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Statistical aspects of a quantum Hopfield model
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In this paper, we study the eigenstate properties of a quantum Hopfield model by the exact diagonalization
method. The local permutational symmetry in this model organizes the spins into clusters, which can each be
considered a large quantum spin interacting with others. It is shown that such a quantum Hopfield model, even
though without dissipation, is interesting in its own right as an example of quantum frustrated magnetism and
quantum spin glass. It exhibits three distinct phases: a low-energy spin-glass phase at a low transverse field, a
thermal paramagnetic phase at a high transverse field, and a nonthermal high-energy paramagnetic phase. The
dynamics of the revival probability starting from a memory pattern in such a closed quantum many-body model
has also been studied.
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I. INTRODUCTION

Human memory is one of the most prominent emergent
phenomena in neural networks, where memory patterns are
retrieved by association. A toy model, known as the Hopfield
model, is proposed to illustrate the associative memory from
the perspective of statistical physics [1]. In such a classical
statistical model, the emergent dynamically stable configu-
rations are correlated with certain memory patterns, which
enables the system to retrieve the correct stored configuration
via the classical annealing process [2,3]. From the statisti-
cal physics point of view, the Hopfield model is one type
of spin-glass (SG) model [4], while the strong disorder cor-
relation between the bonds in the Hopfield model yields a
structure considerably simpler [5] than that in conventional
SG models [6,7]. Although the SG is essentially classical, in-
corporating the quantum effect gives rise to a plethora of novel
phenomena due to the interplay between quantum fluctuations
and the frustration-induced rugged energy landscape [8–12].
To realize a quantum generalization of the retrieval phase
of the classical Hopfield model, one needs to include dissi-
pation into the quantum Hopfield model to mimic classical
annealing [13,14]. However, as we will show in the following,
the closed quantum Hopfield model without dissipation, as
an example of frustrated quantum magnetism and quantum
SG, is interesting in its own right. Some analytic progress
has been made for this quantum Hopfield model, including
the revelation of independent free energy from the choices of
patterns in the case p � αN with α �= 0 and N → ∞ [15].

In this paper, we consider the quantum Hopfield model
as a closed quantum many-body system and investigate its
eigenstate properties using exact diagonalization (ED). The
local permutation symmetry of this model enables us to
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explore systems with relatively large system size. It is shown
that according to the strength of quantum fluctuation (trans-
verse field) and the energy, the eigenstates of this model
can be classified into three distinct groups: The low-energy
eigenstates with weak transverse field are characterized by
SG ordering with spontaneous Z2 symmetry breaking, while
in the presence of strong transverse field, the quantum SG
phase gives way to a thermal paramagnetic (PM) phase. Most
interestingly, the high-energy eigenstates at weak transverse
field seem to be also paramagnetic but nonthermal, which
is characterized by the absence of energy repulsion in the
level space statistics. The quantum dynamics starting from
particular spin configurations (memory patterns) has also been
investigated to characterize the revival probability in such a
closed system.

II. MODEL AND METHOD

The studied model is a quantum generalization of the Hop-
field model whose Hamiltonian is a transverse Ising model
with all-to-all coupling:

H = −1

2

∑
i �= j

Ji j ŝ
z
i ŝ

z
j − hx

∑
i

ŝx
i , (1)

where ŝα
i = 1

2 σ̂ α
i , with α = x, y, z and σ̂ α

i being Pauli matrices
on site i, and hx is the strength of the uniform transverse
magnetic field. The interaction strength between sites i and
j is defined as

Ji j = J

N

p∑
μ=1

ξ
μ
i ξ

μ
j , (2)

where N is the number of lattice sites. p is the number of
patterns embedded in the system (μ is the pattern index),
where each pattern can be considered as an N-dimensional
vector �ξμ = {ξμ

1 , ξ
μ
2 , . . . , ξ

μ
N } with ξ

μ
i taken to be quenched,
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independent, random variables (ξμ
i = ±1 with equal probabil-

ities). Memory patterns �ξμ are stored in the quenched random
couplings via Eq. (2).

