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Elastic topological states have been receiving increased attention in numerous scientific and engineering fields
due to their defect-immune nature, resulting in applications of vibration control and information processing.
Here, we present the data-driven discovery of elastic topological states using dynamic mode decomposition
(DMD). The DMD spectrum and DMD modes are retrieved from the propagation of the relevant states along
the topological boundary, where their nature is learned by DMD. Applications such as classification and
synthesis of wave propagation can be achieved by the underlying characteristics from DMD. We demonstrate
the classification between topological and traditional metamaterials using DMD modes. Moreover, the model
enabled by the DMD modes realizes the synthesis of topological state propagation along the given interface.
Our approach to characterizing topological states using DMD can pave the way towards data-driven discovery

of topological phenomena in material physics and more broadly lattice systems.
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I. INTRODUCTION

Wave propagation is a typical spatiotemporal phenomenon,
which is ubiquitous across science and engineering, especially
in fluid dynamics [1,2], geoscience [3,4], plasmas [5], op-
tics [6], atomic and condensed-matter physics [7], as well as
the more recent field of metamaterials [8—10]. Topological
metamaterials have attracted considerable attention not only
because of their theoretical significance but also for practical
purposes related to materials applications. Wave propagation
in elastic topological metamaterials has prominent applica-
tions, such as information transmission and vibration control,
due to the topological protection [11-16].

The computations involving the propagation of associ-
ated waveforms rely mostly on numerical discretization, e.g.,
finite-element and discrete-element methods, rather than an-
alytic closed-form solutions which are rarely available in
exact form. This naturally generates high-dimensional repre-
sentations of the solution to accurately reflect the underlying
dynamics in both time and space [11,13,14,17]. However, this
may occasionally be in contrast with the low-dimensional
nature of the underlying dynamics and poses a computa-
tional challenge, especially in higher-dimensional settings. In
a concurrent study, topological wave propagation has been
decomposed into a limited subset of closely spaced modes
inside the band gap, possessing nontrivial phase differences.
The prediction of group velocity and the application of such
a method on a damped system have also been demonstrated
[18]. Although the underlying idea of a reduced-order de-
scription is similar to that of the present work, still, the
data-driven (and possibly model agnostic) analysis and mod-
eling of elastic topological states remain far less explored, in
stark contrast with the extensive studies on experimental ob-
servation, numerical computation, and theoretical modeling.
The data-driven approach can also provide an equation-free
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and model-agnostic way to reveal the spatiotemporal dynam-
ics and underlying physics purely from data. It is the purpose
of the present work to offer a step forward towards filling that
void.

Reduced-order models offer representations of the spa-
tiotemporal wave propagation based on the inherently low-
rank structure of the simulation data. Within the palette of
relevant techniques, dynamic mode decomposition (DMD)
is a powerful dimensionality reduction method to create
reduced-order models which identifies spatiotemporal co-
herent structures from high-dimensional data [19]. DMD
offers a modal decomposition, where each mode contains
spatially correlated structures with the same linear behav-
ior in time, such as oscillations at a certain frequency with
growth or decay. Compared with one of the most commonly
used dimensionality reduction methods, proper orthogonal
decomposition, DMD demonstrates not only dimensionality
reduction, but also a reduced model that accounts for how
these modes evolve over time. Lately, DMD has been success-
fully applied to fluid dynamics [19,20], control [21], robotics
[22], and biological science [23-25]. Hence, developing such
an approach for wave propagation in topological metamateri-
als is highly desirable.

Here, we develop a data-driven framework using DMD for
identifying interpretable low-dimensional representations for
wave propagation in elastic topological metamaterials created
by a select spring-mass system example. The low-dimensional
spatiotemporal coherent structures of topological state propa-
gation in our system are extracted, which correspond to the
topological edge states inside the band-gap region. These
spatiotemporal coherent structures allow for the qualitative
reconstruction of the topological state propagation. Moreover,
we first demonstrate how to classify the topological and tra-
ditional metamaterials using DMD modes via unsupervised
clustering. Furthermore, a portion of the data, referred to as
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the training data, is used to synthesize the future evolution of
the topological states of interest along a predefined interface
with arbitrary shape. Our study provides a computationally
tractable data-driven characterization of the relevant states and
their propagation, paving the way towards the classification
and synthesis of wave propagation in elastic metamaterials.

