Spin reorientation and Curie temperature promotion in CrI₃-Bi van der Waals heterostructures

Ju-Jian Liao,¹ Yao-Zhuang Nie^{1,*} Xi-guang Wang,¹ Zi-yan Luo,¹ Qing-lin Xia,¹ Rui Xiong^{1,2} and Guang-hua Guo^{1,†}

¹School of Physics and Electronics, Central South University, Changsha 410083, China

²School of Physics and Technology, Wuhan University, Wuhan 430072, China

(Received 31 August 2022; revised 10 March 2023; accepted 19 April 2023; published 2 May 2023)

Promoting the Curie temperature and tunning the magnetocrystalline anisotropy have been key issues in two-dimensional (2D) magnetic materials. Here, we address this issue by studying Bi/CrI₃ heterostructures using first-principles calculations. Results show that the easy-magnetization direction rotates from the easy axis in the CrI₃ monolayer to the easy plane in the Bi/CrI₃ heterostructure. A built-in electric field in CrI₃ introduced by the coupling between the CrI₃ and Bi monolayers is found responsible for this spin reorientation. The Curie temperature of the Bi/CrI₃ heterostructure reaches 107 K, significantly larger than the Curie temperature (45 K) of the pristine CrI₃ monolayer. The metal property of the heterostructure introduces a double exchangelike ferromagnetic (FM) coupling which promotes the Curie temperature. Moreover, in the Bi/bilayer CrI₃ heterostructure, the coupling between CrI₃ and Bi makes the interlayer CrI₃ –CrI₃ exchange interaction become FM, and the CrI₃ bilayer has a FM ground state. Our work provides a way to modulate the magnetic properties of 2D materials and may be used for designing 2D spintronic devices.

DOI: 10.1103/PhysRevB.107.184403

I. INTRODUCTION

Two-dimensional (2D) magnetic materials have many advantages over bulk materials. One of the salient features is the easy modulation of their properties. It has been found that magnetic ordering temperature, magnetic anisotropy, and magnetization can be tuned by electric field, strain, stacking method, electrostatic doping, ion intercalation, etc. [1–14]. Moreover, the weak van der Waals (vdW) force between layers makes 2D magnetic materials easy to form heterostructures by stacking different 2D materials, inducing rich interfacial effects by charge transfer, lattice distortion, additional superexchange interactions, dielectric screening, band renormalization, and spin-orbit coupling (SOC) proximity [15–22]. Such heterostructures greatly expand the applications of 2D magnetic materials and are expected to be the key building block for future 2D spintronics devices.

Currently, the CrI₃-based vdW heterostructures are being studied extensively. Recent measurements indicated that the transition metal dichalcogenide/CrI₃ heterostructures show a proximity exchange coupling of several millielectronvolts, which leads to Zeeman splitting and induces valley polarization in WSe₂/CrI₃ heterostructure [23,24]. The graphene/CrI₃ heterostructure is a high-temperature Chern insulator with a strain-tunable band gap, which is expected to realize the quantum anomalous Hall effect (QAHE) [25–27]. The valley polarization and high tunability of the magnetocrystalline anisotropy energy (MAE) have also been reported in the graphene/CrI₃ bilayer [28]. The biaxial strain can be exploited to tune the topological phase transition and Curie temperature in the MnBi₂Te₄/CrI₃ heterostructure and the interfacial magnetic coupling in the CrI₃/CrGeTe₃ heterostructure [29,30]. In the CrI₃/1T'-*MX*₂ (*M* = Mo, W; *X* = S, Se, Te) heterostructures, the switching of magnetic anisotropy from easy-axis anisotropy to easy-plane anisotropy can be introduced by an electric field [31]. In the MoSeTe/CrI₃ bilayer heterostructure, the transition from antiferromagnetic (AFM) to ferromagnetic (FM) state is controlled by a nonvolatile electric field [32]. In the α -In₂Se₃/CrI₃ bilayer heterostructure, the switching between FM and AFM interlayer coupling in bilayer CrI₃ can be realized by tuning the direction of ferroelectric polarization of In₂Se₃ [33].

Monolayers of VA-group elements (P, As, Sb, Bi) are semiconductors with good environmental stability. The monolayers can exist in multiple allotropes, of which the highly buckled graphenelike hexagonal crystal structure (β phase) has the best stability [34]. Bi homogeneous structures consisting of monolayers of Bi and black phosphoruslike Bi have been successfully synthetized on highly oriented pyrolytic graphite by the molecular beam epitaxy method [35]. The environmental stability and controllable large-scale growth of the Bi monolayer indicate its possible application in 2D devices. The Bi monolayer has strong SOC and nontrivial topological properties [36,37]. Monolayer Bi on silicon and SiC substrates exhibits the quantum spin Hall phase [38–40]. Studies have shown, when a heavy elemental (Bi, Sb, or As) atomic layer is placed on top of the CrI₃ monolayer, a considerable bulk energy gap can be opened, and the QAHE is realized [41]. Moreover, the first- to second-order topological phase transitions introduced by the proximity effect are predicated theoretically in the Bi monolayer grown on the (111) surface of EuO [42].

In this paper, we study the vdW heterostructures consisting of monolayer CrI_3 (or bilayer CrI_3) with buckled honeycomb

^{*}yznie@csu.edu.cn

[†]guogh@mail.csu.edu.cn

monolayer Bi by using first-principles calculations. We find that the coupling between the Bi and CrI_3 monolayers leads to the reorientation of the CrI_3 easy-magnetization direction from out-of-plane to in-plane and increases the Curie temperature (T_c). The coupling also affects the competition between the orbital-dependent interlayer AFM and FM superexchange interactions in bilayer CrI_3 and gives rise to a FM ordering ground state in bilayer CrI_3 . The strong modulation of the magnetic properties is relevant to a built-in electric field established in CrI_3 in the Bi/ CrI_3 heterostructure.

