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Wave-packet spreading in the disordered and nonlinear Su-Schrieffer-Heeger chain
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We numerically investigate the characteristics of the long-time dynamics of a single-site wave-packet excita-
tion in a disordered and nonlinear Su-Schrieffer-Heeger model. In the linear regime, as the parameters controlling
the topology of the system are varied, we show that the transition between two different topological phases
is preceded by an anomalous diffusion, in contrast to Anderson localization within these topological phases.
In the presence of onsite nonlinearity this feature is lost due to mode-mode interactions. Direct numerical
simulations reveal that the characteristics of the asymptotic nonlinear wave-packet spreading are the same
across the whole studied parameter space. Our findings underline the importance of mode-mode interactions in

nonlinear topological systems, which must be studied in order to define reliable nonlinear topological markers.
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I. INTRODUCTION

The study of topological insulators has received growing
interest over the last decade. One of the characteristics of such
materials is the support of localized waves at their edges or
interfaces, that are robust to defects or weak disorder. Such
robust wave transport has already been encountered in a vast
number of materials both in theoretical studies and in exper-
iments performed, among others, in optics [1-3], electronics
[4-7], mechanics, and acoustics [§—13]. When the strength of
disorder is sufficiently increased, the expected behavior is that
localization sets in and the system is driven to the Anderson-
localized phase. This results to the halt of wave transport and
disappearance of topological features. However, the interplay
between topology and disorder is more complex. Interestingly
enough, the reverse transition is also possible. Strong disorder
can bring the system into a topologically nontrivial phase, to
the so-called topological Anderson insulator (TAI) phase, and
can lead to the emergence of protected edge states and quan-
tized transport. The most successful experimental realizations
of TAI phases involve engineered systems, like cold-atomic
gases [14], photonic [15,16] and acoustic [17] crystals, and
photonic quantum walks [18].

In many experimental situations, the presence of non-
linearity can also strongly alter the topological nature of
systems (see [7] and references therein). These nonlinear-
ities can, for instance, be rooted to Kerr-type effects in
systems such as nonlinear optical waveguide arrays [19],
atomic Bose-Einstein condensate (BEC) in optical poten-
tials [20,21], and synthetic momentum-state lattices [22]. In
this context, the initial studies of the interactions between
topology and nonlinearity have revealed a whole new realm
of topological phenomena like topological (“self-induced”)
edge solitons [23-27], unique gap solitons [28], and domain
walls [25,29].
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Research on topological physics focuses on ways to iden-
tify topological phases in various physical situations [2,4,5].
Regarding linear periodic (clean) systems, the application of
the band theory, especially the bulk-edge correspondence,
connects the number of edge modes of a finite-size system
to the topological invariant of the gapped energy spectrum of
its bulk counterpart [30]. On the other hand, the most common
method in experiments focuses on detecting topological fea-
tures at the boundaries of finite-size samples [31-33]. In the
presence of disorder, where translational symmetry is broken,
the band theory does not apply and thus the various topologi-
cal invariants must be computed in the real space. In situations
where disorder is present, the Bott index [34], spectral local-
izer [35], and the local topological marker (LTM) [14] have
proven to be robust topological indicators, which paved the
way to the identification of TAI phases in several disordered
topological systems (see, e.g., [14,36-38]). Moreover, some
efforts have also been put into elaborating similar indices for
nonlinear lattices [26].

Recently, the mean chiral displacement of the quench dy-
namics of an initial single-site wave packet in the bulk of a
(noninteracting) topological system was also introduced as
an observable to detect its topological invariant, without the
need of energy band filling or external field [14,39,40]. Con-
sequently, this method is extremely versatile, having already
found application in experimental scenarios involving clean
[39,41-43], disordered [14], and driven [40,43] systems and
numerical simulations, for example, in disordered mechanical
systems [37]. Nevertheless, these experiments and numerical
simulations often limit themselves to short times, even when
the standard statistical moments of the wave packet are com-
puted [39]. At the origin of this time limitation is the design of
structures for experiments which are usually restricted to few
unit cells while “long-time dynamics” means wider spreading
of the wave packet which involves large lattice sizes. On the
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other hand, the numerical integration of a large lattice is,
in general, a computationally demanding task. Consequently,
the long-time dynamics of topological systems has not been
properly tackled.

In this vein, a pertinent question is to know whether, and
how, the mere observation of the long-time dynamics of an
initially localized wave packet in a disordered topological
system is connected to the lattice’s topological nature. The
aim of this work is to tackle this problem, exploring the
long-time dynamics of a single-site excitation wave packet
in systems supporting nontrivial topological phases in their
linearized limits. In particular, we focus on the disordered Su-
Schrieffer-Heeger (SSH) lattice model [44], the most famous
one-dimensional (1D) lattice presenting topological features
in its clean limit [30,45]. By varying the parameters con-
trolling the topological phase of the chain, we track the
characteristics of spreading of the wave packet by comput-
ing the statistical moments of the amplitude distribution. Our
main finding is that the transition between two regions with
different winding numbers is characterized by an anomalous
diffusion of the wave packet whose moments grow pass a crit-
ical order, in contrast to its halt within the different topological
phases for which all the moments saturate.

An additional aspect of our work is the extension of such
studies to arbitrary strengths of onsite nonlinearity which,
to the best of our knowledge, has not been addressed so
far even in the monomer-disordered SSH chain, i.e., the 1D
tight-binding (TB) model with off-diagonal disorder [46]. Sur-
prisingly, we find that the wave-packet spreading itself cannot
indicate a topological transition, due to the presence of mode-
mode interactions. More specifically, we show that at small
and moderate nonlinearities, the wave-packet moments grow
following the same power laws across the whole parameter
space of the system. On the other hand, when the nonlinearity
is strong, the wave-packet spreading is partially or entirely
suppressed.

The paper is organized in the following way. In Sec. II, we
briefly present the disordered SSH model and give a review
of its spectral and topological properties. In Sec. III, we focus
on the localization length of the modes with energies close
to the band center along the topological transition curve. In
Sec. 1V, the spreading of single-site excitations is studied in
the linear and nonlinear regimes. Finally, we conclude our
work in Sec. V.

