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Full view on the dynamics of an impurity coupled to two one-dimensional baths
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We consider a model for the motion of an impurity interacting with two parallel, one-dimensional baths,
described as two Tomonaga-Luttinger liquid systems. The impurity is able to move along the baths, and to jump
from one to the other. We provide a perturbative expression for the evolution of the system when the impurity is
injected in one of the baths, with a given wave packet. We obtain an approximation formally of infinite order in
the impurity-bath coupling, which allows us to reproduce the orthogonality catastrophe. We monitor and discuss
the dynamics of the impurity and its effect on the baths, in particular for a Gaussian wave packet. Besides
the motion of the impurity, we also analyze the dynamics of the bath density and momentum density (i.e., the
particle current), and show that it fits an intuitive semiclassical interpretation. We also quantify the correlation
that is established between the baths by calculating the interbath, equal-time spatial correlation functions of both
bath density and momentum, finding a complex pattern. We show that this pattern contains information on both
the impurity motion and on the baths, and that these can be unveiled by taking appropriate “slices” of the time
evolution.
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I. INTRODUCTION

Impurity problems have been a source of fruitful ideas in
condensed matter physics for decades. The most famous one
is probably the Kondo effect [1–3], in which a fixed spin
interacts with a bath of noninteracting electrons, causing an
anomalous resistive behavior at low temperature. While in the
Kondo problem the impurity is immobile, a large literature
has been devoted to see what happens if the foreign particle
can move. The idea traces back at least to Landau [4,5] who
introduced the concept of “polaron” in a solid-state framework
to describe the quasiparticle arising from a strong coupling of
an electron with lattice phonons [2,6].

In the last three decades, the progress of ultracold atom
experiments [7–9] offered new possibilities in the study of
impurity problems. The experimental flexibility and control
over the various parameters has allowed for a precise in-
vestigation of both immobile and mobile impurities, such as
foreign atoms in Bose-Einstein condensates [10] and in Fermi
gases [11]. In particular, a one-dimensional (1D) setting, in
which impurities are restricted to move along elongated baths,
has revealed some remarkable phenomena, such as Bloch
oscillations even in the absence of a lattice [12]. Indeed, the
specificity of one spatial dimension has stimulated a large
array of theoretical and experimental studies [13,14].

In a recent paper [15], the authors considered a model of a
mobile impurity that is able to jump between two bosonized
1D baths. This model was meant to provide a simplified per-
spective of the dynamics of an excitation (the impurity) in a
heterostructure, with the baths playing the role of the “layers”.
This investigation was inspired by the budding field of oxide
heterostructure engineering [16,17], and in particular by the
question of the conditions under which quantum-mechanical
coherence can improve transport of the excitation through the

heterostructure [18]. In Ref. [15] the topic was addressed by
computing the Green’s function of the impurity.

In the present paper, we propose an improved perturbative
treatment that is able to reproduce the Green’s function calcu-
lated in [15], while providing the time evolution for the whole
system formed by the impurity and the baths. Thus, we can
access the time evolution of any observable (while correlation
functions at different times are not directly accessible). More-
over, the numerical effort required is modest enough to allow
the study of a large subset of the possible initial momentum
distributions of the impurity. We will present the time evo-
lution of some observables for a Gaussian wave packet. We
will discuss the dynamics of the probability distribution for
the impurity, observing how the motion and the spreading of
the wave packet is influenced by the baths. We will also take a
different perspective on the polaron dynamics, focusing on the
effects of the impurity on the baths. Hence, we will show how
the density and current in the baths are modified, and how the
exchange of the impurity between the baths is reflected in the
shape of their density correlations.

The paper is organized as follows: In Sec. II we intro-
duce the model, and prepare the ground for the perturbative
treatment by performing a suitable unitary transformation on
the Hamiltonian, obtaining a simpler one. We summarize the
main results in Sec. III. The following two sections are techni-
cal in nature. In Sec. IV we explain the improved perturbative
technique that we used to obtain the evolution of the full
impurity-bath state. In Sec. V we illustrate the observables
that we will focus on in the rest of the paper, and we provide
the expressions of their expectation values. Finally, in Sec. VI
we present the results of our numerical computations of the
various observables. In Sec. VII we sum up our findings and
provide some outlook. We have confined some more technical
points to the Appendices.
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II. DEFINITION OF THE MODEL

In this section we define our model and the main as-
sumptions and approximations behind it. We also employ a
widely-known unitary transformation to simplify the Hamil-
tonian in a form that is more suitable for the perturbative
calculation of the dynamics.

We consider a fermionic impurity, which moves along
a ladder, which hosts two one-dimensional (1D) interacting
baths [19] on its two legs. These baths are independent of
each other, and the impurity interacts with each of them. We
take the length of the system to be L = Na (a being the lattice
spacing), and we work in periodic boundary conditions (pbc).
The Hamiltonian is

H = Himp + Hbath + Hc, (1)

where the noninteracting impurity part is

Himp = 2J‖
∑

jσ

d†
jσ d jσ − J‖

∑
jσ

(d†
j+1,σ d j,σ + H.c.)

− J⊥
∑

jσ

d†
jσ̄ d jσ . (2)

The index j enumerates the lattice sites along the chains,
while the pseudospin σ =↑,↓ (or equivalently σ = ±1 used
in the equations) specifies the chain. We will assume that
the interbath hopping J⊥ is (much) smaller than the intrabath
one J‖.

We will often use a momentum space representation for the
impurity,

d jσ = 1√
N

∑
p

eipa jdpσ , (3)

so that

Himp =
∑
pσ

(E (p)d†
pσ dpσ − J⊥d†

pσ̄ dpσ ), (4)

where E (p) = 2J‖(1 − cos(pa)). In the low-energy limit we
will approximate

E (p) � p2

2M
, (5)

where M−1 = 2J‖a2. We diagonalize Himp in terms of even
(e) and odd (o) modes

dp,μ=e/o = 1√
2

(dp,1 ± dp,−1) (6)

⇒ Himp =
∑
pμ

λpμd†
pμdpμ, (7)

where λp,e/o = E (p) ∓ J⊥.
We are interested in the low-energy, long-wavelength be-

havior, therefore we use bosonization (see [20,21]) to write
the bath Hamiltonian as a pair of Tomonaga-Luttinger liquids
(TLLs) with sound speeds vσ and Luttinger parameters Kσ

(encoding the intrabath interactions) [22],

Hbath =
∑

σ

vσ

∫
dx

2π

[
Kσ

(
d

dx
θσ (x)

)2

+ 1

Kσ

(
d

dx
φσ (x)

)2]
,

(8)

with [φσ (x), θσ ′ (y)] = −iδσ,σ ′ arg (α + i(x − y)), α being a
small length scale acting as a UV cutoff. For simplicity, we
assume that the particles constituting the baths carry no spin.
Finally, in the spirit of a low-energy approximation, we use a
simple density-density contact interaction,

Hc =
∑

jσ

gσ d†
jσ d jσ ρσ ( ja), (9)

where we take the long-wavelength approximation ρσ (x) =
ρ̄σ − 1/πdφσ (x)/dx [20]. The first term is the average den-
sity. If the baths have identical properties, this term can be
discarded because it is only an overall energy shift. This will
be the case for all numerical calculations of this paper.

Expressing the bath fields φσ (x), θσ (x) in terms of the
boson modes bqσ that diagonalize Hbath (we follow the con-
ventions of [20]), we find

Hbath =
∑

q �=0,σ

vσ |q|b†
qσ bqσ , (10)

Hc =
∑

jσ

∑
q �=0

Wqσ

L1/2
d†

jσ d jσ (e−iqa jb†
qσ + eiqa jbqσ ), (11)

where we defined

Wqσ ≡ gσ K1/2
σ

|q|1/2

(2π )1/2
. (12)

We notice from this equation that the only effect of the in-
teractions acting between the particles constituting the baths
is a rescaling of the impurity-bath coupling, according to
gσ → gσ K1/2

σ . This rescaling implies that the intrabath inter-
actions can only enhance or reduce the impurity-bath coupling
with respect to baths consisting of free particles (which have
Kσ = 1). Bosonic baths with short-range interactions (neces-
sarily repulsive) can only realize the former situation (Kσ >

1), whereas fermionic baths can have both Kσ < 1 (repulsive
interactions) and Kσ > 1 (attractive interactions) [20]. The
rescaling of the impurity-bath coupling is the only effect of
intrabath interactions for impurity observables (e.g., the impu-
rity density), while bath observables such as the density and
momentum also explicitly depend on Kσ . The dependence of
the bath observables on the Luttinger parameter Kσ and on the
coupling gσ is discussed in Secs. VI D and VI E.

A technical remark: The description of the baths as TLLs
is an effective field theory, valid up to a momentum (energy)
cutoff α−1 (
). Therefore, we will endow Wqσ → Wqσ e−α|q|/2

with a momentum cutoff whenever we will find divergent
expressions.

We will refer to the quasiparticles described by the oper-
ators bqσ as phonons, as they indeed correspond to quantized
density oscillations with an acoustic dispersion relation ωqσ =
vσ |q| [20].

We add a few remarks on the approximations involved in
our effective model. The relation between the microscopic
model and the effective one is depicted in Fig. 1, in the main
experimental scenario that we have in mind, namely that of
fermionic baths. The figure shows the filled Fermi sea of
one of the baths (which are assumed to be identical) and the
lattice dispersion of the two free impurity bands (continuous
lines). The low-energy model, shown as dashed lines, assumes
that the dispersion of the baths can be linearized around the
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FIG. 1. Qualitative depiction of the band dispersion for one of
the baths (blue) and of the impurity (orange) in a generic micro-
scopic theory, and their low-energy approximations in the effective
model (dashed lines). The image illustrates the hierarchy of energy
and momentum scales in the unperturbed theory (i.e., in absence
of impurity-bath coupling). The baths are assumed to be made of
fermions, filling the band up to the Fermi energy (colored area). The
relative position of the bottom of the impurity and bath bands is
irrelevant for the low-energy physics. Indeed, the bath Fermi energy
εF does not play any role in our treatment.

Fermi points, while that the dispersion of the impurity can
be approximated as parabolic (both assumptions correspond
to low momentum with respect to the Fermi momentum kF ).
Figure 1 also shows the hierarchy of energy scales in our
model, with the typical impurity energies (i.e., its momentum
and the gap 2J⊥) being much smaller than the baths’ Fermi
energy and width of the region in which the linearization of
the dispersion is valid.

In general, the long-wavelength expansion of the
bosonized bath density in Eq. (9) should contain terms of the
form cos[2p(ρ̄σ x − φσ (x))] [20], with p = 1, 2, . . . . These
terms describe backscattering of the bath particles off the
impurity [12,20,21] with momentum exchange that is multi-
ple of 2πρ̄σ = 2kFσ , where the latter expression applies to
a spinless fermionic bath. We have chosen to neglect these
backscattering terms in Eq. (9). Our approximation is justified
by the fact that we assume that the impurity momentum is
much smaller than 2πρ̄σ . In addition, while the calculations
described below in Sec. IV are nonperturbative in J⊥, since the
deexcitation of the odd mode is accompanied by the emission
of phonons of energy of about 2J⊥, this energy (or, equiva-
lently, the wave number q ∼ 2J⊥/vσ ) must be small enough so
that the bosonized description of the baths in terms of sound
modes applies. At the same time 2J⊥ � 2kFσvσ in order to
ensure that we can neglect the above-mentioned cosine term
in the bosonized density.

A. The Lee-Low-Pines transformation

The Hamiltonian presented in the previous paragraphs can
be cast in a simpler form that we will use in the perturbative
calculation. In polaron problems, it has long been known
[23] that it is possible to take advantage of the conserva-
tion of the total polaron momentum Ptot =∑pσ p d†

pσ dpσ +∑
q �=0,σ q b†

qσ bqσ . This is achieved by performing a unitary

transformation, first introduced by Lee, Low, and Pines (LLP),

HLLP ≡ U †
LLPHULLP, ULLP = e−iXPb, (13)

with

X = a
∑

jσ

j d†
jσ d jσ (14)

being the impurity position operator [24] and

Pb =
∑

q �=0,σ

q b†
qσ bqσ (15)

the total momentum of the baths. This transformation acts as

U †
LLPd jσULLP = e−ia jPbd jσ , (16a)

U †
LLPbqσULLP = e−iqX bqσ . (16b)

Using the property that in a single-impurity subspace
d†

jσ d jσ eiqX = d†
jσ d jσ eiqa j , we obtain

HLLP =
∑
pσ

E (p − Pb)d†
pσ dpσ − J⊥

∑
pσ

d†
pσ̄ dpσ

+
∑

q �=0,σ

vσ |q|b†
qσ bqσ

+
∑

q �=0,σ

Wqσ

L1/2

∑
j

d†
jσ d jσ (b†

qσ + b−qσ ). (17)

We can see that in this new basis the impurity mo-
mentum Pd =∑pσ p d†

pσ dpσ is now conserved. Indeed, the
physical momentum operator in the LLP basis is PLLP

d ≡
U †

LLPPdULLP = Pd − Pb, which shows that Pd = PLLP
d + Pb =

U †
LLP(Pd + Pb)ULLP ≡ U †

LLPPtotULLP. In words, in the LLP
basis the operator Pd coincides with the total polaron momen-
tum, which is conserved. Notice that the physical impurity
momentum is the one in the laboratory frame, i.e., before the
LLP transformation, and it is obviously not conserved. As the
dynamics does not couple different momentum sectors, we
can work in a given sector, and substitute Ptot with its eigen-
value p. Then, the only “active” impurity degree of freedom
is the bath index, that we describe via pseudospin variables

σi ≡
∑

p,σ,σ ′
(τi )σσ ′d†

pσ dpσ ′ =
∑
j,σ,σ ′

(τi )σσ ′d†
jσ d jσ ′ (18)

In the above equation, (τi )σσ ′ is the ith Pauli matrix. Taking
into account that

∑
pσ d†

pσ dpσ = 1 (i.e., there is only one im-
purity in the system), we can write

HLLP(p) = (p − Pb)2

2M
− J⊥σ1 +

∑
q �=0,σ

vσ |q|b†
qσ bqσ

+
∑

q �=0,σ

Wqσ

L1/2

1 + σσ3

2
(b†

qσ + b−qσ ). (19)

This final form of the Hamiltonian, that we will study in the
following, is somewhat reminiscent of a spin-boson model
[25].
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III. OVERVIEW OF THE RESULTS

In the next section, we will study the dynamics of the
model (19) using an improved, infinite-order perturbative
expansion in the impurity-bath coupling gσ K1/2

σ /vσ . Since
the formalism is quite involved, we will start presenting the
physical picture that emerges from the results we obtain.
Throughout the paper, we will always assume that initially
the baths are in their ground state |ω〉b, while the impurity is
introduced in the system in an arbitrary wave packet

|�(0)〉 =
∑

p,μ∈{e,o}
cpμ|p, μ〉d |ω〉b, (20)

where |p, μ〉d = d†
pμ|0〉d are the free impurity eigenstates.