II. METHODOLOGY

The spin-polarization calculations based on density functional theory are performed using VASP software [43,44]. The electron interactions are simulated by the Perdew-Burk-Ernzerhorf (PBE) exchange correlation potential [45]. The electronic configurations for the projector augmented-wave pseudopotential of each atom are Cr: $3p^6 3d^5 4s^1$, I: $5s^2 5p^5$, and Bi: $6s^2 6p^3$ [44]. The *d*-orbital electrons of the transition metal element Cr are treated considering the correlation effect. Here, we take U = 3.0 eV, which has commonly been used in early research on CrI_3 [46]. Other values (U = 3 eV, J = 0.9 eV) are also used to check the results, such as the interlayer distance and magnetic properties of the heterostructure. There is no real difference, and the main conclusions hold. The calculations are corrected for vdW force using the DFT-D3 method [47]. Two other nonlocal functionals (optPBE-vdW and optB86-vdW) are also tested, and similar results are obtained in Supplemental Material Sec. II [48]. A thick vacuum layer (>20 Å) is set to isolate the effect of the periodic arrangement of the layered structure. The k-point grid sampling in the Brillouin zone is a $9 \times 9 \times 1$ Monkhorst-Pack grid centered on the Γ point, and the Blöchl correction of the tetrahedral method is incorporated into the electronic structure calculation [49]. The convergence criteria for energy and force constants are set to 10^{-7} eV and 0.01 eV A⁻¹, respectively. The truncation energy of the plane wave is selected as 500 eV. The SOC effect is considered in the calculation of MAE which is defined as the energy difference between the magnetic moments parallel and vertical to the plane. Negative MAE indicates the direction of easy magnetization is along the in-plane. The self-consistent spin polarization is used to calculate the energy difference between the spin axis and the easy-magnetization axis. To understand the mechanism of MAE, the contribution of SOC to MAE needs to be calculated. The value of MAE can be quantified by perturbing the SOC Hamiltonian $\hat{H}_{SOC} = \xi \hat{L} \cdot \hat{S}$. Then we obtain MAE:

$$MAE = \xi^{2} \sum_{u,o,\sigma,\sigma'} (-1)^{1-\delta_{\sigma\sigma'}} \left[\frac{|\langle o^{\sigma'} | \hat{L}_{z} | u^{\sigma} \rangle|^{2} - |\langle o^{\sigma'} | \hat{L}_{x} | u^{\sigma} \rangle|^{2}}{\varepsilon_{u}^{\sigma} - \varepsilon_{o}^{\sigma'}} \right],$$
(1)

where ξ is the SOC coefficient, \hat{L}_z and \hat{L}_x are the components of orbital angular momentum operator in x and z directions, σ and σ' stand for different spin states, δ is the Kronecker function, and $\sigma^{\sigma'}(u^{\sigma})$ and $\varepsilon_o^{\sigma'}(\varepsilon_u^{\sigma})$ represent the eigenstate and eigenvalue of the occupied (unoccupied) orbital state d_{xy} , d_{yz} , d_{z^2} , d_{xz} , $d_{x^2-y^2}$, p_y , p_z , or p_x [50]. The Curie temperature

FIG. 1. Crystal structures of (a) monolayer Bi, (b) monolayer CrI_3 , and (c) Bi/CrI_3 heterostructure.

is calculated based on Monte Carlo Metropolis simulations using the VAMPIRE software package [51,52]. The transition parameters in the tight-binding approximate Hamiltonian are simulated by the Wannier90 program [53]. The magnetic interaction parameters are calculated by the Python package TB2J [54], and some data are processed by the VASPKIT toolbox [55].

III. RESULTS AND DISCUSSION

A. Structure of Bi/CrI₃ heterostructure

To construct the model of the 2D Bi/CrI₃ heterostructure, we consider three stacking forms, and the configuration with the lowest energy is considered in this paper. Detailed information for the three stacking forms is provided in Sec. III in the Supplemental Material [48]. We first optimize the lattice structure of each constituent material separately. Both monolayer Bi and monolayer CrI3 have hexagonal lattices with D3d point-group symmetry, as shown in Figs. 1(a) and 1(b). They possess the $P\bar{3}m1$ and $P\bar{3}1m$ space groups, respectively. Monolayer Bi has a graphenelike hexagonal crystal structure, but it is highly buckled. In monolayer CrI₃, the magnetic atom Cr is located at the center of the octahedron consisting of the I atoms and arranged in a honeycomb pattern. The Bi/CrI₃ heterostructure is constructed by vertically stacking the Bi and CrI_3 monolayers, as shown in Fig. 1(c). To reduce the lattice mismatch, a $\sqrt{3} \times \sqrt{3}$ Bi supercell is used to match the primary cell of CrI₃. The structure-related data for each optimized structure are listed in Table S2 in the Supplemental Material [48]. The I atom is almost completely aligned with the Bi atom, and the Cr atom is located in the center of the honeycomb structure formed by the Bi atoms, as shown from the top view [Fig. 1(c)]. The lattice mismatch is 2.95% calculated according to $\eta = \frac{|a_1-a_2|}{a_1+a_2}$, where a_1 and a_2 represent the lattice constants of each monolayer after cell relaxation, respectively. Two different spin arrangements, i.e., FM and AFM states, are considered. The FM configuration is more energy stable, and the following results are based on the FM Bi/CrI_3 heterostructure. The binding energy of the Bi/CrI_3

TABLE I. Calculated lattice constants *a*, band gap values E_g , FM and AFM energy difference $E_{\text{FM}-\text{AFM}}$, Cr atomic local magnetic moment M_{Cr} , total magnetic moments in a unit cell (M_U), and MAE for monolayer CrI₃, stressed monolayer CrI₃, and Bi/CrI₃ heterostructure. Positive and negative MAE values represent easy-axis anisotropy and easy-plane anisotropy, respectively.