II. OVERVIEW OF THE PROPERTIES
OF THE DISORDERED SSH CHAIN

A. Spectral properties

We start by reviewing some of the basic spectral properties
of the 1D disordered SSH model (see also Fig. 1) whose
equation of motion for the complex wave function v, at the
nth site of the chain reads as

dy,
dt

i = H Y1 + Hi1 Y1, (D
with

H,_ =14+ We,_; and H, = m + Wj¢,, 2)

...................................................

..................................

FIG. 1. Schematic representation of the disordered SSH chain
composed of N sites. The chain is made up of two sublattices A and
B. Unit cells are highlighted with dashed boxes. The v, is the wave
function at the nth site and H, is the hopping strength between the
nth and (n + 1)th sites. See text for details.

where m is the ratio between intracell and intercell hoppings
in the clean (periodic) limit (see Fig. 1) and ¢, are random
numbers uniformly drawn from the interval [—%, %]. The W,
and W, control the strengths of disorder on adjacent sites.
Here, as in Refs. [14,47], we assume W; = 2W, = W, allow-
ing the reduction of the dimension of the system’s parameter
space, while allowing the appearance of the important phys-
ical phenomena we want to study. It is worth noting that in
this section of the parameter space, the hopping coefficients
H, are positive in the region defined by the equation W <
min{4, 2m}.

For a chain of size N (N is even) the related set equations of
motion [Eq. (1)] conserves both the total energy H, and norm
A of the system, respectively,

N N
Moo= HiWry ¥+ Vuni¥), A=Y ¥l ()
n=1 n=1

Furthermore, unless otherwise stated, we set open boundary
conditions at the two ends of the chain, i.e., Y9 = ¥y, = 0.

Let us first consider the related spectral problem. Substi-
tuting ¥, = B,e 'E" into the system’s equations of motion
[Eq. (1)] leads to the eigenvalue problem

EB = HB, 4)

where E and B = (By, Ba, ..., By)T [(-)T denotes the matrix
transpose] are, respectively, the system’s energy and normal
mode (NM) vector, with H being the Hamiltonian matrix of
the system [the expression of this matrix is given in Eq. (A3)
of Appendix A]. The Hamiltonian matrix H is tridiagonal
with disorder appearing in its off-diagonal elements. In ad-
dition H anticommutes with the chiral operator I" [Eq. (A1)
of Appendix A], i.e.,

I'H+ HI =0, L END, )

which means that it always possesses chiral symmetry. This
chiral symmetry is connected with the bipartite nature of the
lattice [48]. This is the case when the lattice consists of two
sublattices A and B, with nonzero hopping only between the A
and B sites (see Fig. 1).

A consequence of the chiral and bipartite symmetries of
the disordered Hamiltonian matrix is that its energy spec-
trum is symmetric about E = 0. In addition, as we show
in Appendix B, when the disordered SSH chain is in the
topologically nontrivial region, it exhibits a pair of “exact”
zero states (in the thermodynamic limit). These states have
wave functions (NMs) that vanish on one sublattice (see,
e.g., [30,47,49]), and are most likely located around the two

V(G],Ez,...
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edges of the chain. On the other hand, when the disordered
SSH chain is in the topologically trivial region, it exhibits a
pair of states with energy close to zero, for strong disorder.
This pair of states now can be located anywhere along the
chain.

B. Topological properties

A way to define a winding number for the disordered
SSH chain, and in general for any chiral symmetric lattice,
is through the LTM. In fact, the standard definiton of the
winding number is expressed in momentum space of periodic
lattices. This winding number can be rewritten in terms of the
position operator in real space [50,51]. The latter could then
be worked out per unit cell (or volume), such that a topological
marker can be evaluated locally. For the finite disordered
SSH chain with open boundary conditions, it is evaluated as
follows. Considering a fixed configuration of random hopping
strengths, we can diagonalize the above problem [Eq. (4)]
and obtain N energies E, associated with N normalized
eigenvectors B, = (By ,, B2y, ... By)" (ZnNzl 1B, ,.)* =
1) which we sort in ascending order of energies. We
then form the matrices B_ = (By, B, .. .,B%fl,B%) and
B, = (B¥+1,B%+2, ...,By_1,By) and define the projec-
tors on the positive and negative energy bands, respectively,
P, =B.B! and P_ = B_B’. Consequently, we write the
matrix Q =P, — P_ which factors as Q = Qap + Qps =
' QrI'g 4+ I'pQT 4, with 'y and I'p being the projector oper-
ators to the A and B sublattices, respectively [see Eq. (Al)
of Appendix A]. After implementing the above steps, we
calculate the LTM, v(l) [14,47], at the unit cell of index
I=1,2,...,N/2:

o(l) = Z {(QpalX, QusD ik 1k ';‘ (QaslQpa, X])lk,lk}’

k={A,B)

6)

with X being the position matrix [Eq. (A2) in Appendix A],
and /A (IB) referring to the elements of the matrix belonging
to the A (B) sublattice of the /th unit cell (Fig. 1). In practice,
we perform a space-and-disorder average of v [Eq. (6)] to
obtain the winding number (V) of the disordered chain [47].
Note that in the following, we denote by 0 ="D"! fD QdD
any space or time average of the observable Q over the domain
D, and (Q) corresponds to the average of the same observable
across several configurations of disorder.

Figure 2(a) depicts the topological phase diagram of the
disordered SSH chain through the calculation of the lattice
winding number (V), obtained by averaging the LTM [Eq. (6)]
across 25 central cells and about 250 configurations of disor-
der throughout the (W, m) parameter space. Note that for all
the calculations shown in Fig. 2(a), a lattice size of N = 500
sites was used to mimic the thermodynamic limit and diminish
finite-size effects. The phase diagram maps two regions in
the (W, m) parameter space: a topologically nontrivial region
[yellow colored area in Fig. 2(a)] for which the winding num-
ber is close to unity, i.e., (V) & 1, encircled by a topologically
trivial region [blue colored area in Fig. 2(a)] with practically
zero winding number, i.e., (V) =~ 0.

