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We investigate the experimental signatures of Raman spectroscopy of bimagnon and trimagnon excitations in
the distorted triangular lattice antiferromagnets α-LCr2O4 (L=Sr, Ca). Motivated by Raman scattering experi-
ments, we utilize spin wave theory to analyze the nearly 120◦ spin-3/2 spiral-ordered antiferromagnetic ground
state to compute the single-magnon density of states, single-magnon dispersion, and bimagnon and trimagnon
Raman spectra (polarized and unpolarized). We perform calculations of the Heisenberg antiferromagnetic
Hamiltonian that incorporates magnetic interactions (exchange, anisotropy, and interlayer coupling) and lattice
distortion within a four-sublattice unit cell. We investigate the Hamiltonian for both model parameter sets and
experimentally proposed magnetic interactions for α-LCr2O4 (L=Sr, Ca). It is found that Raman scattering
is capable of capturing the effect of the rotonlike M and M ′ points on the bimagnon Raman spectrum. Our
calculation confirms the connection between single-magnon rotonlike excitation energy and the bimagnon
Raman excitation spectrum observed experimentally. The roton energy minimum in momentum space is half
of the energy of a bimagnon excitation signal. The experimental magnetic Raman scattering result displays
two peaks which have Raman shifts of 15 and 40 meV. Theoretical modeling and analysis of the experimental
spectrum of α-SrCr2O4 within our distorted Heisenberg Hamiltonian lattice suggest that the low-energy peak at
15 meV is associated with the bimagnon excitation, whereas the high-energy peak around 40 meV is primarily
a trimagnon excitation. Based on our fitting procedure we propose a set of magnetic interaction parameters for
α-SrCr2O4. These parameters reproduce not only the experimental Raman spectrum but also the inelastic neutron
scattering response (including capturing high-energy magnon branches). We also compute the unpolarized
bimagnon and trimagnon Raman spectra for α-CaCr2O4. In contrast to its Sr cousin the Ca-based material
has an enhanced bimagnon response, with the high-energy peak still dominated by the trimagnon excitation.
Furthermore, the polarization sensitivity of the Raman spectrum can be utilized to distinguish the bimagnon and
trimagnon excitation channels.
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I. INTRODUCTION

Experimental [1–4] and theoretical [5–19] studies on
triangular lattice antiferromagnets (TLAFs) suggest the sta-
bilization of a long-range-ordered ground state that can be
noncollinear and noncoplanar. The noncollinear ordering pat-
tern is due to competing exchange interactions which in a
perfect undistorted triangular lattice geometry manifest as a
120◦ magnetic structure [17,18]. However, distortions of the
underlying lattice network due to a heterogeneous magnetic
unit cell modify the strength of the exchange interactions.
This in turn introduces anisotropic exchange interaction along
various crystallographic directions of the lattice. The modified
interactions result in a shift of the ordering wave vector, a
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behavior supported by theoretical investigation [2] and experi-
mental observations [2,20,21]. TLAFs have been investigated
for their spin order and ground states using spin wave the-
ory [8,14,15]. They have also been well studied theoretically
and experimentally because of their single-magnon excitation
behavior using inelastic neutron scattering (INS) experiments
[22,23]. Noncollinear magnetic ordering has the ability to
harbor multimagnon excitations (bimagnon and trimagnon)
[17,18,24]. The spectroscopic features of these multimagnon
excitations have been investigated theoretically using resonant
inelastic x-ray scattering (RIXS) at the K edge [24]. Addition-
ally, multimagnon Raman spectra have been investigated for
the model undistorted TLAF compound using torque equilib-
rium spin wave theory (TESWT) [14,17,18].

In frustrated magnetic systems such as TLAFs, com-
petition between exchange interaction, anisotropic XXZ
interaction, and Dzyaloshinskii-Moriya (DM) interaction en-
hance the spin fluctuation and cause the failure of linear spin
wave theory. The linear spin wave theory approach gives
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an incorrect ground state phase diagram. Furthermore, the
1/S corrected spin wave theory gives an unphysical ordering
wave vector since the zero point energy cannot be properly
accounted for [14,17]. To remedy these problems, Du et al.
[14,16] established the TESWT, which considers the zero
point energy and predicts a consistent result for the ground
state phase diagram that agrees well with numerical calcula-
tions [25,26]. Furthermore, Ref. [17] extended the TESWT
approach to include the DM interaction that was well fitted to
the INS experimental data of the spin spiral TLAF Cs2CuCl4

[27]. The authors computed the interacting bimagnon and
noninteracting trimagnon RIXS spectrum and found that both
spatial anisotropy and DM interaction modify the RIXS spec-
trum at two inequivalent rotonlike points, M(0, 2π/

√
3) and

M ′(π, π/
√

3). Specifically, the existence of DM interaction
stabilizes the spiral state and increases the energy of the roton
minimum.