	(Å)	E_g (eV)	E _{FM-AFM} (meV)	$M_{ m Cr}$ $(\mu_{ m B})$	$M_U \ (\mu_{ m B})$	MAE (meV/cell)
CrI ₃	7.07	1.2	-49.73	3.33	6	1.41
Stressed CrI ₃	7.21	1.15	-57.7	3.37	6	1.35
Bi/CrI ₃	7.21	metal	-73	3.45	6.23	-2.53

heterostructure is calculated by

$$E_b = E_{\rm CrI_3/Bi} - E_{\rm Bi} - E_{\rm CrI_3}.$$
 (2)

Here, $E_{CrI_3/Bi}$, E_{Bi} , and E_{CrI_3} represent the total energy of the heterostructure, the Bi monolayer energy, and the CrI₃ monolayer energy, respectively. The calculated E_b is -2.64 eV per unit cell. The large negative binding energy indicates the heterostructure has good stability. The optimal interlayer distance d_0 of the Bi/CrI₃ heterostructure is 3.9 Å, which is larger than the sum of the atomic radii at the interface, indicating the existence of a vdW interaction between the two monolayers. Chen *et al.* [56] also studied the Bi/CrI₃ heterostructure. Due to different structural optimization methods, the interlayer distance in their work is 3.25 Å. We will see the interlayer distance has a great effect on the magnetic properties of the Bi/CrI₃ heterostructure.

B. Reorientation of the easy-magnetization direction

Table I shows the relevant data of the CrI_3 monolayer, the Bi/CrI₃ heterostructure, and the stressed CrI_3 monolayer, respectively. The CrI_3 monolayer is a FM insulator with perpendicular magnetic anisotropy. Our calculation agrees with a previous study [57]. The coupling of the CrI_3 monolayer with the Bi monolayer leads to the reorientation of the easymagnetization axis from out-of-plane in the CrI_3 monolayer to in-plane in the Bi/CrI₃ heterostructure. The calculated MAEs are 1.41 and -2.53 meV for the CrI_3 monolayer and the Bi/CrI₃ heterostructure, respectively. The MAE is almost

isotropic in-plane, as indicated by Fig. 2(a), which shows the dependence of the MAE on the angle of spin vector \vec{S} . The three-dimensional angle dependence of MAE with spin vector \vec{S} is displayed in Fig. 2(b). MAE decreases monotonically with increasing polarization angle θ , indicating strong out-of-plane anisotropy. To check if the reorientation of the easy-magnetization direction is caused by the strain induced by the Bi monolayer, we further calculate the magnetic properties of the stressed CrI₃ monolayer with the same lattice constant as in the heterostructure. As shown in Table I, the MAE decreases only $\sim 4.26\%$ (from 1.41 to 1.35 meV/cell). Therefore, the strain influence on MAE can be ignored. The calculated Cr and I magnetic moments of the heterostructure are 3.45 and $-0.13 \mu_B$, respectively, which are almost the same as those in monolayer CrI₃. The Bi atom contributes zero magnetic moment. In addition, the heterostructure is a metal, although CrI₃ is an insulator, and the Bi monolayer is a semiconductor. When two different materials contact, discontinuous offsets occur at the conduction band minimum (CBM) and the valence band maximum (VBM), which are called conduction band offset and valence band offset, respectively [58]. The VBM of Bi is higher than the CBM of CrI_3 , so the Bi/CrI₃ heterostructure presents as metallic due to the broken gap (type-III band alignment) [59]. A more detailed discussion about the metallic behavior in the Bi/CrI₃ vdW heterostructure is provided in Supplemental Material Sec. IV [48].

In the following, we discuss the mechanism of the reorientation of the easy-magnetization direction in the Bi/CrI₃ heterostructure. In the single-ion model, MAE is considered to originate from the combining effect of magnetic atomic SOC and crystal field splitting of orbital states. However, previous studies show that, in CrI₃, in addition to the SOC effect of the Cr atom, the SOC effect of the I atom also plays an important role on MAE [60]. We calculate the contribution of each SOC channel to MAE. The orbital-projected contributions to MAE from Cr and I atoms in the CrI₃ monolayer and the Bi/CrI₃ heterostructure are presented in Fig. 3. For the CrI₃ monolayer, as shown in Figs. 3(a) and 3(c), the out-of-plane MAE mainly comes from the couplings between the d_{z^2} and d_{yz} orbitals (column 4), the d_{xz} and d_{xy} orbitals (column 3), and the $d_{x^2-y^2}$ and d_{yz} orbitals (column 2) of the Cr atom, as well as

FIG. 2. Evolution of magnetocrystalline anisotropy energy (MAE) for the Bi/CrI_3 heterostructure with the spin vector S rotating (a) in the x-y plane and (b) in three-dimensional space.

FIG. 3. Orbital-projected contribution of individual atomic spin-orbit coupling (SOC) to magnetocrystalline anisotropy energy (MAE) in monolayer CrI_3 and Bi/CrI_3 heterostructure. Orbital-projected contribution of (a) Cr and (c) I atoms in single CrI_3 monolayer and (b) Cr, (d) I, and (e) Bi atoms in Bi/CrI_3 heterostructure.

the p_x and p_y orbitals of the I atom. The couplings between the $d_{x^2-y^2}$ and d_{xy} orbitals of the Cr atom and the p_y and p_z orbitals of the I atom contribute in-plane MAE. Overall, both Cr and I atoms contribute out-of-plane MAE. For the Bi/CrI₃ heterostructure, as shown in Figs. 3(b) and 3(d), the coupling of CrI₃ with the Bi monolayer greatly reduces the in-plane MAE from the $d_{x^2-y^2}$ and d_{xy} coupling and significantly enhances the in-plane MAE from the d_{xz} and d_{yz} coupling. The out-of-plane MAE contributed from the $d_{x^2-y^2}$ and d_{yz} orbital coupling is also enhanced. The total contribution to MAE from the Cr atom still favors perpendicular magnetization anisotropy (PMA). For the I atom, the contribution of each orbital-pair coupling to MAE is modified dramatically. The in-plane MAE contributed from the p_v and p_z coupling is enhanced greatly and makes the I atom contribute large in-plane magnetization anisotropy (IMA). The total contribution of the six I atoms in a unit cell to MAE is negative in the heterostructure, while it is positive in monolayer CrI₃. As a result, the easymagnetization direction rotates from perpendicular to in-plane in the Bi/CrI₃ heterostructure. The contribution to MAE from the Bi atom is negligible, as shown in Fig. 3(e). In addition, we calculate MAE by suppressing the SOC strengths of each element separately. Results show that, when the SOC strength of Cr and/or Bi is set to zero, the MAE variation is very small. However, if the SOC strength of the I atom is set to zero, MAE changes from -2.46 to -0.05 meV/cell, indicating clearly that the in-plane MAE is almost entirely provided by I, while the contribution of Cr and Bi is quite small.