When the baths are in the ground state the LLP transformation
acts as the identity, so the state above can be considered as the
representation of the wave function both in the laboratory and
in the LLP frames.

The main achievement of this paper will be a perturbative
expression of the state of the impurity and baths, which allows
us to obtain the dynamics of the baths in response to the intro-
duction and motion of the impurity. The advantage of having
an approximate representation for the wave function is that we
will be able to understand the dynamics of impurity and baths
on the same footing. The case of a Gaussian impurity wave
packet is illustrated in Fig. 2. In these plots, the contour lines
depict the probability density of finding the impurity at a given
position, while the color scale represents the fluctuation of the
density of the baths. The plots on the left depict the σ = 1
(or ↑) bath, while the ones on the right represent the situa-
tion in the σ = −1 (↓) bath. The impurity is initialized in a
Gaussian wave packet with a standard deviation of position
of about 12.5(Mv)−1 around the center of the ↑ bath, with an
average momentum p0 = 0.1Mv.

The motion of the impurity is qualitatively similar to what
we would expect in the absence of the interaction: the whole
wave packet oscillates from one bath to the other, while drift-
ing to the right because of the finite momentum. There is
a little distortion in the shape of the wave packet, although
the most prominent modification of its properties is not im-
mediately noticeable from Fig. 2: unlike to the free impurity
case, at every time t > 0 there is a nonvanishing probability
to find the impurity in both baths. This property is visible
in Fig. 2 as an elongation of the wave packets in the time
direction, especially for later times (see also Sec. VI A for
a discussion of this property). During the evolution, there
is a net momentum transfer between impurity and baths, as
detailed in Fig. 3. This momentum transfer is clearly seen also
in the dynamics of the baths.

The latter evolve in an intuitive, semiclassical fashion:
when the impurity appears for the first time in one of the
baths, the latter responds by forming a density depletion in
the position of the impurity, while at the same time two wave
fronts form on its sides and propagate away at the speed of
sound. Then, as the impurity oscillates from one bath to the
other, the depth of the density depletion oscillates as well, and
these oscillations propagate in the baths in the form of two
trains of ripples. The wavelength of the latter corresponds to
that of the phonons emitted from the decay of the odd mode
of the impurity, which is different for backward and forward

emission because of the finite impurity momentum. Notice
that the dynamics of the baths lags behind the time evolution
of the impurity. This effect is particularly visible for larger
interbath hopping [Figs. 2(a) and 2(b)], while for smaller J⊥
the baths and the impurity are almost synchronized [Figs. 2(c)
and 2(d)].

The relation of the densities of the baths with the impurity
density, presented in the figures above, can be understood by
noticing that the equation of motion linking them at operator
level is (

1

v2
σ

∂2
t − ∂2

x

)
ρσ (x, t ) = gσ Kσ

πvσ

∂2
x Nσ (x, t ), (21)

where Nσ (x) ≡∑ j δ(x − ja)d†
jσ d jσ . The above equation is

valid within the approximation that the bosonized density re-
tains only the longest-wavelength contribution −1/π∂xφσ (x),
which guarantees that the equations of motion for the densities
are linear. Solving Eq. (21) one easily obtains

ρσ (x, t ) = ρσ (x, 0)

+ gσ

∫
R

dx′
∫ t

0
dt ′χσ (x − x′, t − t ′)Nσ (x′, t ′),

(22)

where ρσ (x, 0) is the noninteracting density at t = 0. The
kernel χσ (x, t ) is the retarded density-density linear response
function for the baths,

χσ (x, t ) ≡ −iθ (t )〈ω|[ρσ (x, t ), ρσ (0, 0)]|ω〉

= θ (t )
Kσ

2π
[δ′

α (x + vσ t ) − δ′
α (x − vσ t )],

where the prime indicates a derivative with respect to the
argument of the function

δα (x) ≡ 1

π

α

x2 + α2
. (23)

This function is a smeared representation of the Dirac delta
function, whose smearing parameter α is the length that serves
as a UV cutoff for the TLL.

If we take the average of Eq. (22) over the initial state
|�(0)〉 = |χ〉d |ω〉b, we obtain the relation

〈ρσ (x)〉t = gσ

∫
R

dx′
∫ t

0
dt ′χσ (x − x′, t − t ′)〈Nσ (x′)〉t ′

(24)

between the bath and impurity density. We have introduced
the notation 〈O(x, t )〉 ≡ 〈O(x)〉t to indicate the expectation
value at time t of the operator O(x) in the Schrödinger picture.
Substituting the expression for the retarded response function
with α → 0 in the previous equation we get

〈ρσ (x)〉t = gσ Kσ

2π

∫ t

0
dt ′[∂x′ 〈Nσ (x′)〉t ′ |x′=x+vσ (t−t ′ )

− ∂x′ 〈Nσ (x′)〉t ′ |x′=x−vσ (t−t ′ )], (25)

where the spatial arguments x ± vσ (t − t ′) have to be in-
terpreted modulo translation by the length of the system
L because of the pbc. Although the above equation looks
like a linear response formula, we stress that it is actually
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(a) (b)

(c) (d)

FIG. 2. Comparison of the dynamics of the density fluctuation in the baths (color scale) and of the impurity density (black contours)
for g2K = 0.5v2 and [(a), (b)] J⊥ = 0.1Mv2 or [(c), (d)] J⊥ = 0.03Mv2. The dynamics of impurity and baths and are more synchronized
for low J⊥. The wave packet is Gaussian, composed of Np = 64 momenta distributed around p0 = 0.1Mv with a standard deviation of
δp = 0.04Mv. The system has a total length of L = 1000(Mv)−1. The plots are not symmetric about x = L/2 because of the finite impurity
momentum.

nonperturbative, because it comes from the Heisenberg equa-
tion of motion (21). It establishes an exact relation between
the interacting impurity and bath density, valid within our
long-wavelength description of the system. It shows that the
bath density at coordinates (x, t ) is a superposition of the
all the values of the gradient of the impurity density on the
light-cone of the given space-time point. Besides indicating
that the baths have rather long “memory”, the superposition
of the various images of the non-positive-definite gradient of
the impurity density paves the way to interference effects.
Equation (25) also provides a hint that the time evolution of
the bath density will have a semiclassical character, in the
sense that it follows the motion of the impurity.

In the following paragraphs, we will build a perturbative
approximation of the time evolution of the system state. This
solution will give us access to the dynamics of both the density
of the impurity and of the baths, and we will observe the
realization of the semiclassical behavior entailed by Eq. (25)
[albeit Eq. (25) itself will be satisfied only approximately].

IV. THE PERTURBATIVE TECHNIQUE

We will now discuss the technique with which the results
exposed in the previous section were obtained, and construct
a perturbative expansion for the impurity-bath wave func-
tion. The first useful step is to rewrite the LPP in a given

184316-5
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FIG. 3. Time evolution of the impurity momentum for the initial
state |p0 ↑〉d , and symmetric baths. The plots are for p0 = 0.1Mv,
g2K = 0.5v2 and show the effect of increasing J⊥. The J⊥ = 0.1Mv2

curve is shown only within the time interval when the perturbative
solution is valid.

momentum sector, Eq. (19) separating the noninteracting part
H0(p) and the perturbation V ,

HLLP(p) = H0(p) + σ3V + :
P2

b

2M
:, (26)

where the colons : · : stand for normal-ordering with respect
to the phononic vacuum |ω〉. The noninteracting Hamiltonian
is

H0(p) = h0(p) + E (p) − J⊥σ1, (27)

with h0(p) being the bare bath Hamiltonian

h0(p) ≡
∑

q �=0,σ

[
�qσ (p)b†

qσ bqσ + Wqσ

2
√

L
(b†

qσ + bqσ )

]
, (28)

and

�qσ (p) ≡ vσ |q| − qp

M
+ q2

2M
. (29)

The perturbation V is [26]

V =
∑

q �=0,σ

σ
Wqσ

2
√

L
(b†

qσ + bqσ ). (30)

The idea is to obtain a perturbative expansion for the
time evolved wave function in powers of gσ K1/2

σ /vσ , treating
H0 as unperturbed Hamiltonian. We notice that H0 contains
gσ K1/2

σ /vσ , hence the resulting perturbative approximation
will be actually of infinite order. A physical picture behind this
choice is described in Appendix A. In intuitive terms, the un-
perturbed Hamiltonian contains the bath-induced transitions
in which the band index (e, o) of the impurity does not change
(intraband transitions), whereas the σ3V term describes in-
terband transitions. We will apply the approach described in
Ref. [27], that is designed to avoid the appearance of secular
terms, i.e., terms that grow indefinitely in time, whose pres-
ence would invalidate the perturbative treatment [28].

Let us begin from the case in which the initial condition is
factorized as |pμ〉d |ω〉b ≡ |pμ,ω〉 ≡ |�pμ(0)〉. Then, we go
to a modified interaction picture

|�pμ(t )〉 = e−iH0t
∣∣ψ I

pμ(t )
〉 = e−iH0t apμ(t )|φpμ(t )〉, (31)

in which the vector |ψ I
pμ(t )〉 is split into a complex function

aμ(t ) and a state |φpμ〉. This splitting is specified imposing

〈pμ,ω|φpμ(t )〉 ≡ 1 (32)

at all times, implying that

|φpμ(t )〉 = |pμ,ω〉 + |δφpμ(t )〉, (33)

with |δφpμ〉 orthogonal to |pμ,ω〉. This condition ensures that
secular terms will be resummed to all orders into apμ(t ).

Substituting the equation above into the Schrödinger equa-
tion we obtain

i
d

dt
|φpμ(t )〉 = (�H(t ) − �Epμ(t ))|φpμ(t )〉, (34a)

i
dapμ

dt
= �Epμ(t )apμ, apμ(0) = 1, (34b)

�Epμ(t ) ≡ 〈pμ,ω|�H(t )|φpμ(t )〉, (34c)

where the equation for apμ is obtained by projecting onto
|pμ,ω〉, and �H(t ) is the interaction-picture perturbation

�H(t ) = eiH0t

(
σ3V + :

P2
b

2M
:

)
e−iH0t . (35)

Notice that we chose to treat : P2
b : /2M as a perturbation, de-

spite its formal independence from the coupling constant. This
choice is justified when the initial bath state is the vacuum,
as in this case the phonons modes will start to be populated
only because of the interaction. This approach is akin to a
spin-wave expansion in magnetic systems [29].

The equation for apμ is integrated straightforwardly,

apμ(t ) = e−i
∫ t

0 dt ′�Epμ(t ′ ). (36)

The equation for |φpμ(t )〉 will in turn be solved perturbatively,
assuming the expansion

|δφpμ〉 =
∞∑

n=1

∣∣φ(n)
pμ

〉
, (37)

where |φ(n)
pμ〉 = O([gσ K1/2

σ /vσ ]n). As usual in perturbative
treatments, this Ansatz generates a hierarchy of equations for
|φ(n)

pμ (t )〉, which have to be solved by matching terms of the
same order. Consequently, the function �Epμ(t ) becomes a
series in powers of the coupling, which is then substituted into
Eq. (36). In our case, the matching of powers of gK1/2/v is
nontrivial, because H0 already contains the coupling constant.

The details of the expansion can be now worked out order
by order. The interaction-picture perturbation is

�H(t ) = σ3(t )(V̂ (t ) + 〈V (t )〉)+ :
P2

b

2M
: (t ). (38)

Here [30]

σ3(t ) =
∑

μ=e/o

e−2iμJ⊥t |pμ〉〈pμ̄|, (39a)

V̂ (t ) =
∑

q �=0,σ

σ
Wqσ

2L1/2
(bqσ e−i�qσ t + b†

qσ ei�qσ t ), (39b)

〈V (t )〉 = −2
∑

q �=0,σ

σ
W 2

qσ

4L

1 − cos �qσ t

�qσ

. (39c)
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The last term originates from the inclusion of a term ∝
gσ K1/2

σ /vσ in h0(p). Notice that

σ3(t )|pμ〉 = e2iμJ⊥t |pμ̄〉 (40)

where for μ = e/o we have μ̄ = o/e.
Now we plug the expansion of |φpμ〉 in Eq. (34a). At first

order, we have

i
d

dt

∣∣φ(1)
pμ (t )

〉 = (�H(t ) − �E (1)
pμ (t ))|pμ,ω〉, (41)

with

�E (1)
pμ (t ) = 〈pμ,ω|�H(t )|pμ,ω〉. (42)

The action of �H(t ) on the initial state reads

�H(t )|pμ,ω〉 =
∑

q �=0,σ

σ
Wqσ

2L1/2
ei�+μ

qσ (p)t b†
qσ |pμ̄, ω〉

+ e2iμJ⊥t 〈V (t )〉|pμ̄, ω〉 + : P2
b :

2M
(t )|pμ,ω〉.