Due to the issues related to the experimental resolution,
RIXS experimental studies on TLAFs are absent. Compared
to RIXS, Raman experiments which probe multimagnon ex-
citations in TLAFs are more prevalent [28,29]. Bimagnon
excitations have been observed with Raman spectroscopy in
the distorted TLAFs α-SrCr2O4 [29] and α-CaCr2O4 [28].
To study the magnon excitation spectrum in such spin spiral
systems, Ref. [18] presented a TESWT analysis that consid-
ered the anisotropic XXZ interaction and the DM interaction
to compute the polarized Raman spectra of Cs2CuCl4 and
Ba3CoSb2O9. It was reported that both the bimagnon and
trimagnon excitations contribute to the Raman spectrum and
are influenced by spatial anisotropy, XXZ interaction, and
DM interaction [18]. In contrast to DM interaction, XXZ
interaction plays a weaker role in stabilizing the helical
state.

When the spiral order is 120◦ (or approximately around
this value), the spin Casimir effect is negligible, and TESWT
reverts back to spin wave theory. Since the spiral orders of
α-SrCr2O4 and α-CaCr2O4 are close to 120◦, we apply linear
spin wave theory in this paper to analyze this class of TLAF
compounds. Experimental data on the distorted TLAF com-
pounds α-SrCr2O4 and α-CaCr2O4 suggest spiral ordering
temperatures below 43 and 42.6 K, respectively [21,28–30].
For both α-SrCr2O4 and α-CaCr2O4, Raman scattering ex-
periments have reported the presence of bimagnon excitation
[28,29].

In this paper, we focus on the Raman spectrum of
multimagnon excitations presented in the distorted TLAFs
α-SrCr2O4 [29] and α-CaCr2O4 [28]. We perform a spin wave
analysis of the ordered spiral state to compute the effects of
the rotonlike M and M ′ points on the Raman spectrum of
undistorted and distorted TLAFs. We study our model for a
generic set of parameters to highlight the connection between
the rotonlike points and their consequences for the bi- and
trimagnon Raman excitation spectrum. Based on experimen-
tal data we propose a different set of magnetic interaction
parameters to compute the Raman spectrum of α-SrCr2O4

and use existing ones to predict the Raman spectrum of
α-CaCr2O4. We show that polarized Raman spectroscopy
has the ability to distinguish the bimagnon excitation chan-
nel from the trimagnon response. This difference is evident
from a couple of perspectives. From an energetic point of

view, the trimagnon signal always occurs at a higher energy
than the bimagnon response. From a purely experimental
scattering geometry setup, we find that the HH signal is
more sensitive to the trimagnon excitation, whereas the HV
signal has a more pronounced bimagnon response. Our the-
ory suggests that the Raman scattering experiment captures
both the bimagnon and trimagnon excitations according to
the spin dynamic features revealed by the INS experiment
[31].

This paper is organized as follows. In Sec. II, we in-
troduce the Heisenberg model of the distorted TLAFs. In
Sec. III, we compute the spin wave spectrum. In Sec. IV, we
use spin wave theory to compute and discuss the physical
implications of the bimagnon and trimagnon Raman spec-
tra for our model Hamiltonian and for the real materials
α-LCr2O4 (L=Sr, Ca; using experimental data). In Sec. V,
we provide our conclusions. In Appendixes A and B we list
the equations for the classical ground state energy analysis
and the polarized Raman scattering operator matrix elements,
respectively.

II. MODEL

The spatially isotropic TLAF Ba3CoSb2O9 exhibits a 120◦
spin spiral order which is well described by a spin-1/2 XXZ
model [18,32–36]. For the anisotropic TLAFs, the ground
states of Cs2CuCl4 and Cs2CuBr4 are long-range incommen-
surate spin spiral order in zero magnetic field [15,27,37]. The
phases supported by these materials can be modeled using
an antiferromagnet Heisenberg model with DM interaction
[17,18,38]. The distorted TLAFs α-SrCr2O4 and α-CaCr2O4

are reported to have approximately 120◦ spin-3/2 spiral
orders, with ordering wave vectors of (π,∼ 4/3 × 2π, 0)
[20,30,31]. In spite of the spiral ordering in these compounds,
DM interaction is absent.

The lattice structure of the distorted triangular lattice
antiferromagnets α-SrCr2O4 and α-CaCr2O4 are shown in
Fig. 1(a), which is an orthorhombic crystal structure belong-
ing to the Pmmn space group (No. 59). The lattice distortion
parameter is d = 0.25 (0.57) for α-SrCr2O4 (α-CaCr2O4),
as shown in Table I. Such distortion results in a variety of
exchange constants compared to a perfect TLAF, resulting
in novel spin dynamic features in the presence of distorted
TLAFs. Each unit cell of α-SrCr2O4 and α-CaCr2O4 contains
four atoms with two inequivalent magnetic ions Cr3+. The
distortion creates shifts on the sites, generating four differ-
ent nearest-exchange constants. Former studies have shown
that the Hamiltonian of distorted TLAFs contains nearest-
neighbor (NN) and next-nearest-neighbor (NNN) interactions
[20,21,31].