Our presentation hereafter will be structured as follows.
In Sec. IT we offer details about the physical system under
consideration including the band structure and topological
properties. In Sec. III we provide a concise introduction to
the mathematical and computational details of the DMD al-
gorithm (including technical modifications to the standard
algorithm such as the use of a stacking data matrix leveraged
herein) and illustrate how it can be used to represent the wave
dynamics. In Sec. IV, we use DMD modes to classify the
topological and traditional metamaterials. Finally, in Sec. V,
we summarize our findings and provide some directions for
future study. The appendixes offer details about further tech-
nical aspects of the DMD implementation, such as the DMD
spectra, the application of time-delay embedding, and synthe-
sis of topological state propagation.

II. DESIGN OF TOPOLOGICAL ELASTIC
METAMATERIALS

To demonstrate DMD on the wave propagation in the
topological elastic metamaterials system of interest, we first
construct the topological valley metamaterials using a spring-
mass system, which is realized by alternating the masses
at different sites of the unit cell of the honeycomb lattice
[14,17,26,27]. As displayed in Fig. 1(a), the unit cell is com-
posed of two masses m; and m, connected by a spring. The
length and the spring constant are a and kgying. Therefore,
the basic vectors for this unit cell are d; = [ay, —a,], dr =
la,, ay], where a, = 3a/2 and a, = v/3a/2. The unit cell has
four degrees of freedom specified by the displacement of m;
and my (U = [u", u)", u}?, u””]T) After applying the peri-
odic boundary condltlon to the unit cell (Bloch’s theorem),
equations of motion of two masses in one unit cell can be
written as

—a)zmlﬁ(l) = kspring[(ﬁ(Z) - ﬁ(])) e
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where &, =11, 017, & =[-1, */;]T, and & =
—%, —g]r are three unit vectors along the springs on

one mass. The band structure w(k) of our system can be
obtained by solving the eigenvalue equation as a function of
Bloch wave vector k in the first Brillouin zone.
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FIG. 1. Band structure of the valley topological metamaterials.
(a) Schematic of our elastic metamaterials based on the spring-mass
system. Basic vectors of unit cell are shown in d; and d,. Length of
the spring is a. First Brillouin zone with high-symmetry points I", M,
and K is shown in the middle panel. Sandwiched supercell for the
calculation of projected band structure is shown in the right panel.
(b) Band structure when (left) m; = 0.8 kg, my = 1.2 kg, (middle)
my =1 kg, my =1 kg, and (right) m; = 1.2 kg, my = 0.8 kg are
shown. Eigenmodes corresponding to the K valley are shown in the
first panel and the third panel. Motions along horizontal and vertical
directions are marked on the two sites. Berry curvatures around
the valley of the first band for each case are shown in the inset.
(c) Projected band structure with two topological states inside the
band gap. Black dashed line indicates the excitation frequency of the
simulation setup.

Here, w denotes the angular frequency of the propagating
wave, M is the mass matrix, and D(k) is the stiffness matrix
as a function of Bloch wave vector k. The corresponding
eigenmodes U = [u}", u;’” uy?, um’]T can also be obtained.

As for our specific system, we choose the equal masses
on two sites (m; = my = 1 kg) and Kpring = 10° N/m to find
the Dirac point at the corner of the Brillouin zone (K point),
as shown in the middle panel of Fig. 1(a). After breaking
spatial inversion symmetry by unequal masses on two sites,
two bands can be opened to form a band gap. The left and right
panels exhibit the band structure when m; = 0.8 kg, my = 1.2
kg, and m; = 1.2 kg, m, = 0.8 kg, respectively. At the K
valley, eigenmodes corresponding to two bands when m; =
0.8 kg and m; = 1.2 kg are U} = ﬁ[o, 0,1,—i]" and U, =