<>
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FIG. 2. (a) Topological phase diagram of the disordered SSH
chain [Eq. (1)] generated by computing the winding number (V)
of the chain in the (W, m) parameter space. Random positive val-
ues of all the hoppings correspond to the region defined by W <
min,, {4, 2m}. The dashed-dotted-dotted red and dashed-dotted green
lines represent sections of the phase diagram, respectively, at m =
0.6 and 1.05. Moreover the blue, green, and red squares represent
W =2.04,m=0.6), (W =2.04,m =1.15), and (W =2.04, m =
1.7), respectively. On the other hand, the blue, green, and red cir-
cles stand for (W =3,m =0.6), (W =3.94,m =0.6), and (W =
6,m = 0.6). (b) (—1In|E|) as function of ~/N for four sets of pa-
rameters along the topological transition curve [black curve in (a)]
with (W =2.36, m = 1.21) (blue line-connected squares), (W =
2.56,m = 1.27) (green line-connected circles), (W = 3.00,m =
1.33) (red line-connected triangles), and (W = 3.88,m = 0.77)
(cyan line-connected inverse triangles). Inset: Dependence of the
slope o of the fitting functional form (—In |E|) & o+/N with respect
toW.

These two topological regions are well separated by a solid
black curve. This curve indicates the set of critical points
where the localization length ¢ (considering ordinary expo-
nential localization v, &~ e~"!/¢) at zero energy diverges in
the thermodynamic limit. As it was shown in Ref. [47], this
takes the following analytical form:

(E=0)~ @)

L AW m w
n = {1
|4+ W72 2m — W3

184313-3



BERTIN MANY MANDA et al.

PHYSICAL REVIEW B 107, 184313 (2023)

III. LOCALIZATION LENGTH ALONG THE
TRANSITION CURVE

For m = 1, the disordered SSH is reduced to the monomer
TB lattice with off-diagonal disordered hoppings. As it is
known [49,52,53] in these lattices (and in general disordered
bipartite lattices [48]) the zero-energy wave function follows
an unusual localization property. In particular, it follows the
form

In |y, ~ o v/n, ®

where o is a real scaling coefficient. This wave-function
scaling explains the divergence of the ordinary exponential
localization of Eq. (7).

Itis also known [46,49,54] that the localization length ¢ (E)
for small energies and in the thermodynamic limit takes the
form

—In|E|
L(E)~ ——. ©)
o

Thus, it is implied that for a finite lattice of size N the follow-
ing relation holds:

(—In|E]) ~ o~/N. (10)

The above behavior is known for the case of m = 1 [46]. It is
thus natural to ask if the same scaling of the energy close to
E = 0 is valid all along the topological transition curve [black
line in Fig. 2(a)] and the answer is affirmative. In fact, by
calculating the energy of the two modes closest to zero [55]
for different lattice sizes (averaged over 10* configurations
of disorder), we have confirmed that the relation of Eq. (10)
holds along the topological transition curve. Four typical ex-
amples are shown in Fig. 2(b). It is clear that (— In |E|) grows
linearly with /N for all cases. Furthermore, by using a linear
fit we obtain the value of the parameter o for 100 sets of
parameters (W, m) and the outcomes of this process are shown
in the inset of Fig. 2(b). We clearly see that o is close to zero
at small W, while it grows as W increases, tending to saturate
toward o &~ 1 for W — 4.

IV. WAVE-PACKET DYNAMICS

After reviewing the spectral properties and presenting the
topological phase diagram of the disordered SSH chain, we
investigate in this section the dynamics of an initially localized
wave packet. In particular, we are interested in the spreading
of the wave packet in the (W, m) parameter space. Thus, we
follow the time evolution of an initial wave packet located on
a single site at the center of the lattice

:ﬁei¢, ifn= %V +1
Yn(t =0) = (1D
0, otherwise

with @ = 1 the norm at site N/2 4 1, and ¢ = 7 /2 its phase.
In the rest of this work, the equations of motion [Eq. (1)] of the
linear (nonlinear) disordered SSH chain are integrated using
the symplectic ABA864 (s11ABC6) scheme [56-60] and we
monitor the accuracy of our simulations by evaluating the rel-
ative energy and norm errors E,(t) = |[[H(t) — H(0)]/H(0)]|
and A,(t) = |[A() — A(0)]/.A(0)|, respectively. The use of
an integration time step T &~ 0.04-0.2 ensures that the E,(¢)

and S,(t) are always bounded from above by 10~ in all
our simulations. Unless otherwise stated, our lattice size is
fixed at N = 10? sites, a number which is sufficient to secure
the avoidance of finite-size effects up to integration times
t ~ 10*-107.

As basic observables of the wave-spreading dynamics, we
compute the spatial moments of the averaged amplitude dis-
tribution at time t > 0 [46,61,62]:

L
1
Mq<r)=<2|l—lo|m<r>>, n®=— > WP,

1=1 k=(A.B)
(12)

with g being the moment order, /y the cell index of the ini-
tially excited site, L = N/2 the total number of cells, y; the
normalized norm at the cell of index /, and A [Eq. (3)] the
total norm of the system. In this work, we focus on the first
four integer orders of the moment, i.e., M, withg =1, 2, 3, 4,
which are sufficient to infer the spatial dynamics of the wave
packet.

A. Linear limit

We start by qualitatively characterizing the spreading dy-
namics of the disordered SSH chain in the (W, m) space. In
Fig. 2(a) we show three typical sets of parameters along the
m = 0.6 line [red dashed-dotted-dotted line in Fig. 2(a)] with
W = 3 (blue circle), W = 3.94 (green circle), and W = 6 (red
circle). The first and the last cases, respectively, belong to
the topologically nontrivial and trivial regions of the (W, m)
space, while the second one maps on the topological transition
curve. For these sets of parameters, we present in Fig. 3 the
time evolution of the amplitude distributions in real space
averaged over 2000 configurations of disorder. All simulations
in Fig. 3 are carried up to t ~ 10°.

Clearly, for the representative sets of parameters inside
the topologically trivial and nontrivial regimes, we see that
the wave packets tend to spread away from the initial site of
excitation at the early stage of the evolution followed by a
tendency to saturate at large times [Figs. 3(a) and 3(c)]. This
behavior hints toward Anderson localization (AL) [63,64]. On
the other hand, for the case at the topological transition in
Fig. 3(b), we observe that, although the disorder is stronger
than the one of Fig. 3(a), the wave packet surprisingly appears
to spread throughout the lattice.