(43)

We have introduced the convenient shorthands

�±e
qσ (p) ≡ �qσ (p) ± 2J⊥,

�±o
qσ (p) ≡ �qσ (p) ∓ 2J⊥. (44)

The lowest-order term generated by :P2
b :

2M (t )|pμ,ω〉 is of order
two, so it is easy to verify that �E (1)

pμ (t ) = 0. Moreover, we

assume that :P2
b :

2M (t )|φ(1)
pμ (t )〉 is of second order, as well. We will

verify the consistency of this assumption a posteriori. Since
〈V (t )〉 is a second-order contribution we have that the first-
order equation is simply

i
d

dt

∣∣φ(1)
pμ (t )

〉 = σ3(t )V̂ (t )|pμ,ω〉, (45)

which is straightforwardly integrated,

∣∣φ(1)
μ (t )

〉 = ∑
q �=0,σ

σ
Wqσ

2L1/2

1 − ei�+μ
qσ t

�
+μ
qσ

b†
qσ |pμ̄ω〉. (46)

From the above equation, it can be verified that :P2
b :

2M (t )|φ(1)
pμ (t )〉

is of second order, as claimed before. The correct normaliza-
tion of the state is guaranteed by computing �Epμ(t ) to the
second order,

�Epμ(t ) = �E (2)
pμ (t ) = 〈μω|σ3(t )V̂ (t )

∣∣φ(1)
μ (t )

〉
= −

∑
q �=0,σ

W 2
qσ

4L

1 − e−i�+μ
qσ t

�
+μ
qσ

.

The normalization factor is

apμ(t ) = e−i
∫ t

0 dt1�E (2)
pμ (t1 )

= exp

⎛
⎝−

∑
q �=0,σ

W 2
qσ

4L

1 − i�+μ
qσ t − e−i�+μ

qσ t(
�

+μ
qσ

)2
⎞
⎠. (47)

The second-order correction is quite more involved. There
is one contribution coming from the second term of Eq. (43),

∣∣δ1φ
(2)
pμ (t )

〉 = −i
∫ t

0
dt ′e2iμJ⊥t 〈V (t ′)〉|pμ̄, ω〉

= 1

2μJ⊥

∑
q �=0,σ

σ
W 2

qσ

4L

[
e2iμJ⊥t 2�χt (�qσ (p)) − χt

(
�−μ

qσ (p)
)− χ∗

t

(
�+μ

qσ (p)
)]|pμ̄, ω〉

≡ Bpμ(t )|pμ̄, ω〉. (48)

The other contribution involves bosonic creation operators and, in analogy with the first-order correction Eq. (46), it has the form∣∣δ2φ
(2)
pμ (t )

〉 =∑
ν

∑
qσ ,q′σ ′

Aμν

qσ ,q′σ ′ (p, t )b†
qσ b†

q′σ ′ |pν, ω〉, (49)

where Aμν

qσ ,q′σ ′ (p, t ) is taken to be of order two, and symmetric upon exchange of qσ with q′σ ′. Then, it is easy to see that
: P2

b /2M : (t )|δ2φ
(2)
pμ (t )〉 generates a term of second order. Thus, the usual hierarchical structure of perturbative expansion (in

which terms of order n are the sources for the next order) is lost, but the equation for Aμν

qσ ,q′σ ′ (t ) is still solvable. The details can
be found in Appendix C, here we only quote the results,

Aμμ

qσ ,q′σ ′ (p, t ) = WqσWq′σ ′

4L

{
qq′

2M

1

�qσ�q′σ ′

[
ei�qσ tχt

(
�qσ + qq′

M

)
+ ei�q′σ ′ tχt

(
�q′σ ′ + qq′

M

)

− χt

(
qq′

M

)
− ei(�qσ +�q′σ ′ )tχt

(
�qσ + �q′σ ′ + qq′

M

)]

+ σσ ′

2

[
1

�
+μ

q′σ ′

(
ei(�qσ +�q′σ ′ )tχt

(
�qσ + �q′σ ′ + qq′

M

)
− ei�−μ

qσ tχt

(
�−μ

qσ + qq′

M

))

+ 1

�
+μ
qσ

(
ei(�qσ +�q′σ ′ )tχt

(
�qσ + �q′σ ′ + qq′

M

)
− ei�−μ

q′σ ′ tχt

(
�

−μ

q′σ ′ + qq′

M

))]}
(50)
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Aμμ̄

qσ ,q′σ ′ (p, t ) = 1

2

WqσWq′σ ′

4L

{
σ

�
+μ
qσ �q′σ ′

[
ei�+μ

qσ tχt

(
�+μ

qσ + qq′

M

)
+ ei�q′σ ′ tχt

(
�q′σ ′ + qq′

M

)

− χt

(
qq′

M

)
− ei(�+μ

qσ +�q′σ ′ )tχt

(
�+μ

qσ + �q′σ ′ + qq′

M

)]
+ σ ′

�
+μ

q′σ ′�qσ

×
[

ei�+μ

q′σ ′ tχt

(
�

+μ

q′σ ′ + qq′

M

)
+ ei�qσ tχt

(
�qσ + qq′

M

)
− χt

(
qq′

M

)
− ei(�qσ +�

+μ

q′σ ′ )t
χt

(
�qσ + �

+μ

q′σ ′ + qq′

M

)]}
.

(51)

In the above equations, all �qσ s and �±μ
qσ are evaluated at momentum p, and we defined the function

χt (ε) ≡ 1 − e−iεt

ε
. (52)

To sum up, when |�pμ(0)〉 = |pμ,ω〉, the state evolution is approximated by

|�pμ(t )〉 = apμ(t )e−ih0 (p)t

⎡
⎣e−iλpμt |pμ,ω〉 + e−iλpμ̄t

∑
q �=0,σ

σ
Wqσ

2L1/2

1 − ei�+μ
qσ (p)t

�
+μ
qσ (p)

b†
qσ |pμ̄ω〉

+ e−iλpμ̄t Bpμ(t )|pμ̄, ω〉 +
∑

ν

∑
qσ ,q′σ ′

e−iλpν t Aμν

qσ ,q′σ ′ (p, t )b†
qσ b†

q′σ ′ |pν, ω〉
⎤
⎦. (53)

Letting e−ih0 (p)t act on the bath states, we can also write

|�pμ(t )〉 = apμ(t )

⎡
⎣e−iλpμt |pμ〉|ωp(t )〉 − e−i(λpμ̄−2μJ⊥ )t

∑
q �=0,σ

σ
Wqσ

2L1/2

1 − e−i�+μ
qσ (p)t

�
+μ
qσ (p)

b†
qσ |pμ̄〉|ωp(t )〉

+ e−iλpμ̄t B̃pμ(t )|pμ̄〉|ωp(t )〉 +
∑

ν

∑
qσ ,q′σ ′

e−iλpν t Aμν

qσ ,q′σ ′ (p)e−i(�qσ (p)+�q′σ ′ (p))t b†
qσ b†

q′σ ′ |pν〉|ωp(t )〉
⎤
⎦, (54)

where

|ωp(t )〉 ≡ e−ih0t |ω〉

= eiαp(t )

∣∣∣∣coh

[
− Wqσ

2L1/2

1 − e−i�qσ (p)t

�qσ (p)

]〉
, (55)

is the “zeroth order” evolution of the initial bath state. The notation |coh[zqσ ]〉 means a coherent state

|coh[zqσ ]〉 ≡ e
∑

q �=0,σ (zqσ b†
qσ −z∗

qσ bqσ )|ω〉, (56)

and the phase is

αp(t ) ≡
∑

q �=0,σ

W 2
qσ

4L

�qσ (p)t − sin(�qσ (p)t )

(�qσ (p))2 . (57)

Notice that commuting e−ih0(p)t with b†
pσ introduces a shift in

Bpμ(t ), hence in Eq. (54) we have

B̃pμ(t ) = Bpμ(t ) −
∑

q �=0,σ

σ
W 2

qσ

4L
χ∗

t (�+μ
qσ (p))χt (�qσ (p)).

(58)
The analogous shifts in the last term of Eq. (54) have been
neglected for consistency, since they result in higher-order
contributions in our small parameter. The shift above is
logarithmically divergent in the TLL cutoff, and vanishes
whenever the two baths are identical, that is, they have
the same properties (vσ , Kσ , gσ ). In the following, we will

work mainly in this symmetric case, hence we will soon
discard it.

The perturbative solution (54) has a clear physical in-
terpretation: The state evolution is approximated by the
emission of phonons from the deexcitation |o〉 → |e〉 above a
coherent-state background, which will turn out to embody the
orthogonality catastrophe. The solution is also reminiscent of
a popular Ansatz used to describe Fermi polarons in higher
dimensions, in which the impurity state is expanded in terms
with an increasing number of particle-hole pairs excited from
the Fermi sphere [11,31]. As the TLL bosons are descendants
of particle-hole pairs, we see that the expression in Eq. (54) is
indeed the 1D analog of the above-mentioned Ansatz, albeit
it is perturbative and not variational in nature. The main dif-
ference between the two is that instead of adding excitations
on the Fermi sphere (i.e., the bosonic ground state |ω〉), in
Eq. (54) the bosons are added on top of a coherent state, which
embodies the physics of the OC.
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From the above results, the time evolution of a wave packet |�(0)〉 =∑pμ cpμ|pμ,ω〉 is simply given by the superposition
of Eq. (53) or (54),

|�(t )〉 =
∑
pμ

e−iλpμt |pμ〉e−ih0(p)t

⎡
⎣(cpμapμ + cpμ̄apμ̄Bpμ̄(t ))|ω〉 + cpμ̄apμ̄

∑
q �=0,σ

σ
Wqσ

2L1/2

1 − ei�−μ
qσ t

�
−μ
qσ

b†
qσ |ω〉

+
∑

qσ ,q′σ ′

(
cpμapμAμμ

qσ ,q′σ ′ (p, t ) + cpμ̄apμ̄Aμ̄μ

qσ ,q′σ ′ (p, t )
)
b†

qσ b†
q′σ ′ |ω〉

⎤
⎦, (59)

or

|�(t )〉 =
∑
pμ

e−iλpμt |pμ〉
⎡
⎣(cpμapμ + cpμ̄apμ̄B̃pμ̄(t ))|ωp(t )〉 + cpμ̄apμ̄e−2iμJ⊥t

∑
q �=0,σ

σ
Wqσ

2L1/2

1 − e−i�−μ
qσ t

�
−μ
qσ

b†
qσ |ωp(t )〉

+
∑

qσ ,q′σ ′

(
cpμapμAμμ

qσ ,q′σ ′ (p, t ) + cpμ̄apμ̄Aμ̄μ

qσ ,q′σ ′ (p, t )
)
e−i(�qσ (p)+�q′σ ′ (p))t b†

qσ b†
q′σ ′ |ωp(t )〉

⎤
⎦. (60)

The calculation and characterization of the normalization
factors apμ(t ) can be found in Appendix B. For now, we just
point out that they have the long-time asymptotic behaviors

ape(t ) ∼ ezpe−i�λpet+O(1/t ) (61a)

apo(t ) ∼ ezpo−i�λpot−2γpt+O(1/t ), (61b)

where zpμ are two complex constants, �λpμ are the
interaction-induced shifts of the band energies, and 2γp is the
decay constant of the odd mode. The expressions of these
functions can be found in the above-mentioned Appendix B.
The behaviors in Eqs. (61) are established rather quickly
(for small momentum |p| � 0.5Mv, already for J⊥t ∼ 0.1).
The expressions for the parameters appearing in the equa-
tions above can be found in Appendix B.

We remark that the validity of the perturbative solution is
limited in time because the state normalization is guaranteed
only up to the fourth order. As a consequence, the maximum
time before the normalization is significantly lost is of the
order of the odd mode decay time, 1/(2γp), which is usually
much longer than the period of the hopping between baths.

As a check of the reliability of this solution, we calculated
the “Green’s function” G‖(p, t ) = −i〈pσ, ω|e−iHt |pσ, ω〉 and
compared the result with the one from the linked cluster ex-
pansion (previously computed by the present authors in [15]),
finding perfect agreement in the symmetric case. More details
can be found in Appendix D

V. OBSERVABLES

In this section, we report the expressions of some interest-
ing observables of the impurity-baths systems, obtained from
our perturbative solution Eqs. (59) or (60).