%2[1, i,0,0]7, while the eigenmodes are U; = %[1, i,0,017

and U, = \/%[O, 0, 1, —i]” after alternating the masses on two
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FIG. 2. Setup for simulation and for the numerical DMD implementation. (a) Simulation of wave propagation along the Z-shaped interface
in a valley topological metamaterial built by means of a spring-mass system. Two different unit cells with two different topological phases
are shown on the two sides. Magnified view of the topological boundary (black line) is shown in the inset. (b), (c) Snapshots of original and
reconstructed wave propagation represented by the horizontal displacement u, along the Z-shaped interface att = 2, 192, 380, 570, and 758 ms

(with the time evolving from the bottom to the top), respectively.

sites (see the insets with black arrows that represent the eigen-
modes). The obvious band inversion can be seen from the
eigenmodes of the unit cell.

To further confirm the band inversion in this process,
the topological properties of our topological valley
system are also explored to show the topological phase
transition. After obtaining the band structure w(k) and
the corresponding eigenmode U(k), we calculate the

J

Berry curvature Q(k) = iVy x (u(k)|Vi|u(k)) using a
numerical discretization method (in momentum space)
[11,12]. For our two-dimensional system, the Brillouin
zone is discretized to numerous small patches centered
at A(k., ky) with vertices Aj(k, — 8kc/2, ky, — 8ky/2),
Ap(ky — 8k /2, ky+ 8ky/2),  As(ky 4 8ke/2, ky + 6k, /2),
and A4(ky + 8k, /2, k, — 8k,/2), where the Berry curvature
for each small patch can be expressed as

Im[{U(A) | U(A2)) + (U(A2) | U(A3)) + (U(A3) | U(A4)) + (U(Ag) | U(A))]

QA) =

As shown in the inset of Fig. 1(b), the nonzero Berry cur-
vatures are distributed near the corners of the Brillouin zone
(K points) and different valleys possess opposite Berry cur-
vatures. Due to our system with time-reversal symmetry, the
integration of the Berry curvature around the whole Brillouin
zone is expected to be zero. However, the local integration
around the valleys of the Berry curvature converges to nonzero
quantized value, which is referred to as valley Chern number
C, = % fu Q(k)d?k, representing the valley topology. The
obvious inversion of Berry curvature distribution and the sign
of the valley Chern number after alternating the masses on two
sites clearly shows the topological phase transition [compare
the insets of the right and left panels in Fig. 1(b)].

The projected band structure is then calculated using a
sandwiched supercell shown in the right panel of Fig. 1(a).
The sandwiched supercell combines the metamaterials of
three arrangements: (i) m; = 0.8 kg and m, = 1.2 kg, (ii)
my = 1.2kgand m, = 0.8 kg, and (iii) m; = 0.8 kg and mp =
1.2 kg, which has two opposite Berry curvature distributions
in the Brillouin zone. When two systems are interfaced with
opposite Berry curvature, the bulk-boundary correspondence
principle ensures that two topological states with different
pseudospins corresponding to two types of interfaces emerge
inside the band gap, as shown in Fig. 1(c). The bulk fea-
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tured by K and K valleys can also be observed from the
projected band structure. In the following study, the excitation
frequency of our simulation is 400 rad/s as indicated by the
black dashed line in Fig. 1(c).

III. CHARACTERIZATION BY DYNAMIC MODE
DECOMPOSITION

As shown in Fig. 2(a), our system bears a Z-shaped inter-
face which is formed by combining metamaterials with two
opposite topological phases. In Fig. 2(a), one such interface is
formed by m; = 0.8 kg (blue) and m, = 1.2 kg (red) shown
in the bottom, while the other is formed by m; = 1.2 kg
(red) and m, = 0.8 kg (blue) shown in the top, i.e., with the
masses flipped. The spring constant is fixed to be 10° N/m. As
analyzed in the previous section, with such a configuration,
the topological states will emerge along the interface formed
by two metamaterials.

The system is excited by an oscillating force with the an-
gular frequency of 400 rad/s at the input port of the Z-shaped
interface shown in Fig. 2(a). The masses at the boundaries
of the system are connected to springs fixed to the wall,
i.e., Fboundary = —kepringii, Where ii contains horizontal dis-
placement u, and vertical displacement u,. Because of the
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topological protection of wave propagation, the elastic wave
can travel through the sharp bend robustly, the horizontal
displacement u, of which is visualized as the time-series snap-
shots in Fig. 2(b).