Let us now give an explanation to the wave-packet dynam-
ical features observed above. Following Ref. [46], we can
rewrite the moments M, [Eq. (12)] in the limit of a large
lattice as

Mq0</é“"(E)p(E)dE, (13)
E

with ¢(E) and p(E) being the density of states and the local-
ization length, respectively, which depend on the energy E,
but also on the parameters (W, m) (see Secs. II and III). It is
worth emphasizing that the integration in Eq. (13) is carried
over the whole energy band and is valid everywhere in the
(W, m) parameter space of Fig. 2(a). Then, in the topologi-
cally trivial and nontrivial phases our numerical computations
of the localization length showed that this quantity is bounded

184313-4



WAVE-PACKET SPREADING IN THE DISORDERED AND ...

PHYSICAL REVIEW B 107, 184313 (2023)

3 5 2 3

4
logjo(t)

4
log;o(t)

10(1

N
10710 —

1020 3
V)
10730 ~

5 2 3 5

4
logo(t)

FIG. 3. Time evolution of the averaged amplitude distribution (|1,|?) for three typical sets of parameters along the line m = 0.6 with
(a) W = 3.0 inside the topologically trivial phase, (b) W = 3.94 at the topological transition, and (¢) W = 6.0 inside the topologically nontrivial
region [these points are, respectively, represented by the blue, green, and red circles in Fig. 2(a)]. In all panels, points are colored according to
the magnitude of the wave packet’s amplitude by using the color scale at the right side of the figure. The amplitudes are averaged over 2000

configurations of disorder.

from above across the whole energy spectrum due to AL, i.e.,
C(E) < Zmax (see also Ref. [47]). Thus, Eq. (13) gives
M, (t) o< & (14)

max?

i.e., a saturation of the wave-packet moments within both
phases, in agreement with the results presented in Figs. 3(a)
and 3(c).

To confirm Eq. (14) we performed extensive numerical
simulations of the propagation of an initially localized wave
packet for the two points along the line m = 0.6 with W = 3
of Fig. 3(a) and W = 6 of Fig. 3(c). In Fig. 4, we present
the time evolution of the moments My, g = 1,2, 3, 4, of the
wave packet averaged over 9000 configurations of disorder for
these two cases. For both cases, the M, (¢) [Fig. 4(a)], M»(t)
[Fig. 4(b)], M3(t) [Fig. 4(c)], and M4(t) [Fig. 4(d)] tend to
grow at the early stage of the evolution, corresponding to the
time the wave packet expands over the localization length of
all excited modes [see also Figs. 3(a) and 3(c)]. At large times,
however, the moments asymptotically saturate to values that
are different for each case. Indeed, we see that for W = 3
(blue curves in Fig. 4) the moments levels off to values larger

15
1 (a) (b)
< =
= b =
S S1.0
LNV g b
0.0
/""" 05 / r
12 3 4 5 6 12 3 4 5 6
log,g t log,g t
301 () *31(d)
=1 1= b
= b = A
220 23.0 oo
&0 &0 sadaiul
s <
r r
LO/ﬂv 15
12 3 4 5 6 12 3 4 5 6
log)ot log,gt

FIG. 4. Time evolution of the moments (a) M,, (b) M,, (c) M5,
and (d) M, [Eq. (12)], averaged over 9000 configurations of disorder,
for the disordered SSH chain of Eq. (1). The blue (b) and red (r)
colored curves correspond to (W =3, m =0.6) and (W =6.,m =
0.6), respectively. The error bars of the same color as the curves
denote one standard deviation.

than the ones seen in case of W = 6 (red curves in Fig. 4).
These observations are in agreement with the predictions of
Eq. (14) since the localization length is in general larger for
smaller W values. In addition, the large error bars seen in
Fig. 4 are due to the presence of upper outliers of M,(t) orig-
inating from configurations of disorder for which the initial
wave packet excites mostly the modes close to the zero energy.
The localization lengths of these modes are much larger than
the averaged localization length of the system, reminiscent of
the Dyson singularity. The existence of such cases substan-
tially contributes to the moments’ mean value M, which is
obtained through arithmetic average and increases the com-
puted error (standard deviation). Furthermore, in Appendix C,
we consider other sets of parameters within the topologically
trivial and nontrivial regions to emphasize the generality of
these findings.

On the other hand, the peculiar spreading at the topological
transition curve can be explained as follows. As inferred by
the results of Fig. 2(b) for E — 0, at the transition curve, the
localization length ¢ (E) of the disordered SSH model shows
the same behavior as the 1D TB with off-diagonal disorder,
namely, ¢(E) =~ —In |E|/ o? [Eg. (9)]. In addition, according
to Ref. [65], this implies that the density of states p(E) also di-
verges when E — 0, following p(E) = 2 /(—|E|In? |E|). As
a consequence, we can directly apply the results of Ref. [46],
and find an approximate analytical expression for the integral
of Eq. (13) yielding the following asymptotic logarithmic law
for the moments:

[P, ifg > 2
Myt) x { HIn[L(nt)*], ifg=2 (15)
cst/oz, if g < 2.

The above equations dictate that the moments with g < 2
saturate to a constant value while all the moments with
q > 2 diverge with time following a logarithmic rate. In the
above expressions, o is the scaling coefficient of Eq. (9)
which was numerically calculated using Eq. (10) [inset of
Fig. 2(b)].