A. Impurity observables

The simplest observable is the probability that the impurity
is found in the bath σ , which is the expectation value of the
operator

nσ ≡
∑

j

d†
jσ d jσ . (62)

After the LLP transformation, it reads [compare with Eq. (17)
and Eq. (19)]

nσ = 1
2 (1 + σσ3). (63)

Using the notation

|�(t )〉 =
∑
pμ

|pμ〉d

∣∣ψpμ(t )
〉
b (64)

for the evolved state (notice that the bath states are not nor-
malized to one), we find [32]

〈nσ 〉t = 1

2
+ σ

2

∑
pμ

〈ψpμ(t )|ψpμ̄(t )〉, (65)

where 〈·〉t ≡ 〈�(t )|·|�(t )〉. The overlaps are easily calculated
to be

〈ψpμ(t )|ψpμ̄(t )〉 = e−2iμJ⊥t [(cpμapμ)∗cpμ̄apμ̄ + |cpμ̄apμ̄|2B̃∗
pμ̄(t ) + |cpμapμ|2B̃pμ(t )]

+ |cpμapμ|2
∑

q �=0,σ

σ
W 2

qσ

4L

1 − ei�qσ (p)t

�qσ (p)

1 − e−i�+μ
qσ (p)t

�
+μ
qσ (p)

+ |cpμ̄apμ̄|2
∑

q �=0,σ

σ
W 2

qσ

4L

1 − ei�−μ
qσ (p)t

�
−μ
qσ (p)

1 − e−i�qσ (p)t

�qσ (p)

+ e2iμJ⊥t (cpμ̄apμ̄)∗cpμapμ

∑
q �=0,σ

W 2
qσ

4L

1 − ei�−μ
qσ (p)t

�
−μ
qσ (p)

1 − e−i�+μ
qσ (p)t

�
+μ
qσ (p)

+ O((gK1/2/v)3) (66)

at second order.
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In problems concerning mobile impurities, a natural observable to be considered is the impurity momentum. In the LLP basis,
it reads Pd = P − Pb, so, since P is a constant of motion, all that is required to compute is the momentum carried by the baths.
The latter is given by

〈Pb〉t =
∑

q �=0,σ

q〈b†
qσ bqσ 〉t

= 2
∑
pμ

|cpμapμ|2
∑

q �=0,σ

q
W 2

qσ

4L

1 − cos �+μ
qσ (p)t

(�+μ
qσ (p))2 + 2�

⎡
⎣∑

pμ

(cpμapμ)∗cpμ̄apμ̄

×
∑

q �=0,σ

σq
W 2

qσ

4L

1 − e−i�qσ (p)t

�qσ (p)

1 − ei�−μ
qσ (p)t

�
−μ
qσ (p)

⎤
⎦+ 2

∑
pμ

|cpμ|2
∑

q �=0,σ

q
W 2

qσ

4L

1 − cos �qσ (p)t

(�qσ (p))2 (67)

The sums over the bath momenta can be converted into energy integrals by introducing the appropriate density of states

1

L

∑
q �=0

qW 2
qσ f (�qσ (p)) =

∫
dεRσ

1 (ε; p) f (ε),

Rσ
1 (ε; p) ≡ 1

L

∑
q �=0

qW 2
qσ δ(ε − �qσ (p)),

which in the continuum limit is given by

Rσ
1 (ε; p) = M2g̃2

σ

(2π )2
θ (ε)e−ε/


∑
s=±1

[
−s

(
vσ + s

p

M

)][(
1 + ε

ksσ (p)

)1/2

− 2 +
(

1 + ε

ksσ (p)

)−1/2]
. (68)

The expression in Eq. (67) is composed of three con-
tributions. The first two are contributions coming from the
deexcitation of the odd mode, as signaled by their explicit
dependence on J⊥. The second of these two accounts for the
asymmetries in the bath index, as it vanishes if the baths
are symmetric or if the impurity is initialized in one of its
noninteracting eigenstates. The last part of Eq. (67) comes
from the coherent background |ωp(t )〉 term of the baths state,
and is independent of the initial bath index of the impurity. It
quantifies the momentum adsorbed by the baths as they adjust
to the injection of the impurity.

Finally, we can calculate the probability of finding the
impurity at the site j and in the bath σ , namely the expectation

value of the number operator d†
jσ d jσ . The latter is invariant

under the LLP transformation [see Eq. (16)]. Using d†
jσ d jσ =

N−1∑
p eipa j

∑
k d†

k−pσ dkσ and dpσ = (dpe + σdpo)/
√

2 we
find

〈d†
jσ d jσ 〉t= 1

2N

∑
p

eip ja
∑
k,μ

(〈ψk−pμ|ψkμ〉 + σ 〈ψk−pμ|ψkμ̄〉).

(69)

Notice that Eq. (69) correctly reproduces Eq. (65) when
summed on all sites. The fundamental ingredients of the above
equation are the overlaps of the bath states, which read

〈ψpμ|ψkμ〉 = ei(Ep−Ek )t 〈ωp(t )|ωk (t )〉
⎡
⎣(cpμapμ)∗ckμakμ + (cpμ̄apμ̄)∗ckμakμB̃∗

pμ̄ + (cpμapμ)∗ckμ̄akμ̄B̃kμ̄ + e−iμ2J⊥t (cpμapμ)∗

× ckμ̄akμ̄

∑
q �=0,σ

σ
W 2

qσ

4L

1 − ei�qσ (p)t

�qσ (p)

1 − e−i�−μ
qσ (k)t

�
−μ
qσ (k)

+ eiμ2J⊥t (cpμ̄apμ̄)∗ckμakμ

∑
q �=0,σ

σ
W 2

qσ

4L

1 − ei�−μ
qσ (p)t

�
−μ
qσ (p)

1 − e−i�qσ (k)t

�qσ (k)

+ (cpμ̄apμ̄)∗ckμ̄akμ̄

∑
q �=0,σ

W 2
qσ

4L

1 − ei�−μ
qσ (p)t

�
−μ
qσ (p)

1 − e−i�−μ
qσ (k)t

�
−μ
qσ (k)

+ O((gK1/2/v)3)

⎤
⎦, (70a)

〈ψpμ|ψkμ̄〉 = ei(Ep−Ek−μ2J⊥ )t 〈ωp(t )|ωk (t )〉
⎡
⎣(cpμapμ)∗ckμ̄akμ̄ + (cpμ̄apμ̄)∗ckμ̄akμ̄B̃∗

pμ̄ + (cpμapμ)∗ckμakμB̃kμ

+ eiμ2J⊥t (cpμapμ)∗ckμakμ

∑
q �=0,σ

σ
W 2

qσ

4L

1 − ei�qσ (p)t

�qσ (p)

1 − e−i�+μ
qσ (k)t

�
+μ
qσ (k)

+ eiμ2J⊥t (cpμ̄apμ̄)∗ckμ̄akμ̄
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×
∑

q �=0,σ

σ
W 2

qσ

4L

1 − ei�−μ
qσ (p)t

�
−μ
qσ (p)

1 − e−i�qσ (k)t

�qσ (k)
+ ei4μJ⊥t (cpμ̄apμ̄)∗ckμakμ

×
∑

q �=0,σ

W 2
qσ

4L

1 − ei�−μ
qσ (p)t

�
−μ
qσ (p)

1 − e−i�+μ
qσ (k)t

�
+μ
qσ (k)

+ O((gK1/2/v)3)

⎤
⎦, (70b)

where the coherent-states overlap is given by

ln〈ωp(t )|ωk (t )〉 = − 1

4L

∑
q �=0,σ

W 2
qσ

[
1 + i�qσ (p)t − ei�qσ (p)t

(�qσ (p))2 + 1 − i�qσ (k)t − e−i�qσ (k)t

(�qσ (k))2 − 1 − ei�qσ (p)t

�qσ (p)

1 − e−i�qσ (k)t

�qσ (k)

]
.

(71)

For any p �= k it has a slow, power-law decrease in time and it is a nonanalytic function of the momenta in p = k. Of course, for
p = k it is identically equal to 1 [as |ωp(t )〉 is normalized], which is also its maximum absolute value.

B. Bath observables

We will look at correlation functions of the bath densities ρσ (x) and conjugate momenta [20] �σ (x) ≡ 1/πdθσ (x)/dx,

ρσ (x) = − 1

π

d

dx
φσ (x)

= K1/2
σ

L1/2

∑
q �=0

Vq(eiqxbqσ + e−iqxb†
qσ ), (72a)

�σ (x) = 1

π

d

dx
θσ (x)

= 1

K1/2
σ L1/2

∑
q �=0

sgn(q)Vq(eiqxbqσ + e−iqxb†
qσ ), (72b)

where sgn(q) is the sign function. We remark that we understand ρσ (x) as the fluctuation part of the density, that is, we already
subtracted the average density ρ̄σ from it [33]. In order to use the perturbative solution we found, we must first perform a LLP
transformation [Eq. (16)], which replaces bqσ → bqσ e−iqX . Therefore, we have

〈ρσ (x)〉t = 2�
⎡
⎣K1/2

σ

L1/2

∑
q �=0

Vqeiqx〈e−iqX bqσ 〉t

⎤
⎦, (73a)

〈�σ (x)〉t = 2�
⎡
⎣ 1

K1/2
σ L1/2

∑
q �=0

sgn(q)Vqeiqx〈e−iqX bqσ 〉t

⎤
⎦. (73b)

Using expression (59) [or (60)] and the property that e−iqX |pμ〉 = |p − qμ〉, we find

〈e−iqX bqσ 〉t = − Wqσ

2L1/2

∑
pμ

ei(Ep−q−Ep)t 〈ωp−q(t )|ωp(t )〉(cp−q,μap−q,μ(t ))∗
[
cpμapμ(t )χt (�qσ (p))

+ σe−iμ2J⊥t cpμ̄apμ̄(t )χt (�−μ
qσ (p))

]+ O((gK1/2/v)3), (74)

at the lowest order. It can be seen immediately that the two densities 〈ρσ (x)〉t and 〈�σ (x)〉t vanish unless the initial impurity state
contains more than one momentum. This situation is physically consistent with the intuition that the impurity in a well-defined
momentum state is equally distributed along the bath(s).

As the impurity is exchanged between the baths, these will become correlated. We will measure the amount of interbath
correlation by computing the equal-time connected correlation functions

〈ρσ (x)ρσ̄ (y)〉c
t ≡ 〈ρσ (x)ρσ̄ (y)〉t − 〈ρσ (x)〉t 〈ρσ̄ (y)〉t ,

(75)
〈�σ (x)�σ̄ (y)〉c

t ≡ 〈�σ (x)�σ̄ (y)〉t − 〈�σ (x)〉t 〈�σ̄ (y)〉t ,
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whose expressions are

〈ρσ (x)ρσ̄ (y)〉t = (Kσ Kσ̄ )1/22�
⎧⎨
⎩ 1

L

∑
q,q̄ �=0

VqVq̄[〈bqσ bq̄σ̄ e−i(q+q̄)X 〉t e
i(qx+q̄y) + 〈b†

qσ bq̄σ̄ ei(q−q̄)X 〉t e
−i(qx−q̄y)]

⎫⎬
⎭, (76a)

〈�σ (x)�σ̄ (y)〉t = (Kσ Kσ̄ )−1/22�
⎧⎨
⎩ 1

L

∑
q,q̄ �=0

VqVq̄sgn(qq̄)[〈bqσ bq̄σ̄ e−i(q+q̄)X 〉t e
i(qx+q̄y) + 〈b†

qσ bq̄σ̄ ei(q−q̄)X 〉t e
−i(qx−q̄y)]

⎫⎬
⎭. (76b)

The relevant averages are given by

〈bqσ bq̄σ̄ e−i(q+q̄)X 〉t =
∑
p,p̄,μ

δp̄−p,q+q̄ei(Ep−Ep̄)t 〈ωp(t )|ωp̄(t )〉
{

WqσWq̄σ̄

4L

[
(cpμapμ)∗cp̄μap̄μχt (�qσ ( p̄))χt (�q̄σ̄ ( p̄))

+ σe−iμ2J⊥t (cpμapμ)∗cp̄μ̄ap̄μ̄
(
χt (�−μ

qσ ( p̄))χt (�p̄σ̄ ( p̄) − χt (�qσ ( p̄))χt (�
−μ
p̄σ̄ ( p̄))

)]
+ 2(cpμapμ)∗

[
cp̄μap̄μAμμ

qσ ,q̄σ̄ ( p̄, t ) + cp̄μ̄ap̄μ̄Aμ̄μ
qσ ,q̄σ̄ ( p̄, t )

]}+ O((gK1/2/v)3) (77a)

and 〈b†
qσ bq̄σ̄ ei(q−q̄)X 〉t = WqσWq̄σ̄

4L

∑
p,p̄,μ

δp̄−p,−q+q̄ei(Ep−Ep̄)t 〈ωp(t )|ωp̄(t )〉[(cpμapμ)∗cp̄μap̄μ
(
χ∗

t (�qσ (p))χt (�q̄σ̄ ( p̄))

−χ∗
t (�+μ

qσ (p))χt (�
+μ
q̄σ̄ ( p̄))

)+ σe−iμ2J⊥t (cpμapμ)∗cp̄μ̄ap̄μ̄

× (χ∗
t (�+μ

qσ (p))χt (�p̄σ̄ ( p̄)) − χ∗
t (�qσ (p))χt (�

−μ
p̄σ̄ ( p̄))

)]+ O((gK1/2/v)3). (77b)

We point out that, although the results presented thus far are
nonperturbative in J⊥, there are observables for which the
limit J⊥ → 0 can be problematic. The simple density averages
(73) show the correct physical behavior for vanishing J⊥,
namely that if the impurity is initialized in one of the baths at
J⊥ = 0, only the densities of this bath will develop a nonzero
average during the time evolution, while the averages for the
other bath will remain rigorously zero. Analogously, also the
impurity averages have a physically sound J⊥ → 0 limit.

On the other hand, for the interbath correlation func-
tions we run into a problem. In the limit J⊥ → 0 the baths
become decoupled, therefore we expect 〈ρσ (x)ρσ̄ (y)〉t |J⊥=0 =
〈ρσ (x)〉t |J⊥=0〈ρσ̄ (y)〉t |J⊥=0 (and analogously for momentum).
However, this property is not satisfied by the perturbative
expressions given above. This violation comes about because
in our perturbative solution we broke up the interaction in
two terms, treating one exactly (intraband processes) while
expanding in the second one (interband processes). When
J⊥ = 0, this separation is not justified, and it actually gives
rise to a spurious residual interbath correlation. This appears
to be a limitation of our perturbative approach. Nevertheless,
the unphysical J⊥ = 0 contribution is small, and so we believe
that the interbath correlation functions that we compute still
contain useful physical information about the system and its
evolution. To be sure to avoid showing unphysical features
in the correlation functions, in the next section we will show
them with their small spurious J⊥ = 0 values subtracted.