In the absence of the transverse field (hx = 0), the Hamil-
tonian (1) is reduced to a classical Hopfield model with the
capacity to retrieve information embedded in the memory
patterns �ξμ. If one begins from a classical spin configuration
similar enough to one of the stored patterns �ξμ, the classical
Hopfield model system could retrieve the correct pattern via
classical annealing. In the thermodynamic limit (N → ∞),
such a retrieval occurs if p/N is less than a critical value [2],
whereas for cases with a finite p, the energy of the classi-
cal Hamiltonian is minimized by the 2p spin configurations:
�s = ± 1

2
�ξ 1···p (Mattis states). The symmetric and asymmetric

mixing of these Mattis states as metastable states has also been
analyzed [3].

Now, we turn to the quantum Hamiltonian (1) (hx > 0),
where we choose the basis as the eigenstates of ŝz: |�s〉 =
|sz

1, . . . , sz
N 〉. The analysis in this paper is restricted to the case

of a small finite p. We first analyze the symmetry of Eq. (1).
The simplest case is p = 1, where the disorder can be gauged
away [16] and there is no frustration. By performing a gauge
transformation,

s̃z
i = ξ 1

i ŝz
i , (3)

the Hamiltonian (1) becomes a ferromagnetic (FM) transverse
Ising model with uniform all-to-all coupling, where the per-
mutational symmetry (PS) among different sites allows us to
combine all the spins into a combined spin with operators
Ŝα = ∑

i s̃α
i and Eq. (1) becomes a Lipkin-Meshkov-Glick

(LMG) Hamiltonian [17],

H1 = − J

2N
(Ŝz )2 − hxŜx, (4)

with the self-interaction term i = j included, which is just a
constant term. Such a gauge transformation applies not only
for p = 1, but also for general p cases, where we can always
choose one of the patterns (say, pattern 1), and transform it
into an FM pattern via the transformation in Eq. (3); all the
other patterns are also changed accordingly as

ξ̃
μ
i = ξ 1

i ξ
μ
i , (5)

and thus the original memory patterns {�ξμ} have been trans-

formed into a set of new ones {�̃ξμ}, where at least one of them
is a uniform FM pattern satisfying ξ 1

i = 1 ∀i. Therefore, with-
out losing generality, in the following discussion, we always
choose pattern 1 as the FM pattern.

For p = 2, the system can be divided into two clusters
according to the sign of ξ 1

i ξ 2
i : The ith site satisfying ξ 1

i ξ 2
i = 1

(−1) belongs to cluster 1 (2). Similar to p = 1, the PS within
each cluster enables us to combine the spins within it as
Ŝα

a = ∑
i∈a ŝα

i , where a = 1, 2 is the cluster index. It is easy
to check that there is no coupling between the two clusters
according to Eq. (2), and the Hamiltonian turns into two
decoupled LMG models, as shown in Fig. 1(b). For the cases
with p > 2, the lattice sites can be classified into 2p−1 clusters,
each of which is a combined spin interacting with others via
the FM or antiferromagnetic (AFM) coupling. For example,
the classification scheme of lattice sites for p = 3 is shown

FIG. 1. (a) Classification scheme of lattice sites and effective
Hamiltonian for p = 2, p = 3, and p = 4. μ is the index of patterns.
(b) Sketches of the effective Hamiltonian for p = 1–4, where the
combined spins are located on the vertex and the blue (red) bonds
represent FM (AFM) couplings between them.

in Fig. 1(a), where each cluster is represented by a combined
spin located on the vertex of a square. The blue bonds denote
FM interactions, and the red ones represent AFM couplings,
which lead to frustration. Similarly, for p = 4, the Hamilto-
nian of the quantum Hopfield model can be expressed in terms
of the combined spin operators as

H =
8∑

a=1

[
−2J

N

(
Ŝz

a

)2 − hxŜx
a

]
− 2J

N

∑
〈ab〉

Ŝz
aŜz

b + 2J

N

∑
{ab}

Ŝz
aŜz

b,

(6)
where Ŝz/x

a = ∑
i∈a ŝx/z

i is the spin operator of cluster a,
∑

〈ab〉
is the summation over the bonds on the 12 edges of the cube as
shown in Fig. 1(b), which represents ferromagnetic coupling,
and

∑
{ab} is the summation over the bonds on the four body

diagonals of the cube, which represents the antiferromagnetic
couplings. It is worth noticing that there is no coupling be-
tween the two spins along the surface diagonals of the cube.