In order to support the analysis above, we perform numer-
ical simulations of the propagation of an initially localized
wave packet [Eq. (11)] by considering 10 sets of parame-
ters along the topological transition curve represented by the
points in the phase diagram at the top panel of Fig. 5. For these
cases we compute the first four integer moments of spreading
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FIG. 5. Dependence of (a) 2M;(r) and (b) 62M; (1), (c) (6*M5(r))"/* and (d) (6°M4(¢))"/* on Int, Int /o, Int, and Int, respectively, for
several sets of parameters along the topological transition line, depicted in the top panel. The moments are averaged over 9000 configurations
of disorder. In addition, o in each case was numerically computed and reported in the inset of Fig. 2(b). The black straight lines in (a), (c), and
(d) guide the eye for slopes (a) 0, (c) 1.17 [black line in the inset of (c)], and (d) 0.76 [black line in the inset of (d)]. Furthermore, the black
curve in (b) corresponds to the logarithmic law 2.52 x In[(Int /o )?]. Insets: Dependence of the coefficients (c) b3 [(c*M; ()2 ~ by(In1)]

and (d) by [(6°M4(1))"/* ~ bs(Int)] on the disorder strength W.

of the wave packet, averaged over 9000 configurations of
disorder up to time ¢ &~ 10*. In Fig. 5(a), we plot the results of
the time evolution of the o-2M, (¢) as function of In ¢ for some
of these cases (colored points in the phase diagram at the top
panel of Fig. 5). A saturation of the rescaled first moment to
practically constant values at large time is clearly visible for
all cases. We find that for all the 10 sets of parameters ranging
within W € [1, 4] the constant values of oM, € [0.5, 1.5]
at the final time of integration. Furthermore, these asymp-
totic constant values tend to grow with increasing disorder
strength W.

In addition, in Fig. 5(b), we plot o2M,(t) as a function
of Int/o for the same set of initial conditions as above. The
rescaled second moments grow in time for all cases, tending
toward the same asymptotic law of evolution at large times. In
Fig. 5(b), we superimpose onto the time evolution of o2M,(t)
the curve b, In[(In¢ /o )?] of Eq. (15) with b, being an arbitrary
prefactor we fix to b, ~ 2.52 and find a good agreement with
the numerical results.

Furthermore, according to the analytical expression for the
moments’ evolution [Eq. (15)], we expect, for example, that
(0*M;3(1))"/? and (6°M,(1))"/* depend linearly on Int. This
assumption can be easily checked by numerically finding two

constant real numbers b3 and by, such that
(0*M3(1))'? ~ by(Int),  (6°Ma())"/* = by(Int).  (16)

This approach is followed in Figs. 5(c) and 5(d) where
we respectively plot the dependence of (0*M5(1))"/? and
(0°M4(1))" * on Ins. The obtained results clearly indicate
linear growths of (o*Mj; (1))"/? and (6°My4(r))"/* with In ¢ for
all displayed cases. Similar results were also found for the
remaining 6 sets of (W, m) parameters considered. The slopes
b3 and by are retrieved by fitting in all cases the numerical
results with straight lines in the range ¢’ <t < e°. These
slopes are presented against W in the insets of Figs. 5(c)
and 5(d), confirming the fact that their values are practically
independent of the disorder strength W.

To sum up this section, we found that an initially localized
wave packet at the center of the disordered SSH chain exhibits
AL (i.e., a halt in spreading for all times) within both the
system’s topologically trivial and nontrivial regions. However,
at the topological transition, this wave packet is anomalously
diffusing within the chain. The time evolution of the wave
packet’s moments follow logarithmic laws of time pass a crit-
ical order, while below that critical order, they asymptotically
converge.
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B. Effect of self-interaction potentials

We now move to another important question and study
what are the consequences of the presence of onsite nonlin-
earity on the dynamics of an initial single-site wave-packet
excitation [Eq. (11)]. In particular we consider the following
set of equations of motion [26,66]:

dyn

y = H Yot + Hy Yo + 81, (17)

i

where the term g|y,|?V, describes the self-interaction of
the field i, with itself (self-interaction) at site with index
n. Note that this nonlinear model conserves the total en-
ergy Ha=Ho+ Y, &l¥sl*/2, and norm A=Y |¢,|* of
the system. Further, in Eq. (17), the real parameter g > 0 is
the nonlinear coefficient whose strength is classified into three
regions: weak, moderate, and strong [67,68]. This general-
ization of the SSH model, or of any topological lattice, with
self-interaction (onsite) terms are relevant in experiments, and
provide simple generic equations to describe the propagation
of high-amplitude wave packets in chains of coupled nonlin-
ear optical waveguides [19], atomic BEC in optical traps [21],
and synthetic lattices of atomic momentum states [ 14] to name
a few.

We perform numerical simulations of the nonlinear model
using the initial conditions given by Eq. (11). Below, we vary
the parameter g in order to increase the strength of nonlin-
earity and monitor its effects. Characteristic averaged (over
2000 configurations of disorder) amplitude distributions at
times ¢ ~ 10° and 10° (respectively the continuous and dotted
curves) are shown in Fig. 6(a), for a topologically nontrivial
case with (W = 2.04, m = 0.6). The latter case leads to nega-
tive hopping coefficients between certain sites of the lattice for
a chosen configuration of disorder [14]. In this figure we have
considered three different values of the nonlinear coefficient
with g = 0 (blue curves), g = 3 (green curves), and g = 30
(red curves). In fact, the profile for g = O is taken as instants
from Fig. 10(a) of Appendix C where we have shown that the
systems remains localized due to AL. On the other hand, for
a moderate nonlinearity with g = 3, we find that the (|v,|?)
extent is broadening with time since the wave-packet profile is
wider at ¢ &~ 10% compared to the t &~ 10° case. This spreading
can only originate from the nonlinear mode-mode interactions
[69,70] which are typically chaotic [71-73].

Furthermore, for g =30 (red curves), the wave packet
retains a sharp and pointy profile at all time, with extent
much smaller than the one seen in the linear case for g = 0.
This phenomenon is termed self-trapping dynamical behavior
[67,74]. Tt stems from the fact that single-site excitations
practically lead to discrete breathers, which in the limit of
strong nonlinearity, essentially occupy a single site, and have
a negligible amplitude on neighboring sites.

We repeat the same procedure as above, but this time
for the case (W =1, m = 0.6) in the topologically nontriv-
ial phase, for which the hopping energies between sites are
positively defined for all configurations of disorder. We note
that this set of parameters are, for example, related to in
experiments of coupled optical waveguides [19]. The results
of these simulations are presented in Fig. 6(b) where we focus
our attention on the cases with g =0 (blue curves), g =1

5000 5200
n

4800

FIG. 6. Average amplitude distribution (|1/,|?) at time t ~ 10°
(dotted curves) and ¢ & 10° (continuous curves) for the disordered
nonlinear SSH chain [Eq. (17)], for (a) the case (W = 2.04, m = 0.6)
with g = 0 [blue (b) curves], g = 3.0 [green (g) curves], and g = 30
[red (r) curves] and (b) the case (W = 1.0, m = 0.6) with g = 0 [blue
(b) curves], g = 1 [green (g) curves], and g = 5 [red (r) curves]. The
|¢,|* values are averaged over 2000 configurations of disorder. The
continuous and dotted blue (b) [red (r)] curves in (a) and the blue
(b) curves in (b) are practically overlapping.