Next, we attempt to reconstruct this wave propagation phe-
nomenon using the DMD approach. Let us present the result
of the DMD approach first. Figure 2(c) shows the reconstruc-
tion of the horizontal displacement u,. We find the trend of
the DMD-based approach is similar to the one by the original
evolution dynamics. Particularly, the DMD technique success-
fully captures the robust propagation of topological waves
around the sharp corners, which is the signature characteristic
of the topological waveguide. The difference of the color
intensity between the original and the reconstructed results is
due to inherent deficiency of the DMD to capture transient
dynamics which will be elaborated later.

As introduced in Sec. I, DMD serves as the dimensionality
reduction method to generate a low-dimensional model. The
basic idea of DMD is to find a matrix representation A to
relate two matrices X and X'. In our case, two data matrices
are constructed for standard DMD by stacking the horizontal
displacement u, and vertical displacement u, as follows, re-
sulting in two 2n x (m — 1) matrices, where n is the number
of masses and m is the number of used snapshots over time
(n = 2700 and m = 379 for Z-shaped interface based on the
numerical simulations of 758 ms duration with 2 ms time
interval):

X = X1 X2
. I lo |
o)

‘ Uxm
where [xm] = } for simplicity of description. X and X’
\

Uym
1
may be related by a best-fit linear operator A that minimizes

the Frobenius norm error | X’ — AX || given by
X' =AX = A=X'X", (6)

where X7 is the Moore-Penrose pseudoinverse [28]. Because
2n > m for our systems, instead of obtaining A directly, we
seek the eigendecomposition of A. After X is decomposed us-
ing singular value decomposition (SVD) and the proper rank-r
truncation is chosen so that X = UEV7”, where U € R*,
Y e R™" and V € R™~D*" are the left unitary matrix, di-
agonal matrix with singular values, and right unitary matrix,
respectively, the matrix representation A can be written as

A=U0*xVE!, (7

where the * denotes the conjugate transpose. The eigende-
composition of A results in the matrix of eigenvectors W and
eigenvalues A, which are the DMD eigenvalues. This further
derives the corresponding DMD mode ¢, which is the column
of d =XVE-W.

As discussed in Appendix A, the rank-r truncation is cho-
sen to be r = 131 to minimize the reconstruction error and
also to eliminate the noise in the simulation data. Each DMD
mode ¢ corresponds to an eigenvalue A. The temporal dynam-
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FIG. 3. DMD spectrum and DMD modes. (a) Eigenvalues are
visualized on the complex plane located around the unit circle. (b)
Mode amplitude varies as a function of frequency. Shading area
indicates the band-gap region. (c) Magnitude of the DMD mode with
the largest amplitude inside the band-gap region. (d) Phase of the
DMD mode with the largest amplitude inside the band-gap region.
Inset shows the magnified view around the interface (black line)
illustrating the phase difference and valley pseudospin. Black and
green arrows show the pseudospin up and pseudospin down indicated
by the phase evolution around hexagon corners, respectively.

ics, referring to growth/decay and the frequency of oscillation
of each DMD mode ¢, is reflected through the magnitude
and phase of eigenvalue A, respectively. In our case, because
the raw data are strictly real valued, the decomposition yields
complex conjugate pairs of eigenvalues and modes.

In Fig. 3(a), the eigenvalues A are visualized on the unit cir-
cle in the complex plane, suggesting the corresponding modes
are oscillating with certain frequencies. The frequencies are
defined as w = |imag(1°Ait}‘)| and the mode amplitudes are
definedas P = |¢ |§, which is the squared £? norm of the DMD
modes. Figure 3(b) gives the DMD spectrum which provides
specific spatial modes in our system for different frequencies.
It is obvious that there is a region with large mode ampli-
tudes corresponding to the band-gap region (shaded area). The
mode with the largest amplitude inside the band-gap region is
chosen as the prototypical mode used to visualize the motion
of our system. The horizontal displacement u, is chosen for
the description below. Note that there are two small peaks
outside the band-gap region due to the resonance of the masses
at the boundary, corresponding to the resonant frequencies

7-/33 1
4 2

model that one mass is connected to two walls and two masses
on nearest honeycomb corners by springs.