We further calculate the distribution of the charge density in the Bi/CrI_3 heterostructure. The illustration in Fig. 4(a) shows the differential charge density. The electrons of Bi and I atoms are concentrated at the interface. By the way, based on the Bader charge analysis, we find there is a small amount of electron transfer; 0.039 electrons are transferred from the Bi atom to CrI₃. The asymmetric structure of the heterostructure gives rise to a built-in electric field (E_{int}) from Bi to CrI₃ perpendicular to the xy plane, as indicated by Fig. 4(a), in which the electrostatic potential distribution in the heterostructure is displayed. The E_{int} at the interface region is $\sim 0.6 \text{ eV}/\text{\AA}$. In the following, we will see that the reorientation of the easy-magnetization direction in the Bi/CrI₃ heterostructure is closely related to this built-in electric field. To demonstrate this, we calculated the MAE of a single CrI₃ monolayer when an external electric field (E_{ext}) is applied perpendicular to the plane (the principle of applying an electric field is provided in Sec. V in the Supplemental Material [48]). We can see from Fig. 4(b) that the MAE of the single monolayer CrI_3 tends to decrease with increasing E_{ext} irrespective of the direction of E_{ext} and changes from PMA to IMA at a critical value of E_{ext} . Here, we reveal theoretically that the MAE of monolayer CrI₃ can be tuned from out-of-plane to in-plane by applying an electric field. The E_{ext} needed for the spin reorientation in pure monolayer CrI₃ is $\sim 2.0 \text{ eV}/\text{\AA}$, which is difficult to reach in experiment, while the spin reorientation is realized easily in the Bi/CrI₃ heterostructure without E_{ext} .

Looking closely at the projected density of states (PDOS) of the CrI_3 monolayer and the Bi/CrI_3 heterostructure, as

FIG. 4. (a) Electrostatic potential distribution along the *c*-axis direction, which contains the differential charge density of the Bi/CrI₃ heterostructure (blue and orange regions represent the electron concentration and loss, respectively, and the isosurface value is $0.0003 \ e/bohr^3$). The pink arrow represents the built-in electric field E_{int} directed from Bi to CrI₃. The purple arrow denotes the external electric field (E_{ext}). A positive (+) E_{ext} is defined to be parallel to the E_{int} . (b) Variations of magnetocrystalline anisotropy energies (MAEs) with the external electric field E_{ext} for single CrI₃ monolayer and Bi/CrI₃ heterostructure. Black and red curves represent the results of single CrI₃ monolayer and Bi/CrI₃ heterostructure, respectively. Square and circle dots stand for positive (+ E_{ext}) and negative (- E_{ext}) external electric fields, respectively.

shown in Fig. 5, one can see the distribution of both Cr *d* and I *p* orbitals has changed considerably in the heterostructure. In a single CrI₃ monolayer, the Cr *d* and the I *p* orbitals almost completely overlap in the conduction band, and the Cr-I mixing is the ultimate cause of the anisotropic exchange [60]. For the heterostructure, the same orbitals are localized in a very narrow energy range, and the density of states increases significantly due to the action of the built-in electric field in CrI₃. Remarkably, the reorientation of the easy-magnetization axis can be understood by the change of I *p* orbitals near the Fermi surface. For the single monolayer CrI₃, the energy gaps between the $(p_{x/y} \uparrow)^1$ and $(p_{x/y} \uparrow)^0$ levels and between

the $(p_{x/y}\uparrow)^1$ and $(p_z\uparrow)^0$ levels are the smallest between the occupied and unoccupied levels (here, superscript 1 and 0 represent occupied and unoccupied states, respectively, and the up and down arrows indicate up and down spins). The couplings between the $(p_{x/y}\uparrow)^1$ and $(p_{x/y}\uparrow)^0$ levels and between the $(p_{x/y}\uparrow)^1$ and $(p_z\uparrow)^0$ levels contribute oppositely to MAE according to the perturbation theory [61,62]. The coupling between the $(p_{x/y}\uparrow)^1$ and $(p_{x/y}\uparrow)^0$ levels is dominant and favors the PMA due to the $(p_{x/y}\uparrow)^1$ and $(p_{x/y}\uparrow)^0$ levels with the same |m| values (m denotes magnetic quantum number). Then the preferred spin orientation of the Cr atom is also parallel to the *z* axis through its exchange interaction with

FIG. 5. Projected density of states for (a) Cr atom d orbitals, (b) I and Bi atom p orbitals in monolayer CrI₃ and Bi/CrI₃ heterostructure.

FIG. 6. Variation of magnetocrystalline anisotropy energy (MAE) and electrostatic potential difference in CrI_3 with the interlayer distance d_0 for (a) Bi/CrI₃ heterostructure and (b) Bi/bilayer CrI₃ heterostructure.

the I atom. In the Bi/CrI_3 heterostructure, a large amount of charge accumulation and charge transfer occurs at the interface, which changes the charge distribution, forming the built-in electric field in CrI₃. This built-in field moves the energy band so that the Fermi level changes, as shown in Fig. 5(b). The $(p_z \uparrow)^1$ orbital of the I atom shifts to the Fermi level, giving rise to the change of the electron occupation in the orbital state. Now the smallest energy gap is between the $(p_z \uparrow)^1$ and $(p_{x/y} \uparrow)^0$ levels. Thus, the spin of the I atom in the heterostructure has IMA since the $(p_z \uparrow)^1$ and $(p_{x/y} \uparrow)^0$ levels differ in their *m* values by ± 1 . The spin direction of the Cr atom also lies in the plane due to the exchange interaction between the Cr and I atoms. It can be seen from Fig. 5(b)that there is an overlap in the vicinity of the valence band between the p_z orbitals of Bi and I atoms, but the projected band (Figs. S3(f)-S3(h) in the Supplemental Material [48]) shows that the coupling of Bi with Cr and I is small, so the direct contribution of Bi to MAE can be neglected. This theoretical analysis agrees with results of direct DFT+U+SOC calculations (Fig. 3).