We consider a model which can be easily mapped to the
undistorted triangular lattice by setting d = 0. The Hamilto-
nian consists of the following interaction terms:

H = HNN + HNNN + Hint + Han, (1)

where HNN, HNNN, Hint, and Han represent the nearest-
neighbor exchange interaction, the next-nearest-neighbor
exchange interaction, the interlayer exchange interaction, and
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(a)

(b)

FIG. 1. (a) Unit cell of α-SrCr2O4 [31] and α-CaCr2O4 [20]. The
positions of the four Cr3+ ions are (0,0,0), (0,0.5,0), (0, 0.25, 0.5 −
0.01d ), and (0, 0.75, 0.5 + 0.01d ), with site indices denoted by i ∈
{2u, 2v, 1u, 1v}, where d is the lattice distortion parameter. The two
inequivalent Cr3+ ions are shown as blue Cr1 and green Cr2 dots.
The spins are labeled as S1u, S1v , S2u, and S2v . (b) The black box is
the first Brillouin zone (BZ) of the unit cell with four spins. The red
hexagon is the first BZ of the undistorted TLAF, which contains only
one spin in the unit cell. The high-symmetry points �, M, M ′, X , and
X ′ are shown in the BZ. The wave vectors are denoted by ky and kz.

the single-ion anisotropy. The detailed expressions for these
interacting terms are given by

HNN =
∑
α,β

Jch1S1u
αβ · (

S1v
αβ + S1v

(α−1)β

)
+ Jch2S2u

αβ · (
S2v

αβ + S2v
(α−1)β

)
+ Jzz1S1u

αβ · (
S2u

α(β−1) + S2v
α(β−1)

)
+ Jzz1S1v

αβ · (
S2u

(α+1)β + S2v
αβ

)
+ Jzz2S1u

αβ · (
S2u

αβ + S2v
αβ

)
+ Jzz2S1v

αβ · (
S2u

(α+1)(β−1) + S2v
α(β−1)

)
, (2)

HNNN =
∑
α,β

JNNN
[
S2u

αβ · (
S2u

α(β+1) + S1v
αβ

+ S1v
α(β+1) + S1u

(α−1)(β+1) + S1u
(α−1)β

)
+ S2v

αβ · (
S2v

α(β+1) + S1u
(α+1)β

+ S1u
(α+1)(β+1) + S1v

(α−1)β + S1v
(α−1)(β+1)

)
+ S1u

αβ · S1u
α(β+1) + S1v

αβ · S1v
α(β+1)

]
, (3)

Hint = Jint

∑
i, j

Sαβ · Sαβ+a, (4)

Han = A
∑
αβ

(
Sb

αβ

)2
. (5)

The four different spin labels S2u, S2v , S1u, and S1v represent
the four different sublattices in the unit cell of the distorted
TLAFs. The parameters Jch1, Jch2, Jzz1, and Jzz2, corresponding
to the exchange constants for NN interaction, are in the (b, c)
plane. The three other parameters, JNNN, Jint , and D, are for
the NNN interaction, interlayer exchange interaction, and easy
plane anisotropy, respectively. α and β in Sαβ are sites of the
unit cell along the b direction and the c direction, respectively.
See Table I for parameter values.

III. SPIN WAVE SPECTRUM

Inelastic neutron scattering experiments have been per-
formed on α-LCr2O4 (L=Sr, Ca) to study their spin wave
dynamics [21,31]. Neutron scattering studies provide us with
the exchange constants and anisotropy parameters of these
materials [21,31]. We compute the magnon dispersion for
the spin-spiral ground state in the distorted TLAFs, which
exhibits the ordering wave vector Q rotating in the (a, c)
plane and generating a helical spin order in its ground state
configuration. The Hamiltonian in the local rotating basis is
given by

H =
∑
i, j

Ji j
[
Sy

i Sy
j + cos(Q · Ri j )

(
Sx

i Sx
j + Sz

i Sz
j

)

+ sin(Q · Ri j )
(
Sz

i Sx
j − Sx

i Sz
j

)] + A
∑

i

(
Sy

i

)2
, (6)

TABLE I. The parameter set choices for different distortion values utilized to compute the Raman spectra. P4 and P5 are the experimental
(expt) parameter sets for the distorted TLAFs α-LCr2O4 (L=Sr, Ca) [21,31]. The penultimate row reports the fit parameters generated from
our model based on the experimental data of Ref. [29]. The ordering wave vector Q = (Qa, Qb, 0), with Qa = π and Qb, varies based on
different parameter sets. P1, P2, and P3 are the model parameter sets, representing the 120◦ helical state. Below the Néel ordering temperature
TN = 43 K, α-SrCr2O4 forms an incommensurate helical order [20,29,30,39]. For α-CaCr2O4 the helical state forms below 42.6 K [21].

Parameter set Jch1 Jch2 Jzz1 Jzz2 JNNN Jint A d Qb/2π

P1 (model) 1.0 1.0 1.0 1.0 0.01 0.01 0.01 0 4/3
P2 (model) 1.0 1.0 0.9 1.1 0.01 0.01 0.01 0.1 4/3
P3 (model) 1.0 1.0 0.8 1.2 0.01 0.01 0.01 0.2 4/3
P4 (expt, α-SrCr2O4) [31] 5.2 4.9 3.8 6.0 0.35 0.02 0.01 0.25 1.3217
P5 (expt, α-CaCr2O4) [21] 9.1 8.6 5.8 11.8 0.57 0.027 0 0.57 1.3317
P6 (proposed fit, α-SrCr2O4) 6.5 7.5 4.6 7.9 0.45 0.02 0.06 0.25 1.3217
Valentine et al. (expt, α-SrCr2O4) [29] 7.15 4.22 3.02 5.70 0.25 1.322
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where Ri j = Ri − R j and Ji j is the exchange interaction be-
tween sites i and j. The first summation term contains the
nearest-neighbor, the next-nearest-neighbor, and the interlayer
exchange interactions, while the second summation contains
the single-ion anisotropy. The spin components in the labo-
ratory frame (a, b, c) were transformed into the rotating local
frame basis (x, y, z) using the transformation [8]

