 0.1 meV between the spectra in
the LT and IT phases, even though diffraction profiles sliced
from the same data set exhibit magnet peaks with different
propagation vectors and the absence of phase coexistence, as
shown in Fig. 2(a).

The temperature dependence of constant-Q scans mea-
sured at Q = 1.05 Å−1 using the HER spectrometer is shown
in Figs. 3(a)–3(c). The squares, triangles, and circles indicate
data in the LT, IT, and paramagnetic phases, respectively.
Well-defined excitations are observed at 0.5 and 1.5 meV in
both the LT and IT phases, and the spectra are qualitatively
the same. The results are consistent with those measured using
the HRC spectrometer. At T = 6 K, which is higher than
TN2, the inelastic excitations at 0.5 and 1.5 meV are still
observed. At T = 10 K, paramagnetic excitation is enhanced,
and the peaks are smeared.

IV. ANALYSIS

The INS cross section of CsCrF4 was calculated based on
linear spin-wave theory using the SPINW package [35]. An
analytic approximation was adopted for the magnetic form
factor of the Cr3+ ions [36]. The following Hamiltonian was
used according to a previous study [15]:

H =
∑

lα,lβ ,l ′
β

{J0S(lα ) · S(lα + c) + J1S(lα ) · S(lβ )

+ J2S(lα ) · S(l ′
β ) + d1(α,β ) · S(lα ) × S(lβ )

+ D(SZα

(lα ))2}, (1)

where J0 and J1 are the leg and rung interactions in the spin
tube in Fig. 1(d) and J2 is an intertube interaction in Fig. 1(c).
d1(α,β ) is DM vectors between the α and β sites of Cr3+ ions
in the triangle, D is single-ion anisotropy, and Zα is the local Z
axis defined at the α site, as shown in Fig. 1. lα is the position
vector of the α site in lattice l , and c is the unit vector of
the crystal lattice along the c axis. The sum is taken for lα ,
lβ , and l ′

β over the entire crystal, where α �= β and l �= l ′.
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FIG. 4. One-dimensional cuts of measured and calculated INS
spectra in (a) wide and (b) narrow energy ranges. Symbols and solid
curves indicate experiment and calculation, respectively. INS spectra
calculated by linear spin-wave theory in (c) wide and (d) narrow
energy ranges. The white solid and dashed curves in (c) are disper-
sion curves calculated on a single crystal in the c∗ and a∗ directions,
respectively.

The magnetic structure shown in Fig. 1(e) is used for the
calculation in the LT phase.

One-dimensional (1D) cuts of measured and calculated
INS spectra are shown in Figs. 4(a) and 4(b) for wide and
narrow energy ranges, respectively. The measured spectrum
in the former is cut from Fig. 2(b) with the integration range
of 1.2 � Q � 1.5 Å−1, and that in the latter is cut from
Fig. 2(d) with the range of 1.0 � Q � 1.1 Å−1. Parameters J0,
J1, d1(α,β ), and D were determined so that the peak energies of
the calculation reproduce those of the experiment. Errors were
determined by the intervals of the parameters in the search.
The obtained parameters are summarized in Table I. The dig-
its in parentheses are the errors. The estimate of J2 will be
explained later. The calculated spectra for the polycrystalline
sample using Eq. (1) and parameters in Table I are shown
in Figs. 4(c) and 4(d) for wide and narrow energy ranges,
respectively. The instrumental resolutions for Q and h̄ω are
convoluted in Figs. 4(c) and 4(d). The calculation reasonably
reproduces the measured spectra in Figs. 2(b) and 2(d). Since
the leg (J0) and rung (J1) interactions are dominant and the
intertube (J2) one is small, the spin Hamiltonian is identified
as antiferromagnetic spin tubes which are weakly coupled by
KT geometry. The white solid and dashed curves in Fig. 4(c)
show the dispersion curves of the single crystal in the c∗ and

TABLE I. Parameters of the spin Hamiltonian. J0, J1, d1, and D
are determined by the comparison between calculation and experi-
ment in the LT phase. J2 is determined from the lower limit of J2

estimated by the instrumental energy resolution (see text).