Figure 3(c) exhibits the magnitude of this most dominant
DMD mode of our system, also showcasing the interface-
involving dynamics. The decaying magnitude from the input
along the Z-shaped interface is due to the constant force
excitation at the input. The characteristics of interface states
present concentrated displacement along the Z-shaped inter-
face and rapid decay away from the interface. Moreover, the
DMD modes showcase the fact that the elastic wave can travel

W= wo and w = /5w approximated by a simple
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along an interface featuring bends. Apart from the magnitude,
the phases of the DMD mode also reflect the important char-
acteristics of our topological valley metamaterials, as shown
in Fig. 3(d). The distribution of phase along the interface has
a certain alignment, where the magnified view around the
interface clearly shows the phase difference around the cor-
ners of the honeycomb, indicating specific valley polarization
along a certain topological interface. The counterclockwise
and clockwise phase evolutions are shown on three corners
and the other three corners of the honeycomb, suggesting the
valley pseudospin of the excited valley in our system. The
valley pseudospin here refers to the phase difference of DMD
modes around the corners of honeycomb. Note that the other
DMD modes inside the band gap have a similar pattern and it
is these modes that will be primarily used to reconstruct the
dynamical evolution below.

The DMD spectra of wave propagation in topological
metamaterials with a straight interface and a cross-shaped
interface will be further illustrated in Appendix B. Similarities
between the DMD spectra and modes can be found in topo-
logical state propagation along different interfaces including
the high amplitude inside the band gap and the topological
interface states reflected by the DMD modes. This demon-
strates the ability of the DMD to robustly show the frequency
spectrum of the system purely from the data and to discover
the nature of topological state propagation.

Using the extracted DMD modes and corresponding time
dynamics, we can reconstruct the wave propagation in topo-
logical metamaterials using the following expression:

X =dAN'Z, 8)

where the diagonal entries of A contain DMD eigenvalues
and Z = ®\x;. x; is the initial condition of our system and
backslash is to solve the linear system following the MATLAB
notation. Here, we only use the DMD modes inside the band-
gap region (10 pairs of DMD modes) and the corresponding
eigenvalues to reconstruct the whole process of wave prop-
agation, as displayed in Fig. 2(c) with several time-series
snapshots representing the wave propagation in our system.
Similar patterns can be found compared with the original
snapshots of wave propagation.

In Fig. 4, we quantify the reconstruction error as a func-
X=X @)l

X0L
where | - |, represents £> norm that is the square root of the
sum of the absolute squares of the vector entries. Most relative
errors are around 0.97 and oscillating over time. This nontriv-
ial relative error may result from the reduction of inessential
modes with extremely small singular values by the SVD,
the significant reduction of DMD modes when considering
solely modes within the band gap, the £2-norm error requiring
the high accuracy of displacement for every mass, and, most
importantly, the inherent deficiency of the DMD method to
capture transient phenomena [23,29,30]. This is caused by the
fact that temporal dynamics cannot be well approximated by
e where the imaginary number w = I“A—f. The SVD-based
method also performs poorly on handling translational sym-
metry of the wave propagation due to the coupling between
time and space. Although the relative error is rather nontrivial,
the wave propagation along the Z-shaped interface can be
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FIG. 4. Reconstruction error and correlation coefficient between
reconstructed and original wave propagation. Relative error and cor-
relation coefficient between the ground truth and reconstruction as a
function of duration are shown in black and blue, respectively.

clearly observed from Fig. 1(c) and Supplemental Material
[31], which can be considered as the qualitative representation
of the original wave propagation. To measure the qualitative
reconstruction using DMD, we propose an additional quan-
tity, namely the correlation coefficient, to show the similarity
between reconstructed and original wave propagation at each
time point:

2 - A A
Ziil (xi,t - x*,t)(-xi,t - x*,z)
9
2 - 2 2 A a 2
\/Ziil (it = Far) \/Z,ﬁl Rir — Xir)

where the hat indicates the reconstructed data and the bar
indicates the mean. The correlation coefficient as a function
of time shown in blue line in Fig. 4 is over 0.8, suggesting the
high similarity between reconstructed and original wave prop-
agation. Therefore, the DMD reconstruction using the modes
inside the band-gap region qualitatively captures the evolution
dynamics despite the substantially reduced dimensionality of
the system.