(green curves), and g = 5 (red curves) which correspond to the
linear, weakly, and strongly nonlinear regimes in our system
[Eq. (17)]. We clearly see for g = 0 (g = 1) the existence of
AL (spreading) of the wave packet when comparing its ex-
tents at times t = 10° (dotted curves) and t = 10° (continuous
curves). On the other hand, for g = 5, we find that, although
the wave packet tends to spread, it retains a rather sharp and
pointy shape around the initial site of excitation.

We completely characterize the spreading due to nonlinear-
ity for (W = 2.04, m = 0.6) with g = 3, by following the time
evolution of the second moment M,. Note that here the results
are averaged over 100 configurations of disorder for which
the time dependence of the moments shows a clear power-
law growth (synonym of chaotic nonlinear mode interactions)
from the early stage of the evolution. Using this procedure, we
are able to probe the effects of the nonlinear mode interactions
on the long-time dynamics of localized wave packets within
the limited time period of our numerical simulations. The ob-
tained results are shown in Fig. 7 for the cases corresponding
to the square [Fig. 7(a)] and circle [Fig. 7(b)] points in the
(W, m) parameter space of Fig. 2(a). The growth of the second
moments M, are clearly visible at large times for all cases
with moderate nonlinearity g = 3. We fit these growths of the
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FIG. 7. The time evolution of the second moment M, of the wave
packet for different (W, m) parameter setups of the nonlinear system
of Eq. (17) with (a), (b) g=3 and (c), (d) g = 30. (a), (c) Cor-
respond to the (W =2.04,m = 0.6), (W =2.04, m = 1.15), and
(W =2.04, m = 1.6) cases [blue (b), green (g), and red (r) curves,
respectively] and (b) and (d) to the ones with (W = 3.0, m = 0.6),
(W =4,m=0.6), and (W = 6, m = 0.6) [blue (b), green (g), and
red (r) curves, respectively]. The dashed lines in (a) and (b) guide the
eye for slope 0.34. The error bars of the same color as the curves
denote one standard deviation. Results are obtained by averaging
over 100 configurations of disorder.

second moment with a power law M, o t*> following
log,y M> ~ ay log,t, (18)

in the interval 10* < ¢ < 107. The a, values obtained by this
numerical fit are a; =~ 0.33, a, & 0.34, and a, ~ 0.35, respec-
tively, for the blue, green, and red colored curves in Fig. 7(a),
and a, ~ 0.33, a, ~ 0.34, and a, =~ 0.34 for the cases of the
blue, green, and red colored curves in Fig. 7(b).

It is worth noting that we have also checked the other wave-
packet moments in our numerical simulations, although we
do not report them here to avoid repetition. We found M;
1017 M3 oc t98 and M, o< t9! for the cases in Fig. 7(a)
and M, o 197, My o 19, and M, o t9%* for the ones in
Fig. 7(b). These power exponents can be roughly related via
a simple arithmetic sequence a, ~ ga;, where a; and a, are
the power exponents of the first (M) and gth (M,) moments,
respectively. Thus, this subdiffusive spreading is clearly dif-
ferent from the one observed at the topological transition of
the linearized model discussed in Sec. IV A.

We also performed a similar analysis for g = 30 at (W =
2.04, m = 0.6) in the system parameter space. In this context,
we expect almost all the wave packets to remain trapped
around the position of the initial excitation for all cases, re-
sulting to a saturation of the M>, i.e., M, % In Figs. 7(c)
and 7(d), we find that this is indeed true as M, saturates for all
studied cases to values M, = 0. For the sake of completeness,
we have also checked the other wave-packet moments M, M3,
and M, and found that these moments also saturate at large
times to practically constant levels whose particular values
depend on the parameters of the system.

These numerically obtained values of the power-law expo-
nents are similar to the ones observed during the wave-packet
subdiffusion in the context of the destruction of the AL by
nonlinearity for models with diagonal disorder. Indeed, ex-
pressing the wave packet with respect to the system’s NMs
as v, =Y. u ¢, B, , with ¥, and c, being the wave functions
at site and mode with indices n and p, respectively, and B, ,,
being the nth entry of the mode with index w, and substituting
this expression into the equations of motion in real space
[Eq. (17)], it follows that

.ac .
i~ =Euc,+8 Z Vi s €ty €1y Cpas - (19)

ot
s 2, 13

In this equation E,, is the eigenenergy of the uth mode (u
being the mode number) of the spectrum of the linearized
system [Eq. (D], and Vi o = 20 B) B By 11, By
represents the overlap integral of four modes with (*) denoting
the complex conjugate. These equations of motion [Eq. (19)]
were also obtained in a plethora of disordered systems in me-
chanics, optics, and quantum physics (see, e.g.. [68,75-78]).
In those works, it was found via analytical arguments and ex-
tensive numerical simulations that, for a single-site excitation,
the moments M, of the wave-packet evolution asymptotically
follow M, oc t% law, with a, = qay, a; = é. These predic-
tions are very close to our numerical results reported in this
section. The interesting result here is that this spreading power
law is valid for both the situations of exponential localization
of all NMs (AL) seen in the trivial and nontrivial topological
phases, and in the presence of a large number of nonexponen-
tially localized NMs (Dyson singularity) along the topological
transition curve. Furthermore, when the nonlinear strength is
strong, following the self-trapping theorem [67,74], little or no
spreading of the wave packet occurs across the entire (W, m)
parameter space.

V. CONCLUSIONS

We studied in detail the long-time dynamics of a single-site
excitation in the bulk of a disordered Su-Schrieffer-Heeger
(SSH) chain in the linear and nonlinear regimes. A key feature
of the disordered SSH model in its linear limit is the existence
of a topologically nontrivial phase, separated to the trivial
one by a curve in the parameter space of the hopping coef-
ficient and the strength of the disorder. Along that boundary
curve, the localization length at small energies diverges in the
thermodynamic limit. We performed direct numerical integra-
tions of the system’s equations of motion and computed the
statistical moments of the amplitude distributions as physical
observables of the wave-packet dynamics.