J0 (meV) J1 (meV) J2 (μeV) d1 (μeV) D (μeV)

2.35 (5) 1.00 (5) −4(3) −47(2) −4.6(2)

FIG. 5. Dispersion curves of a single-crystalline sample of
CsCrF4 calculated with four sets of spin parameters described in
Table II: (a) case 1, (b) case 2, (c) case 3, and (d) case 4.

a∗ directions, respectively. The energies of the flat intensities
at 0.5, 1.5, 6.0, and 8.0 meV in the polycrystalline spectrum
are identical to the dispersion curves of the single crystal in
the a∗ direction. They are almost independent of Q because of
small J2. The Q dependence is rather enhanced at 0.5 meV, but
it is not detected experimentally. The instrumental resolution
was thus used to estimate the lower limit of J2 (<0), where
J2 was taken to be ferromagnetic to ensure the spin structure
reported previously [15]. The lower limit, which is the max-
imum of the absolute value in this case, was estimated to be
−7μeV. The round off of half of the lower limit, −4μeV,
was determined to be J2. By comparing the polycrystalline
and single-crystalline spectra, it is found that well-defined flat
intensities in an INS polycrystalline spectrum are ascribed
to the one-dimensionality of a spin system. In contrast, the
dispersion in the c∗ direction induces the intensity spread in
a wide Q-h̄ω range. The ratio of J0 and J1 was reported to
be about 1/2 in a first-principles calculation [37]. The ratios
estimated in the present experiment are in good agreement
with the calculation.

V. DISCUSSION

To understand the influence of each parameter in the spin
Hamiltonian on the INS spectrum, dispersion curves among
reciprocal lattice points with high symmetry are calculated in
Figs. 5(a)–5(d) for four cases, where the parameters are shown
in Table II. In case 1, which corresponds to an isolated spin

TABLE II. Parameters of the spin Hamiltonian for dispersion
curves of the single-crystalline sample used in Figs. 5(a)–5(d).

J0 (meV) J1 (meV) J2 (μeV) d1 (μeV) D (μeV)

Case 1 2.35 1.00 0 0 0
Case 2 2.35 1.00 0 0 −4.6
Case 3 2.35 1.00 0 −47 −4.6
Case 4 2.35 1.00 −4 −47 −4.6
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FIG. 6. Phase diagram of CsCrF4 calculated using the Luttinger-
Tisza method. (a) The D-J2 phase diagram with J0 = 1, J1 = 0.43,

and d1 = −0.02. (b) Enlarged phase diagram of the region sur-
rounded by the solid rectangle in (a).

tube, the excitation is dispersive along the c∗ axis (from �

to A) and dispersionless perpendicular to the c∗ axis (from �

through K to M). Periodicity along the c∗ axis is half of the
crystal lattice because of the antiferromagnetic leg interaction
J0. Our analysis suggests that two modes appear at energies
of

√
27J0J1/2 and

√
27J0J1 at the � and A points. This means

that the dispersive modes in the high-energy region of 5.5 �
h̄ω � 9 meV are from the rung interaction J1.

In case 2, as shown in Fig. 5(b), single-ion anisotropy
D breaks the rotational symmetry in the ab plane, lifts the
degeneracy of the ground state, and induces an energy gap of
0.5 meV at (h, k, 1/2), including the �, A, K , and M points.
In case 3, as shown in Fig. 5(c), the DM interaction d1 lifts
the first excited state, and another mode appears at 1.5 meV.
In case 4, as shown in Fig. 5(d), the intertube interaction J2

makes the flat mode dispersive in the ab plane. The dispersion
is larger at lower energies but still within the energy resolu-
tion. The results indicate that the effect of intertube interaction
is negligibly small in CsCrF4 even though it is important for
the determination of the ground state. The dynamics of this
compound is thus dominated by the isotropic spin tube, and
the effect of small perturbations is detected as the energy gaps
at the low energies.

In a coplanar 120◦ structure in a kagome lattice, certain
spins surrounded by spins pointing in the same direction, such
as the six spins of a hexagon or spins on a certain line, can be
locally tilted from the plane without an energy cost, i.e., while
keeping the angle among the adjacent spins at 120◦. Such
a mode is called a zero-energy mode [38,39]. The mode is
lifted by DM and/or dipole interactions, and it is experimen-
tally observed as flat excitations [27,39–41]. The flat mode
in CsCrF4 is, however, different from the zero-energy mode
because it appears as the result of the lift of the degeneracy
of the ground state in the quasi-isolated triangular spin system
by the single-ion anisotropy and DM interaction.