We also study the effect of the external electric field E_{ext} applied on the Bi/CrI₃ heterostructure. The results are given in Fig. 4(b) together with the results for a single CrI₃ monolayer. A positive E_{ext} can move the electron from CrI₃ to Bi, thereby reducing the strength of E_{int} . As a result, MAE changes from negative to positive with increasing E_{ext} , as shown in Fig. 4(b), i.e., the easy-magnetization direction rotates from in-plane to out-of-plane. If the direction E_{ext} is antiparallel to E_{int} , the negative MAE is enhanced, and no spin reorientation occurs.

We perform the calculations using the local density approximation [63]. In this case, the lattice constant and interlayer distance are smaller than those in the GGA-PBE method. However, the main conclusions, i.e., the built-in electric field and in-plane MAE, still hold.

C. Interlayer distance-controllable easy-magnetization direction

As mentioned, the reorientation of the easy-magnetization direction in the Bi/CrI_3 heterostructure is induced by the built-in electric field on CrI_3 . The strength of this field is

dependent strongly on the interlayer distance of the heterostructure. Here, we further study the influence of the interlayer distance d_0 on MAE and the electrostatic potential difference on both sides of CrI₃. The variation of MAE with d_0 is shown in Fig. 6(a). MAE displays an oscillation feature. For small interlayer distance ($d_0 = 3.1$ and 3.2 Å), the system has strong PMA. The PMA decreases rapidly with increasing d_0 , and the MAE becomes negative at 3.3 Å, meaning the easy-magnetization direction rotates from perpendicular to in-plane. IMA decreases gradually with further increasing d_0 and becomes 0 at $d_0 = 12$ Å. After that, the perpendicular easy-magnetization axis is established again. Here, it should be pointed out that the structure of the heterostructure is not reoptimized with changing interlayer spacing. The structure stays the same as that at the interlayer distance of 3.9 Å. Thus, CrI₃ is strained, and a small built-in potential still exists at an interlayer distance of 20 Å. However, it is much smaller than that at 3.9 Å. Here, it should be noted that there is no spin reorientation in the Bi/CrI₃ heterostructure in the work of Chen et al. [56]. The interlayer distance in their structure is 3.25 Å, which is < 3.3 Å, so the PMA still holds.

The effect of the interlayer distance on MAE can be understood by analyzing the electronic structure. The PDOS of Cr and I atoms in the heterostructure with interlayer distance of 3.2 Å is shown in Fig. S4 in Supplemental Material Sec. IV [48]. Obviously, the Cr d and the I p orbitals overlap substantially in the vicinity of the Fermi energy. The electron distribution of Cr d orbitals is like that of the heterostructure at optimal interlayer distance, but the distribution of I p orbitals has changed. The smallest energy gap between the occupied and unoccupied levels occurs between the $(p_z \downarrow)^1$ and the $(p_{x/y}\uparrow)^0$ levels. Because $(p_z\downarrow)^1$ and $(p_{x/y}\uparrow)^0$ are opposite spins, their interaction leads to the preferential spin direction being parallel to the orbital z axis. Namely, the spin of Cr is collinear with I in the spin direction, and hence, the heterostructure shows easy-axis anisotropy. Compared with monolayer CrI₃ and the heterostructure ($d_0 = 3.9$ Å), the I p states have the smallest energy gap between the occupied and unoccupied levels when $d_0 = 3.2$ Å, and it has a maximum MAE based on the perturbation theory.

FIG. 7. (a) Schematics of $90^{\circ} d$ -*p*-*d* super-exchange coupling. (b) and (c) Electron e_g - e_g hopping between two Cr atoms in Bi/CrI₃ heterostructure. (d) Variation of the average magnetic moment with temperature in monolayer CrI₃, stressed monolayer CrI₃, and Bi/CrI₃ heterostructure.

D. Exchange interaction and Curie temperature

FM exchange interaction is directly related to Curie temperature T_c . The intralayer FM coupling of CrI₃ can be explained by the superexchange coupling mechanism of the local magnetic moment. Based on the Goodenough-Kanamori-Anderson rule, the leading FM coupling mechanism is through the *d-p-d* superexchange coupling mechanism of nearly 90° Cr-I-Cr [Fig. 7(a)], and the T_c of monolayer CrI₃ is 45 K [2,64]. For the Bi/CrI₃ heterostructure, the coupling of Bi shifts the Fermi level toward the conduction band, making CrI₃ present as a half-metallic state (Fig. S5(b) in the Supplemental Material [48]). The magnetic moment of Cr increases while the magnetic moment of I decreases at the interface. Now in addition to the d-p-d superexchange [Fig. 7(a)] which favors FM ordering, a new FM coupling like the doubleexchange mechanism occurs, as shown in Figs. 7(b) and 7(c); the FM alignment allows electron e_g - e_g hopping between two Cr atoms. It can be expected that the new FM coupling will promote the Curie temperature of the Bi/CrI₃ heterostructure.

Considering the exchange anisotropy, one can write the Heisenberg spin Hamiltonian as

$$\mathcal{H}_{\text{exch}} = -\left[\frac{1}{2}\sum_{i\neq j}\mathbf{S}_{i}^{\alpha}\mathcal{J}_{ij}^{\alpha\beta}\mathbf{S}_{j}^{\beta} + \sum_{i}D(S_{i}^{z})^{2}\right], \ \alpha, \beta = x, y, z,$$
(3)

where S_i and S_j represent the spin vectors located at the lattice points *i* and *j*, respectively, *D* is the easy-axis singleion anisotropy, and \mathcal{J}_{ij} is the exchange tensor which can be decomposed into two terms:

$$\mathcal{J}_{ij} = J_{ij}\mathbf{I} + J_{\text{ani}},\tag{4}$$

where J_{ij} denotes the isotropic exchange, **I** is the unit tensor, and J_{ani} represents the anisotropic exchange, which is calculated by TB2J. The Wannier function Hamiltonian is constructed from the results of DFT+U+SOC calculations. The rigid spin rotation is regarded as a perturbation of the electronic structure using the magnetic force theorem, and the energy change is calculated using the Green's function method based on the tight-binding model Hamiltonian. For clarity, a workflow is given in Supplemental Material Sec. VI [48].