DMD can accurately capture the frequency range and
characteristics of topological states of elastic topological
metamaterials. The nature of the valley pseudospin in our
valley system can also be revealed, suggesting that DMD,
functioning as a data-driven method, is able to learn the topo-
logical nature. In stark contrast with the original transient
displacement data, the DMD spatial mode can explicitly show
the topological nature. In addition, the propagation of topolog-
ical states can be reconstructed qualitatively only by the DMD
modes inside the band gap and the corresponding time dynam-
ics. The additional study in Appendix C is carried out on the
topological metamaterial excited by a transient force, which
further demonstrates the ability of DMD to qualitatively re-
construct the dynamics under different forms of excitations.
Note that we use standard DMD based on SVD in the main
text, but another variant, DMD with time-delay embedding,
has demonstrated the ability of increasing the accuracy of
reconstruction in several applications [23,24,32-34]. In Ap-
pendix D and the associated figure, we also show the partial
decrease of reconstruction error using the augmented data
matrix formed by shift stacking the original data matrix.

rt) = &)
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IV. CLASSIFICATION OF TOPOLOGICAL AND
TRADITIONAL METAMATERIALS

Compared with the topological metamaterials, traditional
metamaterials function by defect states that cannot support ro-
bust transport of elastic waves [35-38]. By using the transient
displacement data, it is difficult to classify the topological and
traditional metamaterials using simple classification methods
because of the high-dimensional nature. Here, we demonstrate
how to use the extracted DMD modes from topological and
traditional metamaterials to classify them. The topological
metamaterial is in the aforementioned configuration and the
traditional metamaterial is constructed based on the defect
states by the metamaterial with m; = 0.8 kg and m, = 1.2 kg,
where the masses are replaced by m, = 1.2 kg along the Z-
shaped interface to create defects. Because of the defect state,
the traditional metamaterial serves as a waveguide similar
to the topological metamaterial but without the topological
protection.

The original DMD modes are high dimensional and thus
difficult to classify using a classification algorithm directly.
Therefore, the feasible way is to find a feature space to
project the DMD modes on, resulting in a low-dimensional
representation. Specifically, we construct a library of DMD
modes inside the band gap from topological metamaterials
and traditional metamaterials L:

. |
L=|¢1 ¢ - ¢n|. (10)
L |

For the purpose of classification, we consider the absolute
value of every element of normalized DMD modes and denote
the resulting matrix as |L|. To simplify this problem, clus-
ters are determined in one-dimensional principal component
space, using the projections of each column of |L| onto the
proper principal components of |L|:

IL| = U, V). (11)

with this expression yielding the SVD of the matrix |L| and
using
P=U"ILI ==V, (12)

where U, %;, and VT are the transpose of the ith column of
Uy, ith singular value, and the transpose of the ith column of
V., respectively. Note that the transpose of V, is the same as
the conjugate transpose of V due to the real value.

The principal components can explain a significant pro-
portion of the variance in the features in topological and
traditional metamaterials. Therefore, finding a proper prin-
cipal component U is key to distinguish two types of
metamaterials. Also, the proper principal component is phys-
ically interpretable to contain the features differentiating two
types of metamaterials. After examining all principal compo-
nents, we have found that the second principal component
is a suitable feature towards the classification task at hand
(classification results are the same as the labeled dataset). The
second principal component of |L| is shown in Fig. 5(a) [see
the second principal components of |L| for straight and cross
interfaces shown in Fig. 10(a) and Fig. 10(b) in Appendix E].
The reason why the second principal component is optimally
suited to serve as the feature space is that this pattern of the
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FIG. 5. Classification of topological and traditional metamate-
rials. (a) Feature space formed by the second principal component
of DMD modes with Z-shaped interface. (b) Projected values of
each DMD mode from the topological and traditional metamaterials
excited by different forces (left panel) and different excitation fre-
quencies (right panel). Red and blue regions indicate topological and
traditional DMD modes, respectively. Error bars indicate the range
of the minima and maxima of projected values.