In this paper, we study the properties of eigenstates of the
Hamiltonian (1) via the exact diagonalization method. The PS
within each cluster allows us to block-diagonalize the Hamil-
tonian. Throughout this paper, we choose the fully symmetric
subspace, which corresponds to the Hilbert space with the
largest total spin. Accounting for the PS not only significantly
reduces the Hilbert space dimension, but also allows us to
resolve the accidental degeneracy between the energy levels
in subspaces with different conserved quantities, which is im-
portant to analyze the level space statistics. In the following,
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we focus on the case of p = 4, which represents a generic
situation of the Hopfield model with finite p, in contrast to
the “special” cases (e.g., p = 1, 2). (The p = 3 case has also
been checked, and there is no qualitative difference between
the cases with p = 3 and p = 4.)

We randomly sample N sets of independent memory pat-
terns {�ξ 1 · · · �ξ p} with N = 103, and the ensemble average is
performed over all N pattern realizations. For certain spe-
cial memory patterns, additional symmetry other than the
local permutational symmetry may emerge in the effective
Hamiltonian. These additional symmetries could give rise to
accidental degeneracy in the energy spectrum. Take the case
of p = 3 as an example, where the sites are classified into
four clusters as shown in Fig. 1(b), for a special configuration
with Ni = N/4 ∀i, with Ni being the number of spins in the ith
cluster; the systems become a spin chain with next-nearest in-
teractions and periodic boundary conditions, and thus there is
an additional translational (or fourfold rotational) symmetry,
which will give rise to conserved quantities that may lead to
accidental degeneracy. Even though the probability of these
special patterns approaches zero in the thermodynamic limit,
they do exist in pattern sampling for finite-size systems and
thus will change the properties of the energy level statistics.
Therefore we eliminate these kinds of special patterns in our
sampling.

III. SPIN-GLASS TRANSITION

In the classical limit (hx = 0), the system experiences
a thermal phase transition from a low-temperature SG-like
magnetic phase to a high-temperature paramagnetic phase. In
the presence of a weak transverse field, we conjecture that
there may be a similar transition that separates the low- and
high-energy eigenstates of the Hamiltonian (1). To verify this
point numerically, we define the SG susceptibility for the nth
eigenstate |n〉 [9,18],

χn = 1

N

∑
i, j

〈n|ŝz
i ŝ

z
j |n〉2, (7)

and calculate its dependence on the normalized energy density
ε = En−Emin

Emax−Emin
, where En is the eigenenergy of |n〉 and Emin

(Emax) is the minimum (maximum) eigenenergy. We define
χ (ε) = 〈χn〉ε , where the average 〈 〉ε is performed over all
the eigenstates within the energy window [ε, ε + �] with
� = 0.01. We plot χ (ε) with a small fixed transverse field
(hx = 0.1J) for various system sizes in Fig. 2(a), which shows
that at low energy, χ (ε) linearly diverges with the system size
[χ (ε) ∼ N]: a signature of spin freezing and long-range cor-
relation. In contrast, at high energy, χ (ε) approaches a finite
value in the thermodynamic limit, indicating a short-range
correlation only. The distinct behaviors of χ (ε) between the
low- and high-energy eigenstates suggest a phase transition
between them, which is characterized by the crossing point
(εc) between the χ (ε) curves with different N .

Generally, quantum fluctuation also suppresses the SG
order in the low-energy eigenstates and makes it give way
to a quantum paramagnetic phase, which is similar to what
happens in a conventional transverse Ising model. To verify
this point, we restrict our discussion for the ground state of

FIG. 2. (a) Spin-glass susceptibility χ as a function of normal-
ized energy ε for different system sizes with hx = 0.1J . The inset
indicates the system size dependence of χ with a fixed ε = 0.1 within
the SG phase. (b) Spin-glass susceptibility χ0 of the ground state as
a function of transverse field hx for different system sizes.

the Hamiltonian (1) and tune the strength of the transverse
field hx. We also use the corresponding SG susceptibility χ0

[n = 0 in Eq. (7) corresponds to the ground state |0〉] to char-
acterize the quantum phase transition induced by quantum
fluctuations. The ground state can be obtained by the Lanc-
zos algorithm, which enables us to diagonalize systems with
relatively larger system size (up to N = 50). The dependence
of χ0 on hx is plotted in Fig. 2(b), which also exhibits a
crossing point at a critical transverse field hc � 0.57J for the
curves of different system sizes. Below this critical point, χ0

diverges with the system size, indicating the presence of SG
long-range order. For hx > hc, χ0 extrapolates a finite value
that is independent of N , which is similar to the high-energy
case studied above.