VI. NUMERICAL RESULTS

In this section, we show numerical results for the evolu-
tion of the impurity probability density, the bath density, and
bath momentum density when the impurity is initialized in
a wave packet within the ↑ bath (σ = 1). The method we

employed allows for virtually arbitrary wave packets, com-
patibly with the low-momentum conditions for the validity of
the long-wavelength model. We choose a Gaussian profile in
momentum space

cpμ = 2−1/2N (p0, δp)e
− (p−p0 )2

4δp2 −ix0 p
, (78)

where p0 is the average momentum, δp is the width of the
distribution, x0 is the average initial position, and N (p0, δp) is
chosen to ensure that

∑
pμ |cpμ|2 = 1. Notice that the above

momentum profile corresponds to a wave function that is
factorized between space and bath indices. This choice is
not required by our perturbative method, but it simplifies the
analysis of the results. We work in a finite-size system of
length L, with periodic boundary conditions. Momenta are
then quantized according to pn = 2π/L · n, n ∈ Z, and we
take a wave packet composed of Np momenta, distributed
symmetrically around p0 [34]. We usually take Np = 32 or
Np = 64 momenta, and x0 = L/2. We always consider L =
1000(Mv)−1. We measure momenta, lengths, and energies
respectively in units of Mv, (Mv)−1, and Mv2, namely we take
M = 1 and v = 1 (along with h̄ = 1). The baths start always
in their ground states.

A. Impurity oscillations

In Figs. 4(a) and 4(b) we show the time evolution of 〈n↑〉t ,
namely the probability of finding the impurity in bath ↑ at
time t (the probability for the other bath is simply 〈n↓〉t =
1 − 〈n↑〉t ). We can observe that the interaction with the baths
has two effects. First, the amplitude of the oscillations around
the average value 1/2 becomes a decreasing function of time.
This decay is more pronounced for larger coupling [Fig. 4(b)]
and larger J⊥ [Fig. 4(a), once the time is measured in J⊥-
independent units]. Second, the frequency of the oscillations
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FIG. 4. Time evolution of 〈n↑〉 for the wave packet Eq. (78). In
plot (a) the coupling is kept fixed to g2K = 0.5v2, while J⊥ is varied,
while in plot (b) we vary the coupling while keeping a constant J⊥ =
0.05Mv2. Notice that in both plots the time is expressed in units of
J−1
⊥ , which means that in (a) the time unit is different for different

plots.

is decreased, by an amount that is larger for increasing cou-
pling [Fig. 4(b)] and decreasing J⊥ [Fig. 4(a)].

We can have an analytic insight on these observations by
examining the expression (65) for 〈n↑〉t . In particular, if we
keep only the first term in the bath states overlap (66), which
gives the leading contribution, and we use the asymptotic
relations Eqs. (61) for apμ, we find

〈nσ 〉t ∼ 1

2
+ σ�

∑
p

ez∗
pe+zpoc∗

pecpoe−2iJ̃⊥,pt−2γpt , (79)

where J̃⊥,p ≡ J⊥ + (�λpo − �λpe)/2 is a renormalized inter-
bath hopping amplitude (see Appendix B). From the above
expression we can see that 〈nσ 〉t − 1/2 is a superposition of
damped oscillatory functions, one for each momentum in the
wave packet. For comparison, in the noninteracting case we
would have

〈nσ 〉(0)
t = 1

2
+ σ�

∑
p

c∗
pecpoe−2iJ⊥t , (80)

which describes the impurity periodically hopping from one
bath to the other. In the weak-coupling regime we are ex-
amining, the interaction with the baths decreases the hopping
frequency (J̃⊥,p < J⊥), while the amplitude of the oscillations

FIG. 5. Time evolution of the impurity momentum for the initial
state |p0 ↑〉d , and symmetric baths. Plot (a) has p0 = 0.1Mv, J⊥ =
0.05Mv2 and shows the effect of increasing the coupling. Plot (b) is
for g2K = 0.5v2, J⊥ = 0.05Mv2 and shows the relative decrease of
momentum 〈Pd 〉t/p0 for increasing p0. In the latter plot, the two
curves at higher momentum are limited within the time domain in
which where the loss of the state norm does not give rise to spurious
effects.

decreases exponentially with a decay time of 1/(2γp). For
completeness, we report here the expression of 2γp,

2γp = M

16π

∑
σ,s=±1

g2
σ Kσ

{
1 −

[
1 + 4J⊥M

(Mvσ + sp)2

]−1/2}
.

This decay rate is a monotonically increasing function of both
J⊥ and p, that vanishes at J⊥ = 0 because conservation of
momentum and energy forbid an impurity moving in 1D from
emitting phonons.

While our solution ceases to be accurate beyond the decay
time 1/(2γp), it hints at 〈nσ 〉t → 1/2 eventually. This limit is
what we would expect intuitively as a result of dephasing and
dissipation.

B. Impurity momentum

The time evolution of the impurity momentum is displayed
in Fig. 5, as function of the various parameters of the model. In
all plots, the impurity is initialized in the ↑ bath with a definite
momentum [35] p0. We observe that the momentum decay
can be divided in two phases: an initial abrupt drop followed
by a decrease at a milder rate. Figure 3 shows the effect of
the interbath hopping on the momentum. We can see that
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the initial rapid decrease is basically unaffected by J⊥, while
the subsequent decay is faster for larger hopping. This differ-
ence suggests that the two phases of the decay originate from
two different processes. We interpret the two phases of mo-
mentum decay in the following way: The first fast-decreasing
region is caused by the baths relaxing to the injection of the
impurity, while in the second phase the impurity momentum is
carried away by the phonons generated from the deexcitation
of the odd mode.

Indeed, this first phase occurs on a timescale that appears
to be independent of J⊥, and well before the impurity starts
oscillating into the ↓ bath [36]. Initially, the first and last terms
of Eq. (67) contribute equally to the bath momentum. After
the initial transient, the background contribution saturates to
a constant value, while the first term of Eq. (67) continues
to grow, albeit at a slower rate (except for the unphysical
decrease at late times). The timescale of this growth is shorter
the larger is J⊥, which is what we expect from the property
that the odd-mode decay constant 2γp is an increasing func-
tion of J⊥. At the lowest interbath hopping we considered,
J⊥ = 0.01Mv2, the timescale is so long that the contribution
to 〈Pb〉t from the odd-mode decay appears to converge to a
value slightly below that of the background.

The dependence of the impurity momentum on the cou-
pling is shown in Fig. 5(a). As expected, the decrease is more
marked for stronger coupling, while the two-phase structure
is kept unaltered. A larger gK1/2/v increases the fraction of
momentum that is lost in the initial transient, but not the
timescale in which it occurs.

The following Fig. 5(b) shows the slowdown of the impu-
rity momentum at increasing values of the initial momentum
p0, as a fraction of the latter. We can recognize the initial
transient and the subsequent slower decay, with the former
following a common shape for all momenta at small times.
After the transient, we see that for increasing p0 the relative
amount of momentum that is transferred to the baths becomes
larger, which also translates to a larger absolute decrease
of the impurity momentum. This more pronounced decrease
for faster impurities may be also traced back to the increase
of the decay rate 2γp0 with p0, which implies that the pro-
duction of phonons caused by the deexcitation of the odd
mode occurs earlier and more rapidly. At smaller momenta
|p| � 0.2Mv the ratio 〈Pd〉t/p0 tends to a common profile,
independent of p0. This property is explained by noticing
that Rσ

1 (ε; p0) is linear in p0 for small momentum |p0| �
Mvσ , hence for a single momentum component 〈Pb〉(t ) =
υ(t )p0/(Mv) + O(p2

0/(Mv)2), with υ(t ) independent of p0.
We briefly comment on the property that the impurity mo-

mentum decays monotonically in time. This is in accord with
the physical intuition that the impurity is experiencing some
kind of (nonclassical) friction as it radiates away its initial
kinetic and “internal” energy (2J⊥) in the form of phonons.
There are at least two reasons for this behavior. Firstly, this
occur because of a cancellation between the momenta ac-
quired by each of the baths. Indeed, the bath momentum
Eq. (67) can be decomposed as 〈Pb〉t = 〈P↑

b 〉t + 〈P↓
b 〉t , and

the individual contributions from the two baths oscillate out
of phase around an average, monotonically increasing value
as the impurity swings from one bath to the other. However,
when the baths are identical, the oscillations cancel out and a

monotonic function is obtained (if the baths are not identical,
there are residual oscillations). The second reason for the
monotonic behavior is that we neglected backscattering for
the bath particles in the interaction with the impurity. This
excludes the appearance of nonmonotonic behavior due to
large-momentum exchange (of the order of 2kF ), as Bloch-
like oscillations [12,37].

It can be also observed that the impurity momentum never
changes sign during the evolution. While the absence of such
a process of impurity backscattering can be expected from
physical intuition, it is not forbidden by the interaction Hamil-
tonian. Indeed, kinematics shows that the decay of the odd
mode can be accompanied by the emission of phonons with
momenta that can be larger than the initial impurity momen-
tum if J⊥ is large enough [38]. The reason why these phonons
do not impart such a substantial momentum to the impurity
is that they are emitted randomly both in the forward and in
the backward direction with respect to the impurity motion
[compare with the interaction term in (19)], so that there is an
overall compensation to the observed small value.

C. Impurity density evolution

The typical time evolution of the probability density of
the impurity is reported in Fig. 6(b), compared with the free
evolution 6(a). Varying J⊥ and gσ produces analogous results.
The motion is qualitatively similar to the free one, namely the
whole wave packet moves to the right at a speed slightly less
than p0/M while oscillating with a frequency renormalized
by the interactions as compared to the noninteracting value
J̃⊥p [see Eq. (B14)]. In the perturbative regime the absolute
effect of the baths on the impurity momentum and frequency
of oscillation is typically small.

A visible difference between the free and interacting time
evolution of the wave packet is the larger spread of each peak
in the “time direction”, which means that the impurity never
really leaves any of the baths for the other [39]. This phe-
nomenon can be traced back to the inhomogeneous dephasing
associated to the momentum dependence of the renormalized
interbath hopping J̃⊥p. The increased spread in the time direc-
tion can be interpreted as the initial evidence of the decay of
the odd mode, which implies that eventually any oscillation
should disappear.

There is also a second difference between the interacting
and the free-density evolution, namely the enhanced rate of
decrease of the height of the wave packet. This decrease
arises partly from the progressive loss of the norm of the
state, and partly from the rapid flowing of probability towards
the the tails of the distribution. While this could signal an
actual tendency of the impurity to spread, we suspect that this
behavior is an artifact induced by the perturbative method.
On the other hand, the shape of the packet around its center
remains Gaussian with good approximation.

D. Bath density evolution

We have already presented an overview of the evolution
of the density of the baths in Sec. III. In the following para-
graphs, we will provide more details.

In Fig. 7 we show the bath density evolution for increas-
ing values of J⊥, keeping all other parameters constant. The
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FIG. 6. Comparison of the time evolution of probability density for (a) the free and (b) the interacting impurity with symmetric baths,
g2K = 0.5v2 and J⊥ = 0.03Mv2. In both figures the wave packet is initialized with the Gaussian distribution Eq. (78) of Np = 64 momenta
around p0 = 0.1Mv, with standard deviation δp = 0.04Mv. The total length of the system is L = 1000 (Mv)−1, but only its central part is
depicted. The normalization of the color scale for the two figures is the same.

baths have identical properties. The initial impurity wave
packet starts in the ↑ bath, with an average position x0 = L/2
and a momentum distribution of Np = 64 momenta that are
centered around p0 = 0.1Mv, with a width of δp = 0.04Mv

[correspondingly, the spatial width of the wave packet is
about [40] δx ≈ 1/(2δp) = 12.5(Mv)−1]. These figures show
that the density evolution has a common structure: a de-
pletion that follows the impurity (notice how it is inclined
to the right, owing to the nonzero average momentum p0),
flanked by two wave fronts that “radiate” in opposite direc-
tions at the speed of sound (which is v = 1 in our units). As
times goes on, the region between these features (the “light-
cone” |x| � vt) becomes filled with density ripples, which
can be interpreted as a manifestation of the emission of real
phonons caused by the deexcitation from the odd to the even
mode. This interpretation follows from the observation that
these ripples ultimately come from the b†

qσ |ωp(t )〉 terms [i.e.,
from the the last term of Eq. (74)], which we identified as
representing spontaneous emission. On the other hand, the
depletion and the wave front are all contained in the co-
herent states |ωp(t )〉. More physically, the ripples have a
wavelength that diminishes with increasing J⊥, correspond-
ing to the wave vectors q±(p0) that solve �q±σ (p0) = 2J⊥.
The negative and positive solutions of the latter equation ap-
ply to backward and forward emission, respectively, and are
Doppler-shifted q+(p0) > |q−(p0)| because of the motion of
the source (the impurity). These observations support our
view of the perturbative solution as being decomposed into a
“bath relaxation” (depletion and wave fronts) and spontaneous
emission.

As J⊥ becomes smaller, the ripples become higher and of
longer wavelength, and the whole density profile becomes
wider. At the same time, the depth of the minimum oscillates
more and more evidently, as the impurity oscillation be-
comes slower. This behavior is consistent with the single-bath

situation that is recovered for J⊥ → 0, in which the impurity
remains in its initial bath.