principal component shows the difference between topologi-
cal and traditional metamaterials at the beginning of the input
port (positive vs negative values, respectively). We find that it
corresponds to the distinction of backscattering in topological
and traditional metamaterials. In the traditional metamaterial,
due to the interference of elastic waves traveling in oppo-
site directions, elastic waves experience strong backscattering
when encountering bends, obstacles, or even traveling along
the straight interface. Therefore, when |L| is projected onto
this principal component, the two types of metamaterials can
be classified whereas they cannot be classified when |L| is
projected onto other principal components. The relevant di-
agnostic allows us to distinguish topological and traditional
metamaterials purely from the wave propagation phenomena
represented by the displacement, corresponding to topolog-
ically protected wave propagation and nontopological wave
propagation, and hence, accordingly classify them. Note that
from the perspective of the underlying topological physics,
the topological invariants of the bulk and the bulk-edge cor-
respondence are principles used to classify topological and
traditional systems.

Then, in order to test whether this feature space can be
generalized to classify topological and traditional systems,
we apply the feature space (of the second principal com-
ponent) obtained above to the topological and traditional
metamaterials under the excitation of different forces Fy and
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different angular frequencies wy. As shown in Fig. 5(b), it is
obvious that the projected values for topological and tradi-
tional metamaterials under the excitation of different forces
can be separated well and can be simply classified using the
k-means unsupervised clustering [39]. Likewise, under the
excitation of different frequencies, the projected values for
topological and traditional metamaterials are separated well,
leading to good classification results. Using the same method,
the wave propagation along different interfaces (straight and
cross interfaces) in topological and traditional metamaterials
under the excitation of different forces and frequencies can
also be classified, as detailed in Appendix E. The classification
results for straight and cross interfaces are demonstrated in
the relevant figure therein. The case for the straight interface
indicates that elastic waves in the traditional metamaterial
experience backscattering without the bend because of the in-
terference of guided waves propagating to opposite directions.
The classification results and ground truth have excellent
agreement. The DMD modes with improved accuracy cal-
culated by DMD with time-delay embedding (Appendix D)
can also be used in the classification, resulting in better sep-
aration of topological and traditional metamaterials in the
feature space. It should be expected that with the decrease of
the Berry curvature in the topological metamaterials induced
by the decrease in degree of broken-inversion symmetry, the
classification of two types of metamaterials would become
progressively more difficult. This is because the intervalley
scattering becomes larger in the topological metamaterials,
resulting in the similar wave propagation in topological and
traditional metamaterials [12,16].

V. CONCLUSIONS AND FUTURE CHALLENGES

In this paper, we provide a guide towards the potential
impacts of the application of the DMD method on the wave
propagation in topological elastic metamaterials. The analy-
sis of DMD eigenvalues and spectrum shows the oscillation
and frequency of the DMD modes. The notable topological
interface states and valley pseudospin of the valley system
can be reflected by the DMD modes. Furthermore, the recon-
struction of topological state propagation is achieved by the
low-dimensional model constructed only by the DMD modes
inside the band gap and the corresponding time dynamics.
Apart from the fundamental characterization by DMD, we
demonstrate the potential that the method bears as concerns
the tasks of classification and synthesis of wave propagation
along the given interface using DMD modes and associated
reduced dynamical descriptions (Appendix F). We find a fea-
ture space with particular characteristics to project the DMD
modes on for the classification of topological and traditional
metamaterials. The synthesis of wave propagation along the
given interface can be achieved by the extension and shift
of DMD modes, where the £2-norm error and correlation
coefficient are at an acceptable level to visualize the future
wave propagation. The DMD provides a data-driven method
to explore the wave propagation in topological metamaterials
and to reveal the potential topological nature, filling an impor-
tant research void at the interface of the corresponding fields.
It also opens up an avenue to classify and synthesize the wave
propagation through a purely data-driven approach.