In the framework of the Heisenberg model with single-ion anisotropy, we simulate the temperature dependence of magnetization for the CrI₃ monolayer, the stressed monolayer, and the Bi/CrI₃ heterostructure, respectively, which is presented in Fig. 7(d). All nonzero magnetic interactions are considered here (see Fig. S8 in the Supplemental Material [48]). When both J_{ij} and the anisotropic exchange J_{ani} are considered, the T_c 's of monolayer CrI₃, the stressed monolayer CrI₃, and the Bi/CrI₃ heterostructure are 43, 49, and 107 K, respectively. As expected, the Curie temperature is boosted greatly

FIG. 8. Schematics of interlayer (a) antiferromagnetic (AFM) coupling and (b) ferromagnetic (FM) coupling in Bi/bilayer CrI_3 heterostructure. Two-dimensional (2D) differential charge density section of (c) AFM pure bilayer CrI_3 and (d) FM Bi/bilayer CrI_3 heterostructure. The maximum and minimum values of the linear scale color bar are 1.0×10^{-6} and $0 \ e/bohr^3$, respectively. The regions between the two white dotted lines in (c) and (d) represent the van der Waals (vdW) gap of adjacent CrI_3 layers.

in the heterostructure, while the strain effect on T_c is little. Chen *et al.* [56] also found that the Curie temperature is enhanced in the Bi/CrI₃ heterostructure based on the mean-field theory calculation and attributed it to the electron doping. Here, we consider all neighbor exchange coupling, which is more in line with the actual situation. We think that the new double-exchangelike FM interaction in the heterostructure is responsible for the enhancement of T_c .

E. Bi/bilayer CrI₃ heterostructure

The CrI₃ film has an AFM ground state, and the interlayer magnetic coupling of bilayer CrI₃ is realized through the super-superexchange interaction (SSEI) of Cr-I-I-Cr. The SSEI in bilayer CrI₃ includes AFM and FM SSEIs [32,65,66]. Figures 8(a) and 8(b) show the interlayer AFM and FM coupling mechanisms, respectively. When the interlayer I atoms have opposite spins, electron hopping occurs through the t_{2g} - $p_{x/y}(p_z)$ - e_g or t_{2g} - $p_z(p_{x/y})$ - e_g channel in the same layer of CrI₃, which mediates the AFM interaction. When the spins of the interlayer I atoms are parallel, consecutive electron hopping occurs through the $t_{2g} - p_{x/y} - p_{x/y} - e_g$ channel between the adjacent layers of CrI₃, which mediates the FM coupling. The competition between the two coupling mechanisms determines the magnetic ground state of bilayer CrI₃. We show here that the interlayer exchange interaction becomes FM in the Bi/bilayer CrI₃ heterostructure. The structure of the Bi/bilayer CrI₃ heterostructure is given in Fig. S8(a) in the Supplemental Material [48], and the optimized interlayer distance of Bi and bilayer CrI₃ is 3.2 Å. The effects of CrI₃ stacking order and lattice strain can be excluded from the origin of this FM coupling.

Figures 8(c) and 8(d) show the 2D differential charge density section of AFM bilayer CrI₃ and the FM Bi/bilayer CrI₃ heterostructure, respectively. The interval between the two white dotted lines represents the vdW gap of adjacent CrI₃ layers. The charge is accumulated in the vdW gap. In the Bi/bilayer CrI_3 heterostructure, the I atomic orbitals of the adjacent layers overlap, and the electrons can hop through the vdW gap, which corresponds to the FM coupling mechanism in Fig. 8(b), meaning the FM coupling is enhanced in the heterostructure. While in pure bilayer CrI_3 , there is no obvious overlapping of orbitals in the vdW gap.

To further explain the change of the interlayer magnetic coupling, we calculate the PDOS of the Cr d and I p orbitals for pure bilayer CrI₃ and the Bi/bilayer CrI₃ heterostructure, which are given in Figs. S9(a) and S9(b) in the Supplemental Material [48], respectively. Here, we name the adjacent layers of the inner I atomic layer as the top and bottom layers. For the Bi/bilayer CrI₃ heterostructure, the *p*-orbital spin direction is changed in the unoccupied state of the top layer relative to pure bilayer CrI₃, and the contribution of the p_z orbital is significantly reduced in the unoccupied state of the bottom layer compared with pure bilayer CrI₃, so that the up-spin $p_{x/y}$ orbital is dominant among the unoccupied states of both the top and bottom layers. Clearly, the shift of the orbital energy levels induced by the E_{int} on CrI₃ changes the occupied electronic states, and the interlayer FM coupling becomes dominant in the Bi/bilayer CrI₃ heterostructure. Calculations for the Bi/multilayer CrI₃ heterostructures show the interlayer FM ordering can persist up to the third CrI₃ layer from the interface, and over four layers, the interlayer AFM ordering returns.

In addition, the oscillation variation between the in-plane and out-of-plane MAEs with the Bi-CrI₃ interlayer distance also occurs in the Bi/bilayer CrI₃ heterostructure, as shown in Fig. 6(b). Here, E_{int} is also responsible for this variation.

IV. CONCLUSIONS

In summary, we have systematically investigated the magnetic properties of the Bi/CrI_3 heterostructures using the first-principles calculation method. The coupling between the Bi and CrI_3 monolayers modulates the MAE significantly and makes the easy-magnetization direction rotate from perpendicular to in-plane. The spin reorientation is due to the built-in electric field in the heterostructure which considerably changes the electron occupation of both Cr *d* and I *p* orbitals. The spin reorientation can be explained by the coupling between the $(p_{x/y} \uparrow)^1$ and $(p_z \uparrow)^0$ levels of the I ion, which plays a dominant role on MAE in the Bi/CrI₃ heterostructure. In addition, MAE oscillates between in-pane and out-ofplane with the variation of the interlayer distance. Based on the anisotropic Heisenberg model considering singleion anisotropy, we calculate the isotropic and anisotropic exchange parameters and estimate the Curie temperature T_c by Monte Carlo simulations. Here, T_c increases from 45 K for pristine monolayer CrI₃ to 107 K for the Bi/CrI₃ heterostructure. The significant rise in Curie temperature stems from the double-exchange interaction appearing in the heterostructure. Moreover, in the Bi/bilayer CrI_3 heterostructure, the CrI_3 - CrI_3 interlayer exchange interaction becomes FM, and the CrI_3 bilayer has a FM ground state. The results obtained in this paper may be helpful for preparing vdW heterostructures and devices.