A classical phase diagram of the ground state using the
Luttinger-Tisza method [42,43] was calculated using Eq. (1),
as shown in Fig. 6(a), where J0 was set to 1. The cuboc
structure, a 120◦ structure with qm = (1/2, 0, 1/2), and the√

3 × √
3 structure, with qm = (1/3, 1/3, 1/2), exist. The

disordered state of isolated spin tubes at J2 = 0 is indicated
by crosses. The region surrounded by the solid rectangle in
Fig. 6(a) is enlarged in Fig. 6(b). The solid circle is the posi-

tion of the parameters obtained in the present study. CsCrF4

locates in the phase of qm = (1/2, 0, 1/2), which is consistent
with the magnetic structure in the LT phase [15]. It is quite
close to the phase boundary for the qm = (1/3, 1/3, 1/2)
phase.

Let us discuss the origin of the successive phase transition.
The IT phase with qm = (1/3, 1/3, 1/2) structure is stable if
a small lattice distortion suppresses D or enhances J2 with
the increase of the temperature. The INS spectra in the IT
and LT phases were, however, the same, and the change in
the parameters cannot be the origin. For confirmation, we
calculated the INS spectra of the IT phase using parameters
located in the phase of qm = (1/3, 1/3, 1/2) near the bound-
ary to the phase of qm = (1/2, 0, 1/2). The calculated spectra
were totally different from the observed one; a small change
in the parameters made a drastic change in the spectrum no
matter how small the change was, which is described in the
Appendix. Therefore, the origin of the successive transition
in CsCrF4 is not a change in the parameters of the spin
Hamiltonian due to a change in the lattice with temperature.
The spin Hamiltonian remains the same in the measured tem-
perature range. Given that the set of parameters is close to
the phase boundary between the two magnetic structures, the
internal energies are close to one another. In this situation, the
magnetic structure with larger internal energy in the IT phase
can be selected by thermal fluctuation if the spin entropy is
large. The origin of the successive phase transition is thus
suggested to be a spin-entropy-driven mechanism in the spin
system located near the phase boundary.

There are few previous studies on the comparison of INS
spectra in the IT and LT phases in spite of the existence of
numerous compounds which undergo a successive phase tran-
sition: LiNiPO4 [44] and Li2NiW2O8 [45], which change from
a commensurate structure in the IT phase to an incommen-
surate structure in the LT phase; CsCoCl3 [46] and CuFeO2

[47,48], which change from partial order to full order; and
CsMnI3 [49], which changes from a collinear to 120◦ structure
while keeping the propagation vector the same. Among them,
CsMnI3 is the only compound for which spectra in both the
IT and LT phases have been measured. The spectra, including
dispersion curves and intensities, in the IT and LT phases
are clearly different, even though the propagation vectors are
identical. In contrast, in CsCrF4, the spectra in the IT and
LT phases are approximately identical in terms of the level
of powder-averaged data, while the propagation vectors are
different. In addition, the correlation length in the IT phase
was reported to be 100–200 Å, in contrast to the long-range
correlation in the LT phase [15]. Of course, the detailed
structures of the spectra in the a∗-b∗ plane in IT and LT
phases, which can be observed using a combination of a single
crystal and a perfect spectrometer, would differ from one
another. The present study demonstrates that dynamical struc-
tures in different phases can be very similar, even though the
static structures differ in a compound exhibiting successive
transition.

The ground state of a spin S = 3/2 triangular spin tube is
a valence bond solid state with dimerization, and an energy
gap opens between the ground and excited states [7]. Such
a gap has been observed in spin gap systems, including the
spin S = 1 Haldane chain, spin S = 1/2 spin-Peierls system,
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and spin ladder, with INS experiments. The spin gap has even
been observed in compounds with a magnetically ordered
state induced by interchain interaction or impurities, such as
the Haldane chain CsNiCl3 [50], impurity-doped spin-Peierls
compound CuGeO3 [51], and impurity-doped Haldane chain
PbNi2V2O8 [52,53]. In the case of the spin S = 3/2 spin tube
compound CsCrF4 in the present study, the gap is estimated to
be about 0.006 meV (=0.0025Jleg) [7]. This is much smaller
than the instrumental resolution, and it was not observed in
the present study.