In summary, the low-energy eigenstates of the Hamilto-
nian (1) with weak transverse field are in a SG phase, which
can be destroyed by either increasing the energy or increas-
ing the transverse field. In spite of the similarity between
the PM phase driven by the energy and that driven by the
transverse field, an important question is whether they belong
to the same class. In a quantum p-spin model, there exists
an intermediate nonthermal PM phase at a small transverse
field, which is different from a thermal PM phase at a large
transverse field [8], whereas numerical studies of a quantum
Sherrington and Kirkpatrick model seem to suggest a different
scenario [9]. In the following, we will show that there indeed
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FIG. 3. (a) Average ratio of adjacent level spacing r(ε) as a function of normalized energy ε with different system sizes and fixed hx = 0.1J .
(b) Distributions of rn in the thermal (hx = 2J) and nonthermal (hx = 0.1J) paramagnetic eigenstates. (c) Dependence of the average rn on hx in
the paramagnetic phases. The statistics and average are performed over the eigenstates within the normalized energy window ε ∈ [0.45, 0.55]
for (b) and (c).

exist two different PM phases in the quantum Hopfield model,
while neither of them is a many-body localized (MBL) phase.

IV. A LEVEL SPACE STATISTICS DIAGNOSIS

The thermal PM phase at a large transverse field can be
distinguished from the nonthermal PM phase with high energy
but small transverse field via the energy level repulsion, which
in turn can be determined by the ratio of adjacent level spac-
ing in the energy spectrum rn = min(δn,δn+1 )

max(δn,δn+1 ) [19], where δn =
En − En−1 is the level spacing between consecutive energy
levels in the ordered list of eigenenergies {En} of the Hamil-
tonian. For thermal states, the distribution of the level spacing
P(r) is expected to follow a Gaussian orthogonal ensemble
(GOE) [20], which is characterized by the vanishing of P(r)
for r → 0 (level repulsion) and a mean value 〈rn〉 � 0.536,
while for nonthermal phases, P(r) typically follows a Poisson
distribution with a mean value 〈rn〉 � 0.386.

We first focus on the case with a weak transverse field and
study the ε dependence of r(ε) = 〈rn〉ε with a fixed hx = 0.1J .
As shown in Fig. 3(a), for small ε, r(ε) strongly depends
on the system size, and its values are significantly smaller
than the average values in the GOE or Poisson distributions.
This is because at low energy, an SG phase is accompanied
by a spontaneous Z2 symmetry breaking. The typical gap
between a low-energy eigenstate and its Z2 symmetric coun-
terpart is exponentially small; thus the average value of rn is
lowered [21]. For large ε, r(ε) approaches the value of 0.41,
slightly higher than the mean value of Poisson distributions.
To explore the properties of the high-energy eigenstates, we
focus on the eigenstates within energy windows around the
spectrum center (εn ∈ [0.45, 0.55]) and calculate their rn dis-
tribution, which resembles the Poisson distribution but is far
from the GOE distribution, as shown in Fig. 3(b).

One may wonder whether the absence of level repulsion
in the case of small hx is due to some trivial reasons, for
instance, a “hidden” symmetry other than PS that can be used
to further block-diagonalize the Hamiltonian and thus give
rise to accidental degeneracy between the energy levels in
different blocks. To preclude this possibility, we study the case
with a large hx, whose Hamiltonian shares exactly the same
symmetries with the small-hx ones. Figure 3(b) shows that
the distribution of rn in the case of hx = 2J follows the GOE
statistics, indicating that there are two types of PM states:

the thermal eigenstates of the Hamiltonian (1) with large hx

and the nonthermal ones in the small-hx cases. The difference
between them can be characterized by 〈rn〉mid, where the aver-
age 〈 〉mid is over eigenstates within energy windows around
the spectrum center (εn ∈ [0.45, 0.55]). The dependence of
〈rn〉mid on hx for different system sizes is plotted in Fig. 3(c),
which seems to indicate a crossover instead of a phase transi-
tion between the two PM phases.