ACKNOWLEDGMENTS

This paper was supported by the National Natural Science Foundation of China (No.12274469, No.12074437, and No.11674400) and the Natural Science Foundation of Hunan Province of China (No. 2020JJ4104). We are grateful for resources from the High Performance Computing Center of Central South University.

- Y. Deng, Y. Yu, Y. Song, J. Zhang, N. Z. Wang, Z. Sun, Y. Yi, Y. Z. Wu, S. Wu, and J. Zhu, Nature (London) 563, 94 (2018).
- [2] B. Huang, G. Clark, D. R. Klein, D. MacNeill, E. Navarro-Moratalla, K. L. Seyler, N. Wilson, M. A. McGuire, D. H. Cobden, and D. Xiao, Nat. Nanotechnol. 13, 544 (2018).
- [3] S. Jiang, J. Shan, and K. F. Mak, Nat. Mater. 17, 406 (2018).
- [4] T. Li, S. Jiang, N. Sivadas, Z. Wang, Y. Xu, D. Weber, J. E. Goldberger, K. Watanabe, T. Taniguchi, and C. J. Fennie, Nat. Mater. 18, 1303 (2019).
- [5] S. Jiang, L. Li, Z. Wang, K. F. Mak, and J. Shan, Nat. Nanotechnol. 13, 549 (2018).
- [6] J. He, S. Ma, P. Lyu, and P. Nachtigall, J. Mater. Chem. C. 4, 2518 (2016).
- [7] J. T. Heron, M. Trassin, K. Ashraf, M. Gajek, Q. He, S. Y. Yang, D. E. Nikonov, Y. H. Chu, S. Salahuddin, and R. Ramesh, Phys. Rev. Lett. **107**, 217202 (2011).
- [8] T. Cao, Z. Li, and S. G. Louie, Phys. Rev. Lett. 114, 236602 (2015).
- [9] X. Li and J. Yang, J. Mater. Chem. C 2, 7071 (2014).
- [10] H. Pan, Sci. Rep. 4, 5348 (2014).
- [11] J.-J. Liao, Y.-Z. Nie, X.-G. Wang, Q.-L. Xia, R. Xiong, and G.-H. Guo, Appl. Surf. Sci. 586, 152821 (2022).
- [12] Y. Nie, M. Rahman, P. Liu, A. Sidike, Q. Xia, and G.-H. Guo, Phys. Rev. B 96, 075401 (2017).
- [13] W. Chen, J.-M. Zhang, X.-G. Wang, Q.-L. Xia, Y.-Z. Nie, and G.-H. Guo, J. Magn. Magn. Mater. 518, 167433 (2021).
- [14] T. Song, Z. Fei, M. Yankowitz, Z. Lin, Q. Jiang, K. Hwangbo, Q. Zhang, B. Sun, T. Taniguchi, and K. Watanabe, Nat. Mater. 18, 1298 (2019).
- [15] Z. Wang, T. Zhang, M. Ding, B. Dong, Y. Li, M. Chen, X. Li, J. Huang, H. Wang, and X. Zhao, Nat. Nanotechnol. 13, 554 (2018).
- [16] Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, and E. Kaxiras, Nature (London) 556, 80 (2018).
- [17] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Nature (London) 556, 43 (2018).
- [18] T. Jiang, H. Liu, D. Huang, S. Zhang, Y. Li, X. Gong, Y. Shen, W. Liu, and S. Wu, Nat. Nanotechnol. 9, 825 (2014).

- [19] L. Zhang, X. Huang, H. Dai, M. Wang, H. Cheng, L. Tong, Z. Li, X. Han, X. Wang, and L. Ye, Adv. Mater. **32**, 2002032 (2020).
- [20] L. D. Alegria, H. Ji, N. Yao, J. J. Clarke, R. J. Cava, and J. R. Petta, Appl. Phys. Lett. **105**, 53512 (2014).
- [21] D. Jena and A. Konar, Phys. Rev. Lett. 98, 136805 (2007).
- [22] M. M. Ugeda, A. J. Bradley, S. F. Shi, J. F. Da, Y. Zhang, D. Y. Qiu, W. Ruan, S. K. Mo, Z. Hussain, Z. X. Shen *et al.*, Nat. Mater. **13**, 1091 (2014).
- [23] K. L. Seyler, D. Zhong, B. Huang, X. Linpeng, N. P. Wilson, T. Taniguchi, K. Watanabe, W. Yao, D. Xiao, M. A. McGuire *et al.*, Nano. Lett. **18**, 3823 (2018).
- [24] D. Zhong, K. L. Seyler, X. Linpeng, R. Cheng, N. Sivadas, B. Huang, E. Schmidgall, T. Taniguchi, K. Watanabe, M. A. McGuire *et al.*, Sci. Adv. **3**, e1603113 (2017).
- [25] X. Liu, C. Song, Z. Wu, J. Wang, J. Pan, and C. Li, J. Phys. D: Appl. Phys. 53, 385002 (2020).
- [26] J. Zhang, B. Zhao, T. Zhou, Y. Xue, C. Ma, and Z. Yang, Phys. Rev. B 97, 085401 (2018).
- [27] J. Kim, K. Kim, B. Kim, C. Kang, D. Shin, S. Lee, B. Min, and N. Park, Nano Lett. 20, 929 (2019).
- [28] M. U. Farooq and J. Hong, npj 2D Mater. Appl. 3, 3 (2019).
- [29] J. Shang, X. Tang, X. Tan, A. Du, T. Liao, S. C. Smith, Y. Gu, C. Li, and L. Kou, ACS Appl. Nano Mater. 3, 1282 (2019).
- [30] Z. Wu, Z. Shen, Y. Xue, and C. Song, Phys. Rev. Mater. 6, 014011 (2022).
- [31] Z. Wu, X. Liu, Z. Shen, Y. Xue, X. Wu, T. Zhong, J. Wang, J. Pan, C. Li, and C. Song, J. Phys. D: Appl. Phys. 54, 395302 (2021).
- [32] S. Shen, Q. Wu, Y. Dai, B. Huang, and Y. Ma, Phys. Rev. B 104, 064446 (2021).
- [33] H. X. Cheng, J. Zhou, C. Wang, W. Ji, and Y. N. Zhang, Phys. Rev. B 104, 064443 (2021).
- [34] S. Zhang, M. Xie, F. Li, Z. Yan, Y. Li, E. Kan, W. Liu, Z. Chen, and H. Zeng, Angew. Chem. 128, 1698 (2016).
- [35] J. Gou, L. Kong, X. He, Y. L. Huang, J. Sun, S. Meng, K. Wu, L. Chen, and A. T. S. Wee, Sci. Adv. 6, eaba2773 (2020).
- [36] S. Murakami, Phys. Rev. Lett. 97, 236805 (2006).
- [37] M. Wada, S. Murakami, F. Freimuth, and G. Bihlmayer, Phys. Rev. B 83, 121310(R) (2011).