The bath are identical in their properties and initial state,
the only source of asymmetry is the initial state of the impu-
rity. The latter causes the ↓ bath to interact with the impurity
a little later than the ↑ bath (roughly after a fraction of the
bare oscillation period 2π/J⊥). Because of this, the density
profile of the ↓ bath is qualitatively similar to the ↑ one, but
it is “delayed” by the time it takes the impurity to change its
initial bath. This characteristic is shown in Fig. 8(a). At large
J⊥, the impurity is rapidly exchanged, and therefore the baths’
density profiles are “synchronized”, almost coinciding with
each other, and with very little relative lag. As J⊥ is decreased,
the oscillations in the depletion depth become wider and wider
and thus can be clearly seen to be out of phase, while the wave
fronts are always in phase but show a visible lag. Moreover,
the wave fronts in the ↓ bath decrease in height with respect
to their ↑ counterparts when J⊥ assumes smaller values. The
ripples are rigorously out of phase. In fact, we have already
remarked that the ripples come from the second term in the
square brackets in Eq. (74), which is multiplied by σ = ±1.

We point out that the depletion and wave fronts have a
distinct shape from that of the ripples. This difference is also
evident from the observation that the wavelength of the ripples
depends on J⊥, whereas the width of the other two does
not. Indeed, it is not hard to guess that depletion and wave
fronts are essentially “images” of the Gaussian profile of the
impurity wave packet, albeit slightly distorted. The shape of
the ripples is instead more or less sinusoidal, and this suggests
that their behavior is governed by the intrinsic dynamics of
the baths, rather than by the details of the shape of the wave
packet.

These observations are substantiated by investigating the
effect of the initial wave packet width on the bath density
profile. This analysis is shown in Fig. 8(b), in which the
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FIG. 7. Dynamics of the density perturbation of bath ↑ caused
by the introduction of an impurity wave packet. The parameters are
g2K = 0.5v2, K = 2 for both baths. The cutoffs are Mvα = 0.5 and

 = 10Mv2. Plots (a) to (c) differ in the interbath hopping J⊥.

density profile of the ↑ bath at a given time is compared for
decreasing widths δx ≈ 1/(2δp), at fixed interbath hopping.
To keep the wave packet shape unaltered while decreasing its
standard deviation, we have kept the ratio δp/Np constant.
The main effect of a smaller width is that the magnitude
of the density fluctuations is increased. This effect is easily
understood for the wave fronts and the central depletion if we
trust the observation that they have the same shape as the wave
packet, as a narrower normalized Gaussian is also taller. On

FIG. 8. (a) Density profile in both baths at a given instant of time.
(b) Density profile in bath ↑ for various widths of the wave packet.
Both plots are for J⊥ = 0.03Mv2, while the other parameters are the
same as Fig. 7.

the other hand, the influence on the height of the ripples can
be partially understood by observing that wave packets with
maximal width (equal to the length of the system) are made of
only one momentum, and therefore [compare with Eqs. (73)]
produce no density perturbation in the baths. Then, a conti-
nuity argument suggests that wider wave packets should give
rise to smaller density fluctuations, including the ripples.

We also notice that the dependence of the density fluctua-
tion amplitude is more prominent for the ripples than for the
through and wave fronts, to the point that a wide enough wave
packet is able to effectively suppress the ripples altogether.
Indeed, from Fig. 8(b) we can see that at J⊥ = 0.03Mv2 the
density perturbation for the wave packet δp = 0.01Mv lacks
the ripples. We also verified that at J⊥ = 0.1Mv2, a standard
deviation of δp = 0.02Mv is sufficient to cancel the ripples,
whereas for J⊥ = 0.01Mv2 the ripples are present even for
δp = 0.01Mv. On the other hand, the wavelength of the rip-
ples is not affected by the wave packet width, whereas the
central dip and the wave fronts change their shape, becoming
narrower and more peaked as δp is increased. This is in accord
with our observation that they should be shifted images of the
initial wave packet.

In Appendix E we show that the behavior of the ripples
amplitude (i.e., their suppression for sufficiently large J⊥ or
small δx) can be explained as an interference effect, in which
there is a cancellation between opposite-sign terms at different
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times in the past. This destructive interference occurs only
if the initial wave packet is wide enough, according to the
relation

δx � δx±
c,σ (p0, J⊥),

δx±
c,σ (p0, J⊥) ≡

(
vσ ± p0

M

)
π

2J̃⊥,p0

. (81)

Equivalently, the ripples are suppressed if the momentum
distribution is sufficiently narrow,

δp � δp±
c,σ (p0, J⊥),

δp±
c,σ (p0, J⊥) ≡ J̃⊥,p0

π
(
vσ ± p0

M

) . (82)

Ignoring for a moment the dependence on p0, we see that
δp±

c,σ (p0, J⊥) is about 0.03Mv for J⊥ = 0.1Mv2 and 0.01Mv

for J⊥ = 0.03Mv2. So, we see that the above inequalities are
indeed satisfied in the above-mentioned cases in which there
were no ripples. The positive or negative sign in Eqs. (81)
and (82) refer to the ripples emitted backward or forward,
respectively. This directional dependence allows us to justify
the asymmetric height of the ripples, as the critical width
for backward emission is larger than the one for the forward
emission, which implies that the cancellation effect is less
effective in the backward direction, resulting in the larger
ripple amplitude that we observed.

We have also computed the momentum density 〈�σ (x)〉t ,
and two examples are shown in Fig. 9. The time evolution of
the momentum density shares many qualitative features with
the density. There is a central part that follows the motion of
the impurity, made of a relative minimum and a maximum
that oscillate in time, cyclically exchanging their roles. From
them, two trains of ripples expand in opposite directions, up
to two wave fronts. Contrary to the density, these wave fronts
are out of phase: the left-moving one is positive, while the
right-moving one is negative. This property does not seem to
be related to the sign of the momenta in the wave packet. As
in the case of the density, the central part and the wave fronts
are always present for any J⊥, whereas the ripples increase
their amplitude as J⊥ becomes smaller. Moreover, all features
except from the wave fronts are out of phase between the two
baths.

We want to briefly comment upon the scaling of the den-
sities with Luttinger parameters Kσ . In the long-wavelength
effective Hamiltonian (11), Kσ enters only through the com-
bination g̃σ ≡ gσ K1/2

σ , hence the expectation value Eq. (74)
of 〈e−iqX bqσ 〉 only depends on g̃σ . On the other hand, the
densities Eqs. (73) explicitly contain Kσ , and we can express
their scaling as

〈ρσ (x)〉t = K1/2
σ fρ (g2

↑K↑, g2
↓K↓), (83a)

〈�σ (x)〉t = K−1/2
σ f�(g2

↑K↑, g2
↓K↓), (83b)

where fρ and f� are two appropriate functions that we do
not need to specify here. From the equations above, we can
deduce that the shape of the density profiles is controlled only
by the effective coupling g̃σ , while if one varies Kσ while
keeping g̃σ = gσ K1/2

σ fixed the density or momentum profile

FIG. 9. Momentum density evolution. Plot (a) shows a snapshot
of the momentum density profiles for both baths, while (b) shows
the full evolution of the ↑ bath momentum density. The wave packet
is Gaussian [Eq. (78)], with Np = 64 momenta distributed around
p0 = 0.1Mv with a standard deviation δp = 0.04Mv. The parameter
settings are g2K = 0.5v2, K = 2 for both baths, and J⊥ = 0.03Mv2.

only gets rescaled. Thus, each of the figures shown above can
be taken to represent a family of density profiles.

E. Correlation functions

The typical behavior of the equal-time correlation function
〈ρ↑(x)ρ↓(y)〉c

t is shown in Figs. 10–12, for the same initial
conditions as in the discussion of the density evolution. All
plots refer to the same gσ , while we vary J⊥.

Figures 10(a) and 10(b) show a sequence of “snapshots” of
the full spatial behavior of the correlation function at various
moments of time. These show that the correlations are con-
centrated within two “lobes”, with a series of ripples between
them. As time advances, the lobes move apart from each other,
while both their amplitude and spatial width increase. The
expansion is roughly ballistic, that is, all distances increase
linearly in time, albeit with a larger speed in the relative
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(a) J⊥ = 0.1Mv2

(b) J⊥ = 0.01Mv2

FIG. 10. Time evolution of the connected density-density cor-
relation function 〈ρ↑(x)ρ↓(y)〉c

t . The baths are identical, with
parameters g2K = 0.5v2 and K = 2. The wave packet is Gaussian
[Eq. (78)], with Np = 32, δp = 0.02Mv and p0 = 0.1Mv. The color
scale is normalized to the last “snapshot” of each set of plots.

r = x − y direction than in the “center-of-mass” R = (x +
y)/2 one. As this expansion takes place, in the region between
the lobes a series of ripples form and increase their amplitude
in time.

We remark that we have stopped all calculations before the
light cone gets too close to the edges of the system [41], in
order to avoid finite-size effects (besides the discretization of
momenta). Therefore, the observed features should be a result
of the intrinsic dynamics of the system under investigation,
rather than an effect of interference through the boundaries.

(a)

(b)

FIG. 11. Two “slices” of the density correlation function evolu-
tion at J⊥ = 0.1Mv2 [the same shown in Fig. 10(a)]. The parameters
are the same as Fig. 10. Figure (a) shows it as a function of the
relative coordinate r = x − y, while (b) uses the center of mass
coordinate R = (x + y)/2.

These interbath density (or momentum) correlation func-
tions are not symmetric under exchange of x and y, even
though ρ↑(x) [or �↑(x)] and ρ↓(y) [�↓(y)] commute and
that the baths have identical properties. The asymmetry arises
because the evolution is made asymmetric by the initial condi-
tions, namely the impurity starting in bath ↑, with an average
nonzero momentum. However, from Fig. 10 it is easy to notice
an approximate anti-symmetry with respect to the lines r = 0
and R = L/2.
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FIG. 12. Two “slices” of the density correlation function evo-
lution at J⊥ = 0.01Mv2 [the same shown in Fig. 10(b)]. The
parameters are the same as Fig. 10. Figure (a) shows it as a function
of the relative coordinate r = x − y, while (b) uses the center of mass
coordinate R = (x + y)/2.

Analogously to the case of the density averages, the cor-
relation functions obey a specific scaling with respect to the
Luttinger parameters Kσ ,

〈ρ↑(x)ρ↓(y)〉t = (K↑K↓)1/2 fρρ (g2
↑K↑, g2

↓K↓), (84a)

〈�↑(x)�↓(y)〉t = (K↑K↓)−1/2 f��(g2
↑K↑, g2

↓K↓). (84b)

The scaling of the densities, Eq. (83), ensures that the same
relation holds for the connected correlation functions. We
have verified numerically that changing gσ K1/2

σ only causes

minor changes in the shape of the correlation functions, apart
from an obvious change in the amplitude. The most relevant
shape modifications are those induced by a change in J⊥.
At large J⊥ [Fig. 10(a)], the correlation function oscillates
basically only in the relative r direction, whereas the profile
along R shows less features. As J⊥ is lowered [Fig. 10(b)], the
shape of the lobes becomes more complex, mainly because
the correlation function oscillates also in the R direction.
Moreover, the ripples “leak out” of the interlobe region.

In the next figures we consider the behavior as a function
of, respectively, the relative coordinate r = x − y and center-
of-mass coordinate R = (x + y)/2.

In the time evolution of 〈ρ↑(x)ρ↓(y)〉c
t as a function of

the coordinate difference, as shown in Figs. 11(a) and 12(a),
correlations appear only within a “light-cone” |x − y| � vt .
The maximal amplitude occurs around the light-cone itself
(|x − y| ≈ vt), while within the interior there are waves that
appear to be radiated from x = y. A comparison with Fig. 10
leads to identify the light-cone region with the lobes, while
the waves in the interior are the ripples. The wavelength of
the latter roughly corresponds to that of the phonons emit-
ted during the deexcitation of the odd impurity mode. This
identification, as in the case of the density, comes from the
analytical expressions [Eqs. (77)], and from the observation
that the wavelength is essentially independent of gσ and Kσ ,
while it is inversely correlated with J⊥, as can be appreciated
by comparing Fig. 11 and Fig. 12. As in the case of the
average densities, the amplitude of these “ripples” increases
for smaller J⊥.

Summing up, the behavior of the correlation function along
the relative coordinate basically reflects the “relativistic” na-
ture of TLL bath dynamics, namely that interbath correlations
are generated and propagated as linearly dispersing sound
modes.

The situation looks different in the center-of-mass co-
ordinate R, as Figs. 11(b) and 12(b) show. Here, we can
distinguish a central area in which two trains of ripples os-
cillate out of phase, and an outer area formed of waves that
radiate at the speed of sound from the central area. This
distinction is sharp for higher J⊥ [Fig. 11(b)], as the amplitude
of the emitted waves increase with decreasing J⊥. The inner
ripples occupy an area that spreads very slowly in space,
and is centered along the trajectory R = L/2 + p0t/M. More-
over, their oscillations in time occur with a period of about
π/J⊥, that is, half of the impurity oscillation period. These
clues leads us to identify this “section” of the correlation
function as the one more closely reflecting the motion of
the impurity and the profile of its wave packet. In order to
plot Figs. 11(b) and 12(b), we chose a value for r. Chang-
ing it causes two main effects: first, the correlation function
is zero up to a time that increases with r (a light-cone ef-
fect). Second, as r is decreased the oscillations in time get
washed away by a featureless background contribution, until
at r = 0, i.e., x = y, there are no more visible oscillations.
For all the parameters we checked, 〈ρ↑(x)ρ↓(x)〉c

t is always
negative.

The properties of the correlation functions can be ratio-
nalized using Eq. (22). We already noticed that, since this
equation is a relation between operators, it implies a whole
hierarchy of relations that go beyond linear response theory.
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FIG. 13. Time evolution of the connected momentum density
correlation function 〈�↑(x)�↓(y)〉c

t . The baths are identical, with
parameters g2K = 0.5v2, K = 2, and J⊥ = 0.01Mv2. The color scale
is normalized to the last “snapshot” of each set of plots.