In the linear regime, our analysis showed, through variation
of the parameters of the model, that inside the topological
phases no propagation of the wave packet is visible due to
Anderson localization (AL). On the other hand, at the topolog-
ical transition an anomalous subdiffusion of the wave packet
is observed. In order to quantify this spreading, we proposed
an analytical expression of the wave packet’s moments, whose
validity was verified through extensive numerical simulations.
We found that this anomalous spreading is characterized by
a growth in time of the wave packet’s moments accord-
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ing to the law M, o (In7)**, above a critical order ¢ = 2,
for which we have M, o In[(In)?]. In addition, below that
critical order, i.e., for g < 2, the moments asymptotically
saturate.

The anomalous subdiffusion along the topological tran-
sition is induced by the presence of a large number of
nonexponentially localized modes at small energies, whose
localization lengths grow with increasing lattice sizes. This
divergence of the localization length around the center of
the frequency band is a signature of a topological transition
in disordered systems supporting various topological phases.
Therefore, the wave-packet spreading can be used as an ad-
ditional tool to identify topological transitions. The former is
extremely versatile since it solely relies on the observation of
the asymptotic dynamics of initially localized wave packets of
practically any shape and number of sites.

We also studied the effect that the onsite nonlinearity has
on the long-time dynamics of the wave packet in the dis-
ordered SSH model. In this context, we found that in the
presence of weak and moderate strengths of nonlinearity,
chaotic mode-mode interactions constitute the main mech-
anism of wave-packet dynamics. This results to the same
subdiffusive behavior of the wave packet, irrespective of the
modes’ degree of localization. Consequently, we numerically
recovered in the whole system’s parameter space the same
power laws for time evolution of the wave packet’s moments
M, o t*17 for all orders g. More importantly, the power law
obtained here is very close to the one observed in models
with onsite random scalar [70,76,79] and quasiperiodic [80]
potentials where M, o 17/S.

However, at high strengths of nonlinearity we showed
that the wave-packet spreading is partially or, even entirely,
suppressed due to the large shift of the nonlinear frequency
of initially activated modes, which results to their failure
to interact with their surroundings. Consequently, nonlinear
mode-mode interactions play an important role in the dynam-
ics of nonlinear topological lattices and must be carefully
scrutinized for the definition of reliable nonlinear topological
markers.

1 0 0 0 1 0
0 -1 0 0 0 0
r=|0 0 1 0 =10 o0
0 0 0 -1 0 0
S . o
L 0 0
0o - 0
0 0 —%+1
x=|0 o0 0 —
0 0 0
0 0 0

- O = O O

We believe that this work provides useful insights into the
dynamics of disordered systems. On one hand, the recent
developments in topological physics have seen an upsurge
on the investigation of the effects of symmetries in various
physical phenomena. It is therefore natural to also look at
what happens to the long-time dynamics of initially localized
wave packets in disordered systems when such symmetries
are present in connection with the new topological charac-
terization of matter. On the other hand, understanding how
the above pictures change when nonlinearity arises is also
an interesting question. As a final comment, we note that
although this work focused on one-dimensional lattices, it
is rather natural to extend this analysis to systems of higher
dimensions, in which we find richer topological properties.
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APPENDIX A: CHIRAL, PROJECTION, POSITION,
AND HAMILTONIAN MATRICES OF THE DISORDERED
SSH MODEL

Here we give the expressions of some important operators.
Considering the SSH lattice of L (L is even) unit cells
(see Fig. 1), i.e., with N =2L sites, each unit cell is
indexed with [ = [-L/2,—-L/2+1,—-L/2+2,...,—L/2 +
L/2-2,-L/2+L/2-1,0,1,2,...,L/2—-2,L/2—1].
Consequently, the chiral (I"), the projections into the A
(T'4y) and B (I'p) sublattices, and the position (X) operators,
respectively, have the following forms [14,37]:

0 0O 0 0 O
0 0O 1 0 O
0 , Tp=]0 0 00 . (AD
0 0 0 0 1
. NxN : : . : NxN
0 0
0 0
0 0
+1 0 0 (A2)
L1 Lo
0 5_1 NxN
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Moreover, the expression of the random Hamiltonian matrix H [Eq. (4)] of the disordered SSH model in its linearized limit

reads as
0 m+We 0 0 0
m+We 0 1+ %6 0 0
0 1+ %6 0 m+We; 0 0
H = 0 0 m+ Wes 0 0 : (A3)
0 0 0 0 m +W6N_1
0 0 0 m+ WEN_1 0

where m and 1 are the intracell and intercell hoppings of the
periodic SSH chain, {¢;};—; y characterizes random parame-
ters drawn on the interval [—1 l], and W is the strength of

' 2°2
disorder.

APPENDIX B: “ZERO”-ENERGY STATES
IN THE DISORDERED SSH CHAIN

Here, we study in detail the properties of the two closest
to zero energy states along different regions in the (W, m)
parameter space. In Fig. 8(a), we plot the winding num-
ber, (V) [blue line-connected squares] along the line m = 0.6

FIG. 8. Sections of the topological phase diagram at (a) (W, m =
0.6) [dashed-dotted-dotted red line in Fig. 2(a)] and (b) (W, m =
1.05) [dashed-dotted green line in Fig. 2(a)]. On top of the wind-
ing number (V) (blue line-connected squares) we superimpose the
disorder-averaged energies of the modes closest to the center of
the spectrum from the negative (green line-connected triangles) and
positive (red line-connected circles) sides of the origin. The shaded
areas around the blue dotted curves indicate one standard deviation.

NxN

(

[dashed-dotted-dotted red line in Fig. 2(a)]. At around W =~
3.75, a topological transition appears. In Fig. 8(a), we super-
impose the average over 10* configurations of disorder of the
two energies (E) closest to zero. We clearly see that for a
non-zero winding number two modes persist at zero energy.
On the other hand, when the winding goes to zero these two
modes clearly acquire finite energy values.