Si =
⎛
⎝ cos(Q · Ri ) 0 sin(Q · Ri )

0 1 0
− sin(Q · Ri ) 0 cos(Q · Ri )

⎞
⎠

⎛
⎜⎝

Sx
i

Sy
i

Sz
i

⎞
⎟⎠. (7)

Next, we perform the Holstein-Primakoff transformation to
recast the spin label Sx,y,z

i to the quasiparticle label given by

Sz
i = S − a†

i ai, S−
i = a†

√
2S − a†

i ai, S+
i = (S−

i )†, (8)

where a†
i (ai) is the magnon creation (annihilation) operator

for a given site i. The quadratic spin wave Hamiltonian H2

can then be expressed as

H2 =
∑
i, j

Ji jS

[
1

2
(−aia j + aia

†
j + H.c.)

+ 1

2
cos(Q · Ri j )(aia j + aia

†
j + H.c.)

− cos(Q · Ri j )(a
†
i ai + a†

j a j )

]

+ AS

2

∑
i

(−aiai + aia
†
i + H.c.). (9)

After Fourier transformation the two interaction terms in H2

are given by

H2 =
∑

k

⎧⎨
⎩

∑
i, j

Ji jS

[
1

2
(−eik·Ri j akia−k j+eik·Ri j akia

†
k j+H.c.)

+ 1

2
cos(Q · Ri j )(e

ik·Ri j akia−k j + eik·Ri j akia
†
k j + H.c.)

− cos(Q · Ri j )(a
†
kiaki + a†

k jak j )

]

+AS

2

∑
i

(−akia−ki + akia
†
ki + H.c.)

}
. (10)

Utilizing the numerical Bogoliubov transformation [40](
aki

a†
−ki

)
=

(
ukip vkip

vkip ukip

)(
bkp

b†
−kp

)
= Tk

(
bkp

b†
−kp

)
, (11)

we diagonalize the Hamiltonian (10) to obtain the spin wave
dispersion

T †
k H2Tk = diag(ωki,−ωki ), (12)

where diag represents the diagonal matrix of energy eigen-
values. As the ground states of α-LCr2O4 (L=Sr, Ca) are
both close to a 120◦ order, we study three sets of model
parameters (P1, P2, and P3) with different distortions d and
ordering wave vectors Q (see Table I for parameter choices).
Assuming that exchange interaction is inversely proportional

to the bond length, we model the anisotropic interaction as Jzz2

(Jzz1) ≈ Jch1(1 ± d ) according to the parameters of α-LCr2O4

(L=Sr, Ca).
The single-magnon density of states (DOS) for P1, P4, and

P5 in Table I are calculated. In Figs. 2(a)–2(c) we show the
spin wave spectra for parameters sets P1 for the undistorted
TLAF, P4 for α-SrCr2O4, and P5 for α-CaCr2O4. Inspecting
the plots we can conclude that the local minimum points in the
magnon dispersion are shifted by the presence of lattice dis-
tortion. It is reported that the local minima of the undistorted
TLAF appear at the M and M ′ points, which are described
as rotonlike points in literatures [41–43]. However, in the
presence of distortion, the local minima points are shifted
[see the black dots in Figs. 2(d)–2(f)]. Raman detection of
rotonlike modes was performed by Wulferding et al. [28] for
α-CaCr2O4. The Raman spectrum shows a maximum around
twice the roton energy. This is because the rotonlike points
contribute to Van Hove singularities, causing a maxima in
the DOS for one magnon. Since the bimagnon Raman signal
comes from bimagnon excitation, which creates two magnons
with inverse momentum, the maxima in Raman spectrum
should reflect twice the energy of rotonlike points. However,
the trimagnon Raman signal is from three-magnon excitation
with zero total momentum, k1 + k2 + k3 = 0. The choice
of wave vector for the trimagnon is not unique. Thus, the
trimagnon Raman spectrum should be even broader.

The rotonlike points do not necessarily occur in the lowest
energy branch. In Figs. 2(a) and 2(d), the M point of the
undistorted TLAF shows the roton minimum in the second
energy band. In contrast, the roton minimum for the M ′ point
always occurs in the lowest energy band. In Fig. 2(d), the M ′
point shifts to the black points in the first Brillouin zone (BZ)
of the distorted TLAF model due to the periodic condition.
Each rotonlike point splits into four rotonlike points, as shown
in Fig. 2(e) with enhanced distortion. Figure 2(f) indicates that
the rotonlike points for the distorted TLAFs tend to spread
when distortion d is increased. Finally, note that we have not
considered magnon interactions. The Heisenberg model was
treated at the quadratic linear spin wave level since the system
is a spin-3/2 material. Thus, we expect quantum fluctuations
to be suppressed. Additionally, the presence of multiple sub-
lattices in the unit cell increases the algebraic complexity to
pursue a fully interacting magnon calculation without con-
tributing any additional understanding of the underlying spin
dynamics behavior of the distorted TLAFs.