Indeed, we can compute

〈ρσ (x)ρσ̄ (y)〉c
t

= gσ

∫
dx1dt1χσ (x − x1, t − t1)〈Nσ (x1, t1)ρσ̄ (y, 0)〉

+ gσ̄

∫
dx2dt2χσ̄ (x − x2, t − t2)〈ρσ (x, 0)Nσ̄ (x2, t2)〉

+ g↑g↓
∫

dx1dt1dx2dt2χσ (x − x1, t − t1)

× χσ̄ (x − x2, t − t2)〈Nσ (x1, t1)Nσ̄ (x2, t2)〉c, (85)

where we see that the bath density correlation function is
related to the connected impurity density correlation function

〈Nσ (x1, t1)Nσ̄ (x2, t2)〉c ≡ 〈Nσ (x1, t1)Nσ̄ (x2, t2)〉
− 〈Nσ (x1, t1)〉〈Nσ̄ (x2, t2)〉, (86)

which, unlike 〈ρσ (x)ρσ̄ (y)〉c
t , correlates the impurity density at

different times, and so it cannot be calculated from the knowl-
edge of |�(t )〉 only. Thus, in principle we could use Eq. (85) to
compute this impurity density correlation function. For now,
we can just point out that thanks to this formula we have a
hint on why 〈ρσ (x)ρσ̄ (y)〉c

t as a function of (x + y)/2 seems
to mirror the time evolution of the impurity wave packet—
indeed, we can now understand that it is keeping track of
the impurity density (and impurity-bath density) correlation
function.

We conclude this section by briefly discussing the con-
nected momentum correlation function, 〈�↑(x)�↓(y)〉c

t . An
example is shown in Fig. 13. It shows the same qualitative
features of the density correlation function, namely a pair of
expanding lobes enclosing a region of smaller oscillations.
The main differences with the density correlation are the more
complex pattern of the ripples, and sign of the correlation for

x = y, which is positive for the momentum and negative for
the density.

VII. CONCLUSIONS

In this paper, we have thoroughly studied an impurity hop-
ping on a ladder whose two legs are described in terms of two
Tomonaga-Luttinger liquid baths.

We studied the problem from the perspective of the
impurity and of the baths themselves, employing an im-
proved perturbative technique. Albeit a priori limited to small
couplings, the method we used is rather simple, and has
the advantage of providing analytical results for the whole
system-bath state. Moreover, it is capable of treating the mo-
tion of wave packets with only a modest numerical effort.

A comparison with a more conventional Green’s function
method, the linked cluster expansion, showed that, at least in
a symmetric setting where the two baths are identical, our
perturbative technique yields the same result.

We analyzed the effect of the impurity motion on the bath
density (and momentum density), finding that they mirror
each other, with a behavior, which reminds the simple picture
of a stone thrown in a pond. In each of the baths we observed
two wave fronts generated by the insertion of the impurity and
propagating away from it (i.e., the “rings” on the water surface
in the pond analogy), a central density depletion following the
impurity, and the emission of ripples as the impurity oscillates
between the baths. The latter, in particular, are interpreted as a
visualization of the phonon emission as the impurity loses its
internal energy.

Then, we proceeded to examine the correlation between
the two baths that is generated as they exchange the impurity.
We did this by computing the interbath, connected density
and momentum density correlation functions at equal times,
unveiling a rich spatial structure. The correlation is nonva-
nishing only within an area in (x, y) space, which expands
ballistically. Two features can be distinguished: a pair of lobes
and a series of ripples between them. Along the relative di-
rection, r = x − y, the correlation function mainly shows the
“relativistic” dynamics of the bath, with a clear light-cone as
the phonons generated by the impurity spread the correlations.
Along the center-of-mass direction R = (x + y)/2, instead,
the light-cone of emitted phonons is superimposed with the
density perturbation following the impurity wave packet in its
motion.

There are various directions in which this paper can be
extended. An interesting direction is to explore the regime of
stronger coupling between the impurity and the baths. A first
step towards this regime would be to include the backscat-
tering term in the interaction, and to see its effect within the
perturbative formulation. A different approach would be to
promote the perturbative expression of the state, Eq. (60),
to a variational Ansatz whose coefficients would have to be
found numerically. A second intriguing extension of this paper
would be to explore the effect of increasing the number of
baths where the impurity can move.
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APPENDIX A: A DIFFERENT PERSPECTIVE
ON SYMMETRIC BATHS

The physics of the system under investigation may be
clearer in the case of symmetric baths, i.e., for vσ = v, Kσ =
K , and gσ = g (hence, Wqσ ≡ Wq). In this regime, it is useful
to introduce even and odd bath modes,

bqμ=e/o ≡ 1

21/2
(bq↑ ± bq↓), (A1)

and recast Hamiltonian (19) as

HLLP(p) = (p − Pe − Po)2

2M
− J⊥σ1 +

∑
q

v|q|b†
qebqe

+
∑

q

Wq

(2L)1/2
(bqe + b†

qe) +
∑

q

v|q|b†
qobqo

+ σ3

∑
q

Wq

(2L)1/2
(bqo + b†

qo), (A2)

where

Pμ ≡
∑

q

q b†
qμbqμ. (A3)

It can be observed that the even- and odd-bath modes be-
come partially independent of each other. In particular, only
the odd-bath modes are coupled to the impurity, and the de-
excitation of the odd impurity band will generate odd-bath
modes. The even modes “see” the impurity only through
the momentum-momentum coupling with the odd modes in
the first term (that is, the kinetic energy of the impurity in the
laboratory frame). The decoupling would be complete for a
static impurity, namely for M → +∞.

With this separation in mind, it is natural to attempt a first
approximation in which the bath parity modes evolve indepen-
dently since odd bath modes are generated only by transitions
between the even and odd impurity bands, involving a “gap”
2J⊥ in energy. This leads to our choice of the perturbative
scheme, Eq. (26), that in this language reads

HLLP(p) = H0(p) + �H(p), (A4a)

H0(p) ≡ E (p) − J⊥σ1

+
∑

q

�qb†
qebqe +

∑
q

Wq

(2L)1/2
(bqe + b†

qe)

+
∑

q

�qb†
qobqo, (A4b)

�H(p) ≡ σ3

∑
q

Wq

(2L)1/2
(bqo + b†

qo)

+ PePo

M
+
∑

μ

: P2
μ :

2M
. (A4c)

According to this perspective, the perturbative expression
Eq. (54) has a simple interpretation. The background coherent
state |ωp(t )〉 contains only even bath modes, that are increas-
ingly populated in time. On the other hand, the odd-bath
modes may contain only up to two phonons each, as described
by the “first-” and “second-order” corrections, proportional to
b†

qσ and b†
qσ b†

q′σ ′ , respectively. The latter also introduces the
correlation between even and odd bath modes as dictated by
the PePo/M term in the Hamiltonian.

APPENDIX B: NORMALIZATION FACTORS

In this Appendix, we shortly discuss the properties and the
computation of the normalization factors, Eq. (47), adapted
from [15]. In particular, we often have to compute expres-
sions in the form 1

L

∑
q �=0,σ W 2

qσ f (�qσ ), for a given function
f (�qσ ). These can be conveniently computed by introducing
an appropriate density of states RS (ε),

1

L

∑
q �=0,σ

W 2
qσ f (�qσ ) =

∫ +∞

0
dε f (ε)RS (ε), (B1)

where RS (ε) ≡∑q �=0,σ

W 2
qσ

L δ(ε − �qσ ). In the continuum
limit L → +∞, RS (ε) can be calculated exactly, and for
subsonic momenta |p| < Mvσ it reads

RS (ε) = M

(2π )2
θ (ε)e−ε/


×
∑

σ,s=±1

g2
σ Kσ

[
1 −

(
1 + ε

ksσ (p)

)−1/2
]
. (B2)

In the above equation, θ (ε) is the Heaviside theta function,
ksσ (p) is defined as

ksσ (p) ≡ (Mvσ + sp)2

2M
, s = ±1 (B3)

and we introduced an energy cutoff 
 instead of a momentum
one, for simplicity.

This density of states is analogous to the ones that charac-
terize the bath in the spin-boson or Caldeira-Leggett models
[25]. At small energies ε � Mv2

σ they are linear, so that the
Tomonaga-Luttinger liquid baths are classified as ohmic,

RS (ε) = θ (ε)ε
∑

σ

βsb
σ (p) + O

(
ε2

M2v4
σ

)
, (B4)

where

βsb
σ = g2

σ Kσ

2π2v2
σ

1 + (p/Mvσ )2

(1 − (p/Mvσ )2)2 (B5)

is the single-bath orthogonality exponent [15,42].
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We have worked out a numerically friendly way of computing the exponents in Eq. (47) in a previous paper [15]. Here we
quote only the final results,

−
∑

q �=0,σ

W 2
qσ

4L

1 − i(�qσ ± 2J⊥)t − e−i(�qσ ±2J⊥ )t

(�qσ ± 2J⊥)2
= −

∑
σ

Mg̃2
σ

(4π )2

⎧⎨
⎩ f (±J⊥, t ) +

∑
s=±1

[
1

ksσ (p)
φ1

(±2J⊥
ksσ (p)

)
− tφ2

( ±2J⊥
ksσ (p)

)

+ ie±2iJ⊥t
∫ +∞

0
du

e−ut

(iu ± 2J⊥)2

1

(1 − iu/ksσ (p))1/2

]⎫⎬
⎭ (B6)

where

f (±J⊥, t ) = πt ± 2tSi(2J⊥t ) ∓ 1 − cos 2J⊥t

J⊥
+ 2it

[
ln

2J⊥

e−η

+ �E1(2iJ⊥t ) + sin 2J⊥t

2J⊥t

]
, (B7)

Si(z) and E1(z) are the sine and exponential integral functions [43], respectively, and we introduced the functions

φ1(x) =
⎧⎨
⎩

1
2x(1+x)3/2

[
πx − 2i

(√
x + 1 + x arcsinh

(
1√
x

))]
, x > 0

i
|x|(1−|x|) − i

(1−|x|)3/2 arccosh
(

1√|x|
)
, x < 0

,

φ2(x) =
⎧⎨
⎩

1√
1+x

[
π − 2i arcsinh

(
1√
x

)]
, x > 0

− 2i√
1−|x|arccosh

(
1√|x|
)
, x < 0

, (B8)

in which it is understood that

arccosh(x) = i arccos x for |x| < 1. (B9)

Analogously,

−
∑

q �=0,σ

W 2
qσ

4L

1 − i�qσ t − e−i�qσ t

(�qσ )2
= −

∑
σ

Mg̃2
σ

(4π )2

⎧⎨
⎩ f (0, t ) −

∑
s=±1

i
∫ +∞

0
du

1 − ut − e−ut

u2

1

(1 − iu/ksσ (p))1/2

⎫⎬
⎭, (B10)

where

f (0, t ) = πt − 2it ln

t

e
. (B11)

The manipulations done so far allow us to easily derive the asymptotic behavior of the normalization factors,

ln ape = − M

(4π )2

∑
σ

[
1

J⊥
+ i
∑
s=±

φ1(−2J⊥/ksσ )

ksσ

]
− i�λpet + O(1/t ) (B12a)

ln apo = − M

(4π )2

∑
σ

[
− 1

J⊥
+ i
∑
s=±

φ1(2J⊥/ksσ )

ksσ

]
− i�λpot − 2γpt + O(1/t ), (B12b)

where

�λpe = M

8π2

∑
σ

g2
σ Kσ

⎡
⎣ln

2J⊥

e−η

+
∑
s=±1

1

(1 − 2J⊥/ksσ (p))1/2 arccosh

(
ksσ (p)

2J⊥

)1/2
⎤
⎦ (B13a)

�λpo = M

8π2

∑
σ

g2
σ Kσ

⎡
⎣ln

2J⊥

e−η

+
∑
s=±1

1

(1 + 2J⊥/ksσ (p))1/2 arcsinh

(
ksσ (p)

2J⊥

)1/2
⎤
⎦ (B13b)

2γp = M

16π

∑
sσ

g2
σ Kσ

[
1 − 1

(1 + 2J⊥/ksσ (p))1/2

]
. (B13c)

In the equations above, η is the Euler-Mascheroni constant, and the convention Eq. (B9) is assumed once again. Physically,
remembering that apμ is always multiplied by e−iλpμt [see Eqs. (53) and (54)], we see that �λpμ renormalize the two bands λpμ,
lowering them by a cutoff-dependent quantity and slightly altering their curvature. Moreover, the energy difference between the
renormalized bands is reduced with respect to the noninteracting value 2J⊥. This energy difference can be seen as a renormalized
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interbath hopping

2J̃⊥p ≡ 2J⊥ + �λpo − �λpe

= 2J⊥ − M

8π2

∑
σ,s=±1

g2
σ Kσ

[
1

(1 − 2J⊥/ksσ (p))1/2 arccosh

(
ksσ (p)

2J⊥

)1/2

− 1

(1 + 2J⊥/ksσ (p))1/2 arcsinh

(
ksσ (p)

2J⊥

)1/2]
(B14)

The correction to 2J⊥ is always negative (that is, the interbath hopping is suppressed, as it usually happens for polarons [2] and
spin-boson models [25]), and it is quite small in the low-momentum, weak coupling regime that we considered. However, notice
that the expressions for these renormalized quantities are nonanalytic for J⊥ = 0.

The quantity 2γp is the width of the odd mode, and is proportional to J⊥ at small interbath hopping while saturating at
a maximum value for large J⊥. However, the latter behavior has to be taken with caution, because in the large-J⊥ regime
bosonization is not applicable. See the end of Sec. IV.