VI. SUMMARY

In summary, the spin Hamiltonian of CsCrF4 was identified
as weakly coupled antiferromagnetic spin tubes through INS
experiments. The set of parameters obtained from the exper-
iment in the LT phase was quite close to the phase boundary
between the 120◦ structure with qm = (1/2, 0, 1/2) and the
one with qm = (1/3, 1/3, 1/2). The observed INS spectra in
the IT and LT phases were qualitatively the same even though
the magnetic structures were different. The origin of the suc-
cessive phase transition turned out to be a spin-entropy-driven
mechanism. The observation of identical dynamical structures
compatible with different static structures in the present study
is an important issue. A theoretical examination of the spin
dynamics at finite temperatures in a frustrated system ex-
hibiting a successive phase transition is left for future work.
Neutron scattering experiments on a single crystal of CsCrF4

will provide further insights into the spin dynamics. This
represents another avenue for future research.
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APPENDIX: CALCULATED INS SPECTRA
FOR SPIN STRUCTURE IN IT PHASE

INS spectra in the IT phase were calculated for two set
of parameters, cases A1 and A2, as listed in Table III. Con-

TABLE III. Parameters of the spin Hamiltonian for the calcula-
tion of the INS spectra in the IT phase.

J0 (meV) J1 (meV) J2 (μeV) d1 (μeV) D (μeV)

Case A1 2.55 (5) 1.10 (5) −7 (1) −51 (1) 0
Case A2 2.39 (5) 1.02 (5) −8 −55 (1) −4.6

FIG. 7. Calculated INS spectra in the IT phase. (a)–(d) One-
dimensional cuts of calculated INS spectra (orange curves) using the
spin parameters summarized in Table III and those from experiment
(symbols) measured at 3.1 K in the IT phase. The spectra for case A1
in (a) wide and (c) narrow energy ranges. The spectra for case A2 in
(b) wide and (d) narrow energy ranges. Calculated dispersion curves
for (e) case A1 and (f) case A2. Calculated powder-averaged spectra
for (g) case A1 and (h) case A2.

ventional linear spin wave (LSW) theory was used as in the
calculation in the LT phase. The

√
3 × √

3 structure shown
in Fig. 1, which is the ground state of the spin Hamiltonian
with the parameters, was used. It is one of the magnetic
structures previously proposed [15]. Another one is the 120◦
structure with spin modulation. It is not the ground state of
the spin Hamiltonian, and LSW theory cannot be applied.
The temperature was assumed to be 0 K. In Ref. [15], the
estimated moment for the LT phase was 1.50μB, and the one
for the

√
3 × √

3 structure in the IT phase was 1.62μB. In the
LSW calculation, a change in the magnetic moment simply
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changes the scale factor of the dynamical structure factor of
the neutron while keeping its profile the same. Thus, a full
moment of spin S = 3/2 of 3μB for a gyromagnetic ratio of
2 was used for both the LT and IT phases for simplicity. The
spin correlation was assumed to be long range, even though a
short-range correlation was reported [15].

In case A1, D was fixed to zero, and J0, J1, J2, and d1

were determined so that the calculated energy of the excita-
tions in the IT phase in 1D cuts coincided with the observed
one, as determined in LT phase. In case A2, J2 was fixed
to −8μeV, and D was fixed to −4.6μeV; other parameters
were determined using the same method as for case A1. The
calculated 1D cuts using the best parameters in case A1 in
Table III are shown by orange curves in Figs. 7(a) and 7(c)
for wide and narrow energy ranges, respectively. The exci-
tation with a peak energy of 0.5 meV can be produced by
J2 instead of D; however, the peak width is wider than the

energy resolution in Fig. 7(c). The intensities of the peaks,
particularly at 6 and 8 meV, in Fig. 7(a) are not reproduced.
The calculated 1D cuts using the best parameters in case A2
in Table III are shown by orange curves in Figs. 7(b) and
7(d) for wide and narrow energy ranges, respectively. The
low-energy mode at h̄ω ∼ 0.5 meV is lifted by both D and
J2, leading to a complex profile. Calculated dispersion curves
among reciprocal lattice points with high symmetry are shown
in Fig. 7(e) for case A1 and Fig. 7(f) for case A2. The calcu-
lated spectra after powder averaging are shown in Fig. 7(g) for
case A1 and Fig. 7(h) for case A2. Gapless modes stemming
from point A in Figs. 7(e) and 7(f) induce finite intensities
below 0.5 meV in Figs. 7(g) and 7(h), which contradicts the
experiment. The measured spectrum is thus not reproduced
by the calculation. The change in the parameters leads to a
drastic change in the INS spectrum, even though the change is
small.
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