Another possible trivial explanation for the absence of level
repulsion is that the value of hx we choose (hx = 0.1J) is
too small and thus the thermalization can only be seen in a
relatively large system which is beyond the largest system
size in our current simulation. It is known that for an inte-
grable model with a small integrability-breaking perturbation,
even though the system is known to be thermalized by the
perturbation in the thermodynamic limit, for a finite (small)
system, the P(r) still looks similar to the Poisson distribution.
The GOE statistics can only be seen in a sufficiently large
system [22–25]. In addition, for some models with small
perturbation, it is possible that new conserved quantities could
emerge in the corresponding effective model (e.g., an emer-
gent global conservation law of the domain wall number in a
d-dimensional transverse Ising model [26]). To preclude the
possibility that the absence of level repulsion is an artifact of
small hx, we calculate P(r) for the case with a relatively large
hx. As shown in Fig. 3(b), there is no qualitative difference
between the P(r) in the case with hx = 0.1J and that in the
case with hx = 0.5J (notice that the ground-state quantum
phase transition occurs at hc = 0.56J and thus hx = 0.5J is
a relatively large value and already close to the critical point),
indicating that the absence of level repulsion is not an artifact
of the finite-size effect in the presence of small hx.

V. OTHER PROPERTIES OF THE NONTHERMAL
PARAMAGNETIC STATES

Another diagnostic of thermalization for quantum systems
is the eigenstate thermalization hypothesis (ETH) [27–29],
which states that for a sufficiently large generic quantum
many-body system, the expectation value of a few-body oper-
ator in an eigenstate of the Hamiltonian is a smooth function
of its eigenenergy. To examine the ETH, we choose the op-
erator of the FM order parameter, Mn = 1

N

√〈n|(∑i ŝz
i )2|n〉,

and calculate its expectation value in different eigenstates as a
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FIG. 4. (a) Eigenstate expectation values of the FM order pa-
rameters Mn as a function of ε in the nonthermal (hx = 0.1J , upper
panel) and thermal (hx = 2J , lower panel) phases. (b) System size
dependence of the averaged partition ratio η for different hx , where
the statistics and average are performed over the eigenstates within
the normalized energy window ε ∈ [0.45, 0.55].

function of eigenenergies. As shown in Fig. 4(a), for a fixed ε

close to the spectrum center, the distribution of Mn is diverse
in the nonthermal PM phase (hx = 0.1J), and its variance
increases with the system size, which seems to indicate that
the ETH is broken. Persuasive evidence of ETH breaking calls
for a systematic comparison between the variances of Mn for
different system sizes. However, due to the large statistical er-
ror bar and limited system size in our simulation, it is difficult
to conclude whether ETH is broken or not for the high-energy
paramagnetic states.

A well-known example of a high-energy nonthermal state
is the many-body localized phase [19,30–32], where the phys-
ical origin of ergodicity breaking is the quantum-interference
effect. To distinguish the nonthermal state in the quantum
Hopfield model from the MBL phases, we calculate the par-
ticipation ratio of the eigenstates η = 〈∑i |
n(i)|4〉mid, where

n(i) = 〈n|�si〉 is the coefficient of the nth eigenstate pro-
jected on the ith Fock basis |�si〉 and 〈 〉mid is defined above.
Figure 4(b) shows η as a function of system size for two dif-
ferent PM phases, both of which exhibit exponential decays,
indicating that there is no localization in the Fock space for

FIG. 5. (a) The time evolution of the revival probability O(t ) for
systems with different system sizes and hx = 0.1J (upper panel) and
hx = 2J (lower panel). (b) and (c) The system size dependence of the
time-averaged revival probability 〈O〉 for hx = 0.1J and hx = 2J in
the model with p = 4 (b) and p = 3 (c).

either thermal or nonthermal PM eigenstates and thus neither
of them is an MBL state.