APPENDIX C: SECOND-ORDER TERMS

In this Appendix we give details on the determination of the second-order correction to the state evolution, Eq. (49). In
order to implement the perturbative procedure, we have to find the various second-order contributions among all terms in the
expansion, which we will indicate with (. . . )(2),

(�H(t )|pμ,ω〉)(2) = e2iμJ⊥t 〈V (t )〉|pμ̄, ω〉 +
∑

qσ,q′σ ′

qq′

2M

WqσWq′σ ′

4L
χ∗

t (�qσ )χ∗
t (�q′σ ′ )b†

qσ b†
q′σ ′ |pμ,ω〉, (C1a)

(
�H(t )

∣∣φ(1)
pμ

〉
(t )
)(2) = �E (2)

pμ |pμ,ω〉 +
∑

qσ ,q′σ ′
σσ ′ WqσWq′σ ′

4L
χ∗

t

(
�+μ

qσ (p)
)
ei�−μ

q′σ ′ t b†
qσ b†

q′σ ′ |pμ,ω〉

+
∑

qσ ,q′σ ′
σ

qq′

M

WqσWq′σ ′

4L
χ∗

t (�+μ
qσ (p))χ∗

t (�q′σ ′ (p))b†
qσ b†

q′σ ′ |pμ̄, ω〉, (C1b)

(
�H(t )

∣∣δ2φ
(2)
pμ

〉
(t )
)(2) = : P2

b :

2M

∣∣φ(2)
pμ (t )

〉 =∑
ν

∑
qσ ,q′σ ′

qq′

M
Aμν

qσ ,q′σ ′ (p, t )b†
qσ b†

q′σ ′ |pν, ω〉. (C1c)

The first term on the right-hand side (rhs) of Eq. (C1a)
yields what we called |δ1φ

(2)
pμ (t )〉 [see Eq. (48)]. The first term

on the rhs of Eq. (C1b) would give rise to secular behavior,
and it is canceled by the perturbative procedure [see Eq. (34)].
All the remaining terms contain two phonon creation oper-
ators, and thus contribute to what we called |δ2φ

(2)
pμ (t )〉. The

latter is determined by an equation of the form

i
d

dt

∣∣δ2φ
(2)
pμ (t )

〉

=
∑

ν

∑
qσ ,q′σ ′

i
d

dt
Aμν

qσ ,q′σ ′ (p, t )b†
qσ b†

q′σ ′ |pν, ω〉

=
∑

ν

∑
qσ ,q′σ ′

(
qq′

M
Aμν

qσ ,q′σ ′ (p, t )

+ Sμν

qσ ,q′σ ′ (p, t )

)
b†

qσ b†
q′σ ′ |pν, ω〉, (C2)

where we put all terms in Eqs. (C1a) and (C1b) involving
two creation operators into the matrix Sμν

qσ ,q′σ ′ (p, t ). Mul-
tiplying the above equation by 〈pν, ω|bq′σ ′bqσ to the left,
and taking into account that Aμν

qσ ,q′σ ′ (p, t ) is symmetric un-
der exchange of qσ and q′σ ′, while Sμν

qσ ,q′σ ′ (p, t ) is not,

we find

i
d

dt
Aμν

qσ ,q′σ ′ (p, t ) = qq′

M
Aμν

qσ ,q′σ ′ (p, t )

+ 1

2

(
Sμν

qσ ,q′σ ′ (p, t ) + Sμν

q′σ ′,qσ (p, t )
)
,

(C3)

which is readily integrated,

Aμν

qσ ,q′σ ′ (p, t ) = −ie−i qq′
M t
∫ t

0
dt ′ei qq′

M t ′

× 1

2

(
Sμν

qσ ,q′σ ′ (p, t ′) + Sμν

q′σ ′,qσ (p, t ′)
)
. (C4)

Performing the integral, we arrive at the results quoted in the
main text, Eqs. (50) and (51).

APPENDIX D: COMPARISON WITH THE
LINKED-CLUSTER EXPANSION

In a previous paper [15], we calculated the Green’s func-
tion (or fidelity, if σ ′ = σ )

Gσ ′σ (p, t ) = −i〈0, ω|dpσ ′e−iHt d†
pσ |0, ω〉 (D1)
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using the linked cluster expansion (LCE) perturbative tech-
nique. In the symmetric-bath case, it was calculated to be

GLCE
σ ′σ (p, t )

= − i

2
eF (0,t )(e−iλpet+F (−J⊥,t ) + σσ ′e−iλpet+F (J⊥,t ) ), (D2)

where

F (J, t ) ≡
∫ +∞

0
dε

1 − (ε − 2J )t − e−i(ε−2J )t

(ε − 2J )2
RS (ε). (D3)

It is easy to see that the perturbative approach that we devel-
oped in the present article is capable of reproducing the same
result. In general

Gσσ (p, t ) = −iθ (t )〈pσ |e−iHt |pσ 〉
= 1

2

∑
μ

[Gμμ(p, t ) + σGμ̄μ(p, t )], (D4a)

Gσ̄ σ (p, t ) = −iθ (t )〈pσ̄ |e−iHt |pσ 〉
= −1

2

∑
μ

[Gμμ(p, t ) − σGμ̄μ(p, t )], (D4b)

where

Gμν (p, t ) ≡ −iθ (t )〈pμ,ω|e−iHt |pν, ω〉. (D5)

In our perturbative approximation e−iHt |pμ,ω〉 ≈ |ψpμ〉
[Eq. (53) or (54)], hence

Gμμ(p, t ) = −iapμ(t )e−iλpμt 〈ω|ωp(t )〉, (D6a)

Gμ̄μ(p, t ) = −iapμ(t )e−iλpμ̄t 〈ω|ωp(t )〉B̃pμ(t ). (D6b)

One can readily identify apμ(t ) ≡ eF (−μJ⊥,t ), and calcu-
late that 〈ω|ωp(t )〉 = eF (0,t ). Therefore, in the symmetric case
when B̃pμ(t ) = 0, we recover exactly Eq. (D2).

The comparison with the LCE Green’s function in the
asymmetric case is less clear, because both in the LCE and
in the perturbative technique of this paper the corresponding
function depends explicitly on the cutoff 
.

APPENDIX E: BATH DENSITY EVOLUTION
FROM LINEAR RESPONSE

In this Appendix, we use Eq. (25) to obtain a qualitative
and quantitative understanding of the observed behavior of the
time evolution of the bath density profiles.

We repeat the equation here, for clarity,

〈ρσ (x)〉t = gσ Kσ

2π

∫ t

0
dt ′[∂x′ 〈Nσ (x′)〉t ′

∣∣
x′=x+vσ (t−t ′ )

− ∂x′ 〈Nσ (x′)〉t ′
∣∣
x′=x−vσ (t−t ′ )

]
.

In Fig. 14 we show the integrand of Eq. (25), using a nu-
merical lattice derivative of the interacting impurity density
we computed in Sec. V A for g2K = 0.5v2, in the ↑ bath and
for two different values of the interbath hopping. The wave
packets are composed of Np = 32 momenta, and are initially
Gaussian with standard deviation δp = 0.02Mv in momen-
tum, which translates to a spatial width of δx ≈ 1/(2δp) =
25(Mv)−1. In the notation of Eq. (25), the time t at which
we want to calculate the bath density is fixed in each plot

FIG. 14. Contour plot of the integrand of Eq. (25), computed
with the impurity density obtained numerically. Warm colors cor-
respond to positive values, while cold colors indicate negative values
(the color-coded legends have been omitted since the quantitative
values of the functions are irrelevant at the qualitative level of the
discussion). The coupling is g2K = 0.5v2 (symmetric baths), with a
Gaussian wave packet composed of Np = 32 momenta with standard
deviation δp = 0.02Mv. Time is measured in units of the interacting
density oscillation period T̃p0 = π/J̃⊥,p0 (the absolute timescales of
the two plots are therefore different). For the meaning of the various
lines, see the text.

(and coincides with the maximum time shown), while the
horizontal and vertical axes of the figures run along the
desired position x and the integration time t ′, respectively.
Therefore, the bath density at a given position is obtained
by integration along a vertical line, as the red dotted-dashed
lines shown as examples. To highlight the periodicity of the
oscillations, we measure time in the renormalized period of
density oscillations, T̃p0 ≡ π/J̃⊥,p0 . As the impurity density
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is essentially a Gaussian, its derivative has both a positive
and a negative part, depicted in warm and cold colors, re-
spectively, and this two-lobe structure is repeated along the
lines t ′ = t + (x − x0 − p0t/M )/v−σ and t ′ = t + (x − x0 −
p0t/M )/v+σ , as dictated by the causality structure of Eq. (25)
(we are ignoring the small slowing down of the impurity
momentum) and by the periodic oscillations from one bath
to the other. Recall that v±σ ≡ vσ ± p0/M. The four tilted
lines show the approximate loci of the maxima and minima:
t ′ = t + (x − x0 − p0t/M ± δx)/v−σ for the black lines and
t ′ = t − (x − x0 − p0t/M ± δx)/v−σ for the white ones. No-
tice that we are neglecting the increase in width of the wave
packet during its dynamics. It can be seen in the figures that it
does not seem to play a relevant role, so we take δx to be the
initial standard deviation.

If we compare the bath densities in Fig. 8(b), we see that
Fig. 14(a) corresponds to a situation in which there are no
ripples, while Fig. 14(b) gives rise to ripples. Now it is easy to
understand how this situation emerges from Eq. (25). Let us
take the position corresponding to the red line in Fig. 14(a).
We see that during the time integration we encounter a posi-
tive contribution and part of two negative lobes belonging to
the previous two impurity oscillations. The results will thus
be close to zero. On the other hand, the integration path in
Fig. 14(b) only encounters a positive lobe, and therefore it will
give rise to the positive part of a ripple. If we change position,
the same situation occurs: For J⊥ = 0.1Mv2, any vertical line
will always cross regions of both signs, with the result that
it will always close to zero, while for J⊥ = 0.03Mv2 it will
alternatively cross positive and negative regions, resulting
in oscillations of the density, i.e., the ripples. Thus, we see
that the ripples emerge from an interference effect between
subsequent oscillations of the impurity. The extent of this
interference is regulated the interplay between the periodic
impurity oscillations, the sound speed and the width of the
wave packet. We can make a quantitative estimate of the
parameters needed for a destructive interference: it happens
whenever the oscillation period is such that the position of a
positive lobe overlaps with the position of the negative lobe
of the previous oscillation. With the help of Fig. 14, this
translates to

v±σ T̃p0 � 2δx, (E1)

which directly leads to Eqs. (81) and (82) in the main text.
The only regions that are exempted from this interference

mechanism are the farthest positions reachable by causal-
ity, |x − x0| ≈ vt , and the ones around the center x ≈ x0 +
p0t/M, which are easily identified with the wave fronts and
the central depletion of the bath density, respectively. Indeed,
from Fig. 14 we can see that for |x − x0| ≈ vt the time integral
intersects only positive lobes, while around x = x0 + p0t/M
there is a region with only negative contributions. Therefore,
we obtain the features we observed in Sec. VI D, namely that
the wave fronts are always positive, while the depletion is
always negative. These arguments also show that the wave
fronts are images of the impurity density at the initial time,
whereas the depletion is sensitive only to the density in the
near past. In the main text, we claimed that the wave fronts and
the central dip were images of the impurity density. This claim
would be exactly true if the density evolution were given sim-

FIG. 15. Contour plot of the integrand of Eq. (E3), yielding
the bath momentum density. The parameters are the same as
Fig. 14(a) (in particular, J⊥ = 0.1Mv2).

ply by a translation: 〈d†
σ (x′)dσ (x′)〉t ′ = N0(x − x0 − p0t/M ),

where N0(x − x0) is the initial profile shape,

〈ρσ (x, t )〉t = gσ Kσ

2π

[
1

v+σ

N0(x − x0 + vt )

−
(

1

v+σ

− 1

v−σ

)
N0(x − x0 + p0t/M )

+ 1

v−σ

N0(x − x0 − vt )

]
.

We can easily recognize the first and the last terms as the two
counter-propagating wave fronts, which are translated images
of the wave packet, and a negative depletion that follows the
impurity. We also see that the heights of the wave fronts are
different from each other, with the backward being shorter
than the forward one, the difference being larger the fastest
is the impurity. The equation above is valid only in a highly
idealized situation, in which there is only one bath (J⊥ = 0)
and the wave packet does not spread. In our situation, both
hypotheses are false, but we can guess that the most relevant
phenomena are caused by the retardation effects given by the
density oscillations [44]. For instance, the ratio of the wave
fronts heights of the bath density we computed numerically
tends to v+σ /v−σ at long times.

As a final remark, we point out that the same arguments
given above can be repeated for the bath momentum density,
which is connected to the impurity density through an equa-
tion analogous to (22), with the response function

χ�ρ
σ (x, t ) = −θ (t )

1

2π
[δ′

α (x + vσ t ) + δ′
α (x − vσ t )]. (E2)

We can see that we obtain the analogous of Eq. (25), but
with the two translated density gradients added to each other
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instead of being subtracted,

〈�σ (x)〉t = − gσ

2π

∫ t

0
dt ′[∂x′ 〈Nσ (x′)〉t ′

∣∣
x′=x+vσ (t−t ′ )

+ ∂x′ 〈Nσ (x′)〉t ′
∣∣
x′=x−vσ (t−t ′ )

]
. (E3)

The integrand of the above equation is depicted in Fig. 15,
which clearly shows the characteristic feature of the bath
momentum density that we observed in the main text, namely
that the fluctuations emitted forward and backward are ap-
proximately inverted images of each other, instead of being
approximately mirror images as in the case of the density.
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