- [38] C. Hsu, Z. Huang, F. Chuang, C. Kuo, Y. Liu, H. Lin, and A. Bansil, New J. Phys. 17, 25005 (2015).
- [39] M. Zhou, W. Ming, Z. Liu, Z. Wang, P. Li, and F. Liu, Proc. Natl. Acad. Sci. USA 111, 14378 (2014).
- [40] F. Reis, G. Li, L. Dudy, M. Bauernfeind, S. Glass, W. Hanke, R. Thomale, J. Schäfer, and R. Claessen, Science 357, 287 (2017).
- [41] M. U. Rehman, X. Dong, T. Hou, Z. Li, S. Qi, and Z. Qiao, Phys. Rev. B 100, 195422 (2019).
- [42] C. Chen, Z. Song, J. Z. Zhao, Z. Chen, Z. M. Yu, X. L. Sheng, and S. A. Yang, Phys. Rev. Lett. **125**, 056402 (2020).
- [43] G. Kresse and J. Hafner, J. Phys.: Condens. Matter 6, 8245 (1994).
- [44] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
- [45] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
- [46] S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B 57, 1505 (1998).
- [47] S. Grimme, S. Ehrlich, and L. Goerigk, J. Comput. Chem. 32, 1456 (2011).
- [48] See Supplemental Material at http://link.aps.org/supplemental/ 10.1103/PhysRevB.107.184403 for further computational details and more information on the crystal structure, electronic properties, and magnetic interaction parameters of Bi/CrI₃ and Bi/bilayer CrI₃ heterostructures. The Supplemental Material also contains Refs. [67–69].
- [49] P. E. Blöchl, O. Jepsen, and O. K. Andersen, Phys. Rev. B 49, 16223 (1994).
- [50] X. Chen, S. Zhang, B. Liu, F. Hu, B. Shen, and J. Sun, Phys. Rev. B 100, 144413 (2019).
- [51] P. Asselin, R. F. L. Evans, J. Barker, R. W. Chantrell, R. Yanes, O. Chubykalo-Fesenko, D. Hinzke, and U. Nowak, Phys. Rev. B 82, 054415 (2010).
- [52] R. F. L. Evans, W. J. Fan, P. Chureemart, T. A. Ostler, M. O. A. Ellis, and R. W. Chantrell, J. Phys.: Condens. Matter 26, 103202 (2014).

- PHYSICAL REVIEW B 107, 184403 (2023)
- [53] G. Pizzi, V. Vitale, R. Arita, S. Blügel, F. Freimuth, G. Géranton, M. Gibertini, D. Gresch, C. Johnson, T. Koretsune et al., J. Phys.: Condens. Matter 32, 165902 (2020).
- [54] X. He, N. Helbig, M. J. Verstraete, and E. Bousquet, Comput. Phys. Commun. 264, 107938 (2021).
- [55] V. Wang, N. Xu, J. Liu, G. Tang, and W. Geng, Comput. Phys. Commun. 267, 108033 (2021).
- [56] L. Chen, C. Jiang, M. Yang, T. Hu, Y. Meng, J. Lei, and M. Zhang, Phys. Chem. Chem. Phys. 23, 4255 (2021).
- [57] B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden *et al.*, Nature (London) **546**, 270 (2017).
- [58] J. Robertson, J. Vac. Sci. Technol. B 18, 1785 (2000).
- [59] T. Ihn, Semiconductor Nanostructures: Quantum States and Electronic Transport (Oxford University Press, Oxford, 2009).
- [60] J. L. Lado and J. Fernández-Rossier, 2D Mater. 4, 35002 (2017).
- [61] T. Moriya, Phys. Rev. 120, 91 (1960).
- [62] D.-S. Wang, R. Wu, and A. J. Freeman, Phys. Rev. B 47, 14932 (1993).
- [63] J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
- [64] J. B. Goodenough, *Magnetism and the Chemical Bond* (Wiley, New York, 1963).
- [65] N. Sivadas, S. Okamoto, X. Xu, C. J. Fennie, and D. Xiao, Nano Lett. 18, 7658 (2018).
- [66] Y. Jiang, Y. Guo, X. Yan, H. Zeng, L. Lin, and X. Mou, Nanomaterials 11, 2509 (2021).
- [67] D. R. Bowler, A. Michaelides, and J. Klimeš, Phys. Rev. B 83, 195131 (2011).
- [68] J. Klimeš, D. R. Bowler, and A. Michaelides, J. Phys.: Condens. Matter 22, 022201 (2010).
- [69] S. Smidstrup, T. Markussen, P. Vancraeyveld, J. Wellendorff, J. Schneider, T. Gunst, B. Verstichel, D. Stradi, P. A. Khomyakov, U. G. Vej-Hansen *et al.*, J. Phys.: Condens. Matter **32**, 015901 (2020).