VI. REVIVAL PROBABILITY
OF THE MEMORY PATTERNS

In the classical Hopfield model, it is known that associative
memory is related to a classical annealing process, where
dissipation is important to drive the system into the mem-
ory patterns (stable low-energy configurations). In our closed
quantum Hopfield model, there is no dissipation; thus it is an
interesting question whether the system can memorize its ini-
tial state information. In general, when thermalization occurs,
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all the initial state information except energy is washed out
after a sufficiently long time, and the system can be described
by a statistical ensemble. However, for a nonthermal state, it
is possible that the initial state information can be partially
preserved.

We choose the initial state as one of p memory patterns
(�ξμ with μ ∈ [1, . . . , p]), which is a product state denoted
by |ψ0〉 = |sz

i s
z
2 · · · sz

N 〉 with sz
i = ξ

μ
i ∀i. During the time evo-

lution, we calculate the revival probability for the system to
return to such an initial state:

O(t ) = |〈ψ0|e−iHt |ψ0〉|, (8)

where H is the Hamiltonian of the quantum Hopfield model
defined in Eq. (1). The average Ā is performed over the ensem-
ble average of the N sets of memory patterns {�ξ}. In a thermal
phase, the thermalization of the wave function indicates that
its projection on a particular basis is ∼O(1/

√
V ), where V

is the Hilbert space of the system that diverges exponen-
tially with the system size (V̄ = 4456, 14 637, and 43 296
for N = 18, 22, and 26, respectively, where V̄ indicates the
average over N sets of memory patterns). This agrees with
our numerical results for hx = 2J . Figure 5(a) indicates that
in the case with hx = 2J and finite system sizes N , O(t ) will
quickly decay to a small value accompanied by fluctuations.
One can further perform the average over the second half of
the simulation time to derive the saturated value of O(t ):

〈O〉 = 2

T

∫ T

T
2

dtO(t ), (9)

where T = 104J−1 is the simulation time. Figure 5(b) shows
that for hx = 2J , 〈O〉 decays exponentially with N (for in-
stance, 〈O〉 ∼ 1√

V indicates that the ratio 〈O(L=26)〉
〈O(L=18)〉 = 0.38

should roughly agree with
√

V̄ (N=18)
V̄ (N=26)

= 0.32 in the thermal
phase with hx = 2J). Although for the case with hx = 0.1J
the saturated value of O(t ) is much larger than that in the case
with hx = 2J , 〈O〉 slowly decays with system size. However,
the difference between the values of 〈O〉 with variant N is
significantly smaller than the statistical error bar. To draw a
conclusion, we perform the same analysis on the case p = 3,
which allows us to study a larger system size. As shown in

Fig. 5(c), the saturated value of O(t ) decays exponentially
with increasing N with both hx = 0.1J and hx = 2J , which
indicates that the revival probability will go to zero in the
thermodynamic limit in both the spin-glass and paramagnetic
phases.

VII. CONCLUSION AND OUTLOOK

In summary, we have studied the eigenstate properties of
the quantum Hopfield Hamiltonian and found two different
types of PM states in this model. Future developments will
include studies of the real-time evolution of this model from
the initial states other than the memory patterns, including
the quantum quench and periodically driven dynamics. In
general, ergodicity breaking indicates that the system will
not equilibrate to a thermal state [33,34], but whether it
will approach a nonthermal steady state or exhibit persistent
oscillations like the quantum scar [35] or the infinite-range
interacting systems [36–38] is an interesting question worthy
of further study. Furthermore, imposing a periodic drive on
such a model does not necessarily drive the system into an
infinite-temperature state and thus may open new possibilities
to explore nontrivial dynamics such as discrete time crys-
tals [39–42]. Finally, since the Hopfield model is proposed
to mimic associative memory, a fundamental question is the
relationship between the associative memory and the ergodic-
ity breaking in this quantum model. However, a mimic of the
associative memory calls for dissipation, which has not been
considered here. Incorporating dissipation further complicates
the system but might give rise to intriguing phenomena due
to the interplay between the quantum fluctuation and frustra-
tion [13,43].
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