IV. RAMAN SPECTRUM

In this section we investigate the Raman spectra of TLAFs.
We construct the Raman scattering operator for the bimagnon
and trimagnon excitations. The bimagnon and trimagnon Ra-
man intensity is related to the exchange scattering mechanism,
which can be even stronger than the first-order spectrum [44].
First, we perform calculations of the polarized Raman spectra
of α-SrCr2O4 and α-CaCr2O4. Second, we give the physical
implications of the bimagnon Raman signal and the rotonlike
points in the single-magnon spin wave dispersion. We also
discuss the trimagnon response. Finally, we fit the experimen-
tal data of α-SrCr2O4 with our unpolarized Raman spectrum
and compute the unpolarized Raman spectrum of α-CaCr2O4.
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FIG. 2. Spin wave dispersion of the triangular lattice antiferromagnet. (a)–(c) Spin wave dispersions for parameter sets P1, P4, and P5,
respectively. There are four branches of energy for each parameter set as the unit cell contains four sublattices. (d)–(f) One of the four
energy branches with the lowest energy which correspond to (a)–(c). M(0, 0, 2π ) and M ′(0, π, 2π ) are the rotonlike points of the undistorted
triangular antiferromagnet for P1. The roton minimum energy can be observed in rotonlike points indicated by the black dots. We observe the
roton energy minimum at different spin wave dispersion branches for various parameter sets (see Table I). Distortion results in M ′ becoming
the only rotonlike point which splits into four different points in the spin wave dispersion. Enhanced distortion spreads the split rotonlike points
[indicated by the eight black dots in (e)] into four different directions in momentum space [see (f)].

A. Raman scattering operator

Raman intensity is highly sensitive to the polarization di-
rection of the incident and outgoing light in crystals [45–50].
The Raman scattering operator for TLAFs contains weight
coefficients which vary based on the polarization direction.
The dependence on polarization can be expressed as a matrix
[18]. The two TLAF compounds α-SrCr2O4 and α-CaCr2O4

belong to the Pmmn (D2h) space group. The interlayer exchange
interaction is very weak compared to the intralayer coupling
strength (see Table I). Thus, we consider the magnetic Cr3+

ions within the (b, c) plane to be described by C2v symmetry.
The Raman active modes of the C2v point group are A1 + A2.
These modes are described by the same Raman tensor as the
Ag + B1g Raman active modes of D2h symmetry. Following
the procedure of Ref. [46], we derive the polarization coeffi-
cient matrix Pi j (θ, φ), which is given by [18]

Pi j (θ, φ) = εin(θ )

⎛
⎝p2 0 0

0 p1 0
0 0 p3

⎞
⎠εT

out (φ)ηA1
i j

+ εin(θ )

⎛
⎝0 0 0

0 0 p4

0 p4 0

⎞
⎠εT

out (φ)ηA2
i j . (13)

In Fig. 3(a) we show the scattering geometry that is used
to perform the calculation. The incident and outgoing light
vectors are expressed as εin(θ ) = (0, cos(θ ), sin(θ )) and
εout (φ) = (0, cos(φ), sin(φ)).

The total polarized Raman scattering operator Ô is given
by

Ô(θ, φ) =
∑
i, j

Pi j (θ, φ)Ji jSi · S j

= Ô2(θ, φ) + Ô3(θ, φ). (14)

In the above expression, the polarized bimagnon and tri-
magnon Raman scattering operators Ô2 and Ô3, respectively,
include only the nearest-neighbor and next-nearest-neighbor
interactions. The expressions for Ô2 and Ô3 are given by

Ô2(θ, φ) =
∑
i, j

J ′
i jPi j (θ, φ)S

[
1

2
(−aia j + aia

†
j + H.c.)

+ 1

2
cos(Q · Ri j )(aia j + aia

†
j + H.c.)

− cos(Q · Ri j )(a
†
i ai + a†

j a j )

]
, (15)

Ô3(θ, φ) =
∑
i, j

J ′
i jPi j (θ, ϕ)

√
S

2
sin(Q · Ri j )

× (aia
†
j a j + a†

i a†
j a j − a†

i aia j − a†
i aia

†
j ), (16)

where the in-plane interaction J ′
i j includes Jch1, Jch2,

Jzz1, Jzz2, and JNNN. After Fourier transformation, we
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FIG. 3. (a) Raman scattering geometry. Incident light is always assumed to be along the a axis. The angles θ and φ are defined as
displayed. (b)–(k) The polarized bimagnon I2(ω, θ, φ) and trimagnon I3(ω, θ, φ) Raman spectra. Each row refers to the parameter choice
Pi, with i = 1, . . . , 5, from top to bottom (see Table I). The first column represents HH polarization with (θ, φ) = (0, 0). The second
column is HV polarization with (θ, φ) = (0, π

2 ). All the calculated Raman intensities are computed by applying p1 = p2 = p3 = p4 = 1
and a small broadening parameter 0+ = 0.02 meV. The black solid line is the single-magnon density of states. Red dots are extracted using
WEBPLOTDIGITIZER [51] from the Raman experiment in circular RL polarization reported for α-CaCr2O4 in Ref. [28].

obtain

Ô2(θ, φ) =
∑

i, j∈u.c.