In Fig. 8(b), we observe a similar behavior when we follow
the parametric line m = 1.05 [dashed-dotted green line in
Fig. 2(a)]. The main difference here compared to the case of
Fig. 8(a) is the emergence of a nontrivial topological phase
from a trivial one, varying the strength of disorder in the
range 2 S W < 3.5. This so-called disorder-induced topo-
logical phase is also accompanied by a pair of zero-energy
states.

The question now is where the zero-, or the closest-to-zero-
, energy states in both the nontrivial and trivial topological
phases are located within the chain. In order to address this
question, we consider three sets of parameters for m = 1.05
[i.e., along the dashed-dotted green line in Fig. 2(a)] with W =
0.5 [Figs. 9(a), 9(d), 9(g)], W = 2.98 [Figs. 9(b), 9(e), 9(h)],
and W = 4.5 [Figs. 9(c), 9(f), 9(G)]. The first and last cases
are located in the topologically trivial phase [Fig. 2(a)], while
the middle one corresponds to the nontrivial counterpart. We
first select representative configurations of disorder for these
parameter sets considering lattices with N = 500 particles,
and plot their energy bands in Figs. 9(a)-9(c). From the results
of these figures we confirm that there are zero-energy modes
only in the case of (W = 2.98, m = 1.05), inside the topologi-
cally nontrivial phase, as shown in the inset of Fig. 9(b), while
no such modes exist in the cases with (W = 0.5, m = 1.05)
and (W = 4.95, m = 1.05) which are within the trivial phase
of the chain. In addition, we plot in Figs. 9(d)-9(f) the ampli-
tudes of the modes with the smallest energies and show that
they are always localized. Nonetheless, in the topologically
trivial cases [Figs. 9(d) and 9(f)], we see that these modes are
located inside the bulk of the lattice while for the nontrivial
counterpart [Fig. 9(e)], we observe that the modes closest to
the center of the energy band are located at the boundaries of
the chain.

In order to support these rather qualitative results, we per-
form a statistical analysis on the states with energy closest to
the origin, by computing the probability distribution function
(PDF) of their center of mass

N

— 2
n, = Zn|Bn,u| s

n=1

(BI)
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FIG. 9. Results for representative configurations of disorder for three parameter sets along the line m = 1.05 in the (W, m) space with
W = 0.5 [(a), (d), (g)], W = 2.98 [(b), (e), (h)], and W = 4.95 [(c), (f), (1)]. (a)—(c) The energy spectra E as function of the mode number.
The insets in (b) and (c) are zooms of the spectra around the center within the range E € [—107*, 107*]. The yellow strips indicate the width
of the energy gap for the clean chain (W = 0). (d)—(f) Amplitude |B,|? of the modes with the smallest energies for the same configurations of
disorder as in (a)—(c). (g)—(i) PDFs of the center of mass of the modes closest to the center of the spectra, generated within intervals of size
50 sites along the chain. In all panels, the green (red) color corresponds to the mode closest to the center of the energy spectrum with £ < 0

(E > 0).

where n and w being the site and mode indices, with
S IBuul? = 1. Thus, as in the mechanical analog of the
disordered SSH chain [37], the numerically calculated PDFs
of the center of mass for about 10° configurations of disor-
der reveal that the modes with the smallest energies in the
topologically trivial phase can be located at any site along the
chain with practically equal likelihood [Figs. 9(g) and 9(i)].
On the other hand, within the nontrivial topological phase,
these modes are most likely to be situated at the edges of the
chain [Fig. 9(h)].

Let us discuss a bit more the trend of the PDFs depicted
in Fig. 9(g) in which we observed practically zero values at
the edge of the chain. Such behavior comes from the fact
that at small W, the modes are rather extended [see, e.g.,
Fig. 9(d)]. Consequently, the computation of the center of
mass [Eq. (B1)] of the modes located at, or close to, the

boundaries of the lattice, results to a value inside the bulk of
the chain.

APPENDIX C: WAVE-PACKET DYNAMICS
IN THE DISORDERED SSH CHAIN

We provide additional numerical simulations to further
substantiate the observations on the dynamics of localized
wave-packet excitations in the disordered SSH chain (Fig. 1).
In Fig. 10, we plot the time evolution of the wave packet
averaged over 2000 configurations of disorder, for three rep-
resentative parameter sets along the W = 2.04 line with m =
0.6 inside the topologically nontrivial region [blue square in
Fig. 2(a)], m = 1.15 at the topological transition curve [green
square in Fig. 2(a)], and m = 1.7 within the topologically
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FIG. 10. Similar to Fig. 3, but for (a) m = 0.6, (b) m = 1.15, and (c) m = 1.7 with W = 2.04 line corresponding to the blue, green, and
red squares in Fig. 2(a). The amplitudes are averaged over 2000 configurations of disorder.

trivial phase [red square in Fig. 2(a)]. We find that within the
two topologically distinct regions, a halt in the spreading of
the wave packet after a finite time occurs [Figs. 10(a) and
10(c)]. However, for the case at the topological transition
curve, a continuous wave-packet growth is seen up to the
largest time of our simulations (¢ &~ 10°).

Figure 11 presents the time evolution of the moments
M,, q=1,2,3,4, of the wave packet averaged over 9000
configurations of disorder, for the two representatives sets
of parameters of Fig. 10(a) with m = 0.6 (blue curves in
Fig. 11) and Fig. 10(c) with m = 1.7 (red curves in Fig. 11).
For these cases, the M, (¢) [Fig. 11(a)], M»(¢) [Fig. 11(b)],
M;(t) [Fig. 11(c)], and Mq4(¢) [Fig. 11(d)] tend to grow at
the early stage of the evolution. At larger times, it is clear
that all moments asymptotically saturate to different values
depending on the (W, m) point. It is worth emphasizing that
the outcomes of the same analysis for the case of Fig. 10(b) are
presented in Fig. 5. In this case a clear growth of the moments
is observed, in agreement with the wave-packet spreading
observed in Fig. 10(b).
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FIG. 11. Similar to Fig. 4 but for (W =2.04, m = 0.6) [blue
(b) curves] and (W = 2.04, m = 1.17) [red (r) curves]. The results

were obtained by averaging the moments over 9000 configurations
of disorder.
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