J ′
i jPi j (θ, φ)S

∑
k

[
1

2
(−eik·Ri j akia−k j + eik·Ri j akia

†
k j + H.c.)

+ 1

2
cos(Q · Ri j )(e

ik·Ri j akia−k j + eik·Ri j akia
†
k j + H.c.) − cos(Q · Ri j )(a

†
kiaki + a†

k jak j )

]
(17)

and

Ô3(θ, φ) =
∑

i, j∈u.c.

J ′
i jPi j (θ, φ)

√
S

2N
sin(Q · Ri j )

⎛
⎝ ∑

k2+k3=k1

eik2·Ri j a†
k1 jak2iak3 j +

∑
k1+k2=k3

e−ik2·Ri j a†
k1 ja

†
k2iak3 j

−
∑

k2+k3=k1

e−ik2·Ri j a†
k1iak2 jak3i −

∑
k1+k2=k3

eik2·Ri j a†
k1ia

†
k2 jak3i

⎞
⎠. (18)

Next, we apply the Bogoliubov transformation to derive the final expression for the polarized bimagnon and trimagnon Raman
scattering operators. They are given by

Ô2(θ, φ) =
∑

k

∑
p,q

M pq
k (bk pb−k q + b†

−k pb†
k q), (19)

Ô3(θ, φ) =
∑
k,l

∑
p,q,t

N pqt
kl (bk pb−k−l qbl t + b†

−k pb†
k+l qb†

−l t ), (20)

where the expressions for the Raman matrix elements M pq
k and N pqt

kl are supplied in Appendix B. Note that in the polarized
trimagnon Raman scattering operator Ô3(θ, φ), the momentum symbol transforms as k1 → k, k2 → −k − l, and k3 → l, where
k and l belong to the first BZ.
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B. Polarized Raman spectrum

We can use the polarized bimagnon and trimagnon Raman scattering operators introduced in the previous section to construct
the bimagnon Green’s function G2(ω, θ, φ) and the trimagnon Green’s function G3(ω, θ, φ). The corresponding definitions are
given by

G2(ω, θ, φ) = −i
∫ +∞

−∞
dteiωt 〈T Ô†

2(t, θ, φ)Ô2(0, θ, φ)〉, (21)

G3(ω, θ, φ) = −i
∫ +∞

−∞
dteiωt 〈T Ô†

3(t, θ, φ)Ô3(0, θ, φ)〉. (22)

Thus, the polarized bimagnon Raman intensity I2(ω, θ, φ) and trimagnon Raman intensity I3(ω, θ, φ) can be written as

I2(ω, θ, φ) = − 1

π
ImG2(ω, θ, φ) = − 1

π
Im

⎡
⎣2

∑
k,p,q

∣∣M pq
k

∣∣2

ω − ωk p − ω−k q + i0+

⎤
⎦ (23)

and

I3(ω, θ, φ) = − 1

π
ImG3(ω, θ, φ) = − 1

π
Im

⎡
⎣6

∑
k,l

∑
p,q,t

∣∣N pqt
kl

∣∣2

ω − ωk p − ω−k−l q − ωl t + i0+

⎤
⎦. (24)

The polarized Raman intensities depend on the polarization
direction of the incident and outgoing lights. In the subsequent
calculations, we will fix the incident light polarization angle
θ to be equal to zero, and the outgoing light polarization
angle φ will vary according to the polarization we choose [see
Fig. 3(a)].

The polarized Raman spectrum of the distorted TLAF
is shown in Fig. 3. The vertical axis shows the Raman
intensity, and the horizontal axis shows the energy rescaled
in units of ω/Jch1. The Raman spectrum for α-SrCr2O4

was computed using the model described in Sec. II using
the parameters stated in Table I. The magnetic exchange
interactions in α-CaCr2O4 are different from those in its Sr
counterpart. Whereas the Sr compound has only one JNNN,
the Ca compound has four. Hence, to keep the calculation
tractable for α-CaCr2O4 we used an effective JNNN which
has only one next-nearest-neighbor exchange interaction as
input. This effective value is obtained by taking the average
of the four different next-nearest-neighbor exchange energies
reported in Ref. [21].

In the first column on the right in Fig. 3 we show the results
of the HH polarized channel. As expected, the bimagnon sig-
nals vanish since the Raman scattering operator Ô2 commutes
with the Hamiltonian H2. Thus, only the trimagnon excitation
contributes to the Raman intensity in the HH polarized case.
For all the parameter sets that were studied, we observed
a pronounced trimagnon continuum vanishing at triple the
energy maximum of a single-magnon excitation. We find that
as the spatial interaction anisotropy Jzz1-Jzz2 increases, the
trimagnon continua in Fig. 3 undergo a spectral downshift for
the HH polarization.

In the second column on the right in Fig. 3 we show the
results of the HV polarization. These plots display the DOS,
the bimagnon Raman intensity, and the trimagnon Raman
intensity. In HV polarization, we observe both the bimagnon
and trimagnon signals. The bimagnon intensity I2 is relatively
stronger than the trimagnon signal. It occupies an energy
region from 0 to approximately 10 for parameter choices of

P1,P2, andP3. As an example, we observe that the I2 signal of
the undistorted TLAF shows a peak at 5.82 and an additional
peak at 9.36 in Fig. 3(c).

The DOS displays two peaks, a small low-energy peak and
a strong high-energy peak. The DOS signal influences the
bimagnon Raman spectrum. At the rotonlike point, the density
of magnons is substantially enhanced compared to the other
locations in the BZ since ∇kE = 0. Since the velocity van-
ishes, we observe a strong signal in the DOS. From Fig. 3(c)
we notice that this happens at 2.94, which is where the
low-energy DOS peak is located. This generates the stronger
low-energy bimagnon Raman intensity. Thus, this signal is a
direct consequence of the rotonlike point in the TLAF system.
For the undistorted lattice, the 5.82 bimagnon peak arises from
both the rotonlike wave vector points, M and M ′. I2 shows a
9.36 peak due to the one-magnon maximum energy, which
vanishes before 5.

In an undistorted TLAF rotonlike points (M and M ′)
on the Raman spectrum are equivalent. However, as spatial
anisotropy is increased (a fact that naturally occurs in real
materials), the Raman spectrum becomes sensitive. Note that
in Fig. 3(g), the anisotropy generates a nonzero DOS contri-
bution at 2.70 from only the M ′ point. The M point, on the
other hand, has zero contribution (confirmed by calculation).
With increasing distortion, the spatial anisotropy changes the
spin wave dispersion structure at the M point, thereby causing
∇kE �= 0. Thus, the M point ceases to behave as a rotonlike
point. This is the physical origin of the bimagnon energy peak
at 5.34 for P3. Hence, we see that Raman spectroscopy has
the ability to provide insight into the physical nature of the
rotonlike point in the TLAF system.

In Figs. 3(g), 3(i), and 3(k) the bimagnon signal splits into
two peaks when the lattice distortion is enhanced. All the
parameter sets fromP3 toP5 support this peak-splitting effect.
The lower-energy peak of this two-peak signal originates from
the M ′ rotonlike point. However, it is not obvious what the
physical origin of the higher-energy peak within this two-peak
signal is. Our calculations suggest that the first bimagnon peak
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for parameter set P4 (P5) in Fig. 3(i) [Fig. 3(k)] appears at
1.33 (0.99), which is exactly twice the energy of the local
minima shown in Fig. 2(e) [Fig. 2(f)].

In addition, to distinguish the different rotonlike points
due to the presence of anisotropy, the Raman spectrum has
a selective response based on the polarization channels, HH
and HV. As noted earlier, the HH channel contribution is
exclusively from the trimagnon signal. For the HV channel,
the opposite holds true. While there is a weak trimagnon
signal, the overwhelming strength comes from the bimagnon
excitation. The nearest-neighbor and the next-nearest-
neighbor interactions have the same weight along all direc-
tions in the trimagnon Raman scattering operator for the HH
polarization. However, interactions along the b axis make no
contribution to producing the trimagnon Raman signal for
the HV polarization. Therefore, the trimagnon Raman signal
intensity for the HV polarization is observed to be weaker
than those for HH polarization. Similar to the HH channel, the
HV channel also shows a spectral downshift for the trimagnon
Raman spectrum with increasing distortion.

C. Unpolarized Raman spectrum

At present there is no consensus on the value of the
material parameters that describe the magnetic properties of
α-SrCr2O4 [14,29] (see the fifth and sixth rows in Table I).
Motivated by the experimental data of Valentine et al. [29], we
compute the unpolarized Raman spectrum of α-SrCr2O4. To
calculate the unpolarized spectrum, we integrate the incident
and outgoing light polarization angles θ and φ in the Green’s
function. The resulting expression is given by

Gu
ε (ω) = −i

∫ +∞

−∞
dt

∫ π

0
dθ

∫ π

0
dφ

× eiωt 〈T Ô†
ε (t, θ, φ)Ôε (0, θ, φ)〉, (25)

Iu
ε (ω) = − 1

π
ImGε (ω),

where Iε (ω) represents the unpolarized Raman spectrum
with ε = 2 and 3, referring to the bimagnon and the tri-
magnon Green’s function channels. The results are presented
in Fig. 4(a).

Upon fitting the experimental data of Valentine et al. [29],
we obtain a different set of parameters, presented as P6

in Table I. This data set reproduces the spin wave disper-
sion (not shown here) of α-SrCr2O4, including capturing the
high-energy magnon branches. It also adequately reproduces
the experimental unpolarized Raman spectrum of α-SrCr2O4.
Upon fitting, the spectrum displays two prominent peaks, one
at 20 meV and the other at 40 meV. The 20 meV signal
is primarily composed of the bimagnon channel. However,
the 40 meV signal is predominantly trimagnon. Overall, the
trimagnon intensity is stronger than the bimagnon inten-
sity. This feature of the unpolarized spectrum can allow one
to distinguish these two different multimagnon excitations.
Competition between magnetic interaction parameters results
in an approximately 120◦ spiral order in α-SrCr2O4 (see cal-
culation details in Appendix A). Therefore, our calculation
suggests that the 15 meV Raman shift signal originates from
the bimagnon excitation. The signal on the 40 meV Raman
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FIG. 4. Unpolarized Raman spectrum of (a) α-SrCr2O4 and
(b) α-CaCr2O4. (a) The blue line is the bimagnon Raman spectrum
I2. The red line corresponds to the trimagnon Raman spectrum I3.
The black line is the total Raman spectrum I2 + I3. Both I2 and I3

are the results of our fitting procedure. We report a set of interac-
tion parameters, P6, generated from our model and based on the
experimental data reported in Ref. [29] (displayed as red asterisks)
in Table I. The calculation utilizes p1 = p2 = p3 = 1 and p4 = 0.42.
(b) Predicted unpolarized Raman spectrum of α-CaCr2O4. The spec-
trum was calculated based on the experimental parameter set P5

reported in Ref. [21]. For α-CaCr2O4, I2 and I3 were computed with
p1 = p2 = p3 = p4 = 1.

shift arises from the trimagnon excitation rather than the bi-
magnon excitation. In Fig. 4(b), we present our prediction for
the unpolarized Raman spectrum of α-CaCr2O4. Compared
to the Sr compound, the Ca compound exhibits a more signif-
icant peak-splitting effect on the bimagnon Raman signal.

V. CONCLUSIONS

Motivated by the Raman experimental data for TLAFs,
we have investigated the consequences of the nontrivial ro-
tonlike points on the bimagnon and trimagnon excitation
spectra of α-SrCr2O4 and α-CaCr2O4. Utilizing Raman ex-
perimental data for α-SrCr2O4, we fit our model to propose
a different set of magnetic interaction parameters. This set
of parameters is able to consistently reproduce both the in-
elastic neutron scattering spectrum and the Raman spectrum
of α-SrCr2O4. Based on our calculations, we demonstrated
that Raman spectroscopy is sensitive to the behavior of the
rotonlike M and M ′ points that have been proposed to exist in
TLAF systems. Additionally, we found that the polarization
sensitivity of the incoming beam in the Raman spectrum can
allow one to distinguish the multimagnon excitation chan-
nels (bimagnon versus trimagnon). We observed that the
trimagnon Raman signal is the higher-energy peak compared
to the bimagnon signal. Furthermore, with increasing distor-
tion the peak-splitting effect becomes more prominent in the
bimagnon Raman signal.

According to our calculation, the 40 meV Raman signal
in the experimental Raman scattering data originates from
the trimagnon excitation. The bimagnon excitation could also
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make some minor contribution to the 40 meV signal. It is
worth noting that our proposed magnetic interaction param-
eters were obtained from fitting with the experimental data of
the unpolarized Raman spectrum of α-SrCr2O4. Nevertheless,
the proposed set of parameters still gives the approximate
120◦ spiral order. This is a further validation of our fitting pro-
cedure. We also predicted the unpolarized Raman spectrum
of α-CaCr2O4. Compared to the Sr compound, α-CaCr2O4

has a more intense lattice distortion and stronger in-plane and
interlayer exchange interactions. We hope that our theoretical
investigation will motivate the TLAF community to further
study the connection between multimagnon excitation and
rotonlike points of the TLAFs.
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APPENDIX A: CLASSICAL GROUND STATE ANALYSIS

The classical ground state energy of α-SrCr2O4 is given by

E0(Q) = NS2
∑
i, j

Ji j cos(Q · Ri j ). (A1)

The stabilized spiral order results in

∂E0

∂Qb
= − NS2

[
Jch1 sin

(
1

2
Qb

)
+ Jch2 sin

(
1

2
Qb

)
+ Jzz1 sin

(
1

4
Qb

)
+ Jzz2 sin

(
1

4
Qb

)
+ 6JNNN sin

(
3

4
Qb

)]
= 0. (A2)

By applying the magnetic interaction parameters P6 in Table I, the solution to Eq. (A2) is Qb/2π = 1.3031, which is close to
the experimental value in Ref. [31]. We thus keep using Qb/2π = 1.3217 for P6.

APPENDIX B: POLARIZED RAMAN SCATTERING MATRIX ELEMENTS

The detailed expressions for M pq
k and N pqt

kl in Eqs. (19) and (20) are

M pq
k = 1

2
Ji jPi j (θ, φ)S[−eik·Ri j (uk ip − vk ip)(u−k jq − v−k jq) + cos(Q · Ri j )e

ik·Ri j (uk ip + vk ip)(u−k jq + v−k jq)

− cos(Q · Ri j )(uk ipv−k iq + vk ipu−k iq + uk j pv−k jq + vk j pu−k jq)], (B1)

N pqt
kl = 1

6
Ji jPi j (θ, φ) sin(Q · Ri j )

√
S

2N
[eik·Ri j (uk ip + vk ip)(u−k−l jqvl jt + ul jqv−k−l jt )

− e−ik·Ri j (uk j p + vk j p)(u−k−l iqvl it + ul iqv−k−l it ) + ei(−k−l)·Ri j (u−k−l ip+v−k−l ip)(ul jqvk jt +uk jqvl jt )

− e−i(−k−l)·Ri j (u−k−l j p+v−k−l j p)(ul iqvk it +uk iqvl it ) + eil·Ri j (ul ip + vl ip)(uk jqv−k−l jt + u−k−l jqvk jt )

− e−il·Ri j (ul j p + vl j p)(uk iqv−k−l it + u−k−l iqvk it )]. (B2)
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