Naturally, this is only a first step along this direction and
raises several questions that still merit further addressing. One
key aspect of interest concerns how to reduce the error and
overcome the inherent deficiency of DMD. While the results
presented herein represent adequate reconstructions (and even
synthetic wave propagation along the given interface) of the
time-evolution dynamics, it would be highly desirable for
such examples to match far more adequately, in a quantitative
sense, the real system dynamics. From the point of view of
applications, it would be relevant to explore the method in
other classes of systems including in ones stemming from
higher dimensions and to explore how adequately the method
can fare in such more data-intensive settings. Additionally, the
characterization of the topological metamaterials with differ-
ent Berry curvatures by DMD can be conducted through the
same process. Similar results, such as DMD spectrum, modes,
and low-dimensional model, are expected but classification
between two types of metamaterials can be less efficient as
discussed in Sec. IV. Such topics are presently under consid-
eration and associated potential progress will be reported in
future publications.
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APPENDIX A: THE TRUNCATION OF SINGULAR VALUES
OF THE DATA MATRIX

Choosing the proper truncation of the singular value de-
composition of X is important to obtain the best-fit linear
operator A. To identify the truncation r of the singular values,
we wish to ensure the minimization of the reconstruction
error. The reconstruction X is conducted by DMD modes
inside the band-gap region and corresponding time dynam-
ics and is compared with the original wave propagation. In
Fig. 6(a), the map of the reconstruction error calculated by

E@) = % is given as a function of the number of
singular values (truncation r) and duration. The singular value
spectrum shows that singular values decay slowly, indicating
that many modes are needed. Accordingly, with the increase
of the number of singular values in a certain range (1 ~ 140),
the reconstruction error does not change significantly in the
logarithm scale. However, when the number of singular values
further increases, the reconstruction error will significantly
increase.

Therefore, the proper truncation is in the range of 1 to 140,
which we magnify in Fig. 6(b). As the number of singular
values increases, the reconstruction error will decrease to a
minimum. We choose the » = 131 as the number of singular

values corresponding to the inflection point in the singular
value spectrum.

APPENDIX B: DMD SPECTRA AND MODES OF WAVE
PROPAGATION ALONG INTERFACE WITH
DIFFERENT SHAPES

Figure 7(a) gives the DMD spectrum indicating the re-
lation between the frequency and the mode amplitude for
the topological states propagation along the straight interface
(configuration shown in the inset). Similar to Fig. 2(b), it is
clear that the region with high mode amplitude corresponds
to the band-gap region (shaded area). The mode inside the
band-gap region with the largest amplitude is chosen as the
prototypical mode of interest (and of relevance to the dy-
namics). Figure 7(b) exhibits the magnitude and phase of this
dynamic spatial mode of our system. The interface state can
be observed from the magnitude of the DMD modes. The
displacement is concentrated along the straight interface and
decays rapidly away from the interface. The elastic waves can
travel along the interface with bends. The phases of the DMD
modes also reflect the characteristics of topological states. The
distribution of phase along the interface has a certain pattern,
representing the valley pseudospin of our system as described
in the main text. Likewise, in Figs. 7(c) and 7(d), we calculate
the DMD spectrum and DMD modes inside the band-gap
region with the largest amplitude for the topological states
propagation along the cross interface (configuration shown
in the inset). The DMD mode in Fig. 7(d) shows that the
elastic wave travels along the path at the beginning and when
it arrives at the intersection, it propagates to two sides instead
of the straight path. Because of the valley-locking effect, the

184308-8



CHARACTERIZATION OF ELASTIC TOPOLOGICAL ...

PHYSICAL REVIEW B 107, 184308 (2023)

(a) . (b)

“t

L

FIG. 8. DMD implementation. (a), (b) Snapshots of original and reconstructed wave propagation excited by the Gaussian burst represented
by the horizontal displacement u, along a Z-shaped interface at r = 2, 192, 380, 570, and 758 ms (with the time evolving from the bottom to
the top), respectively. (c) Magnitude of the DMD mode with the largest amplitude inside the band-gap region. (d) Phase of the DMD mode
with the largest amplitude inside the band-gap region. Inset shows the magnified view around the interface (black line) illustrating the phase
difference and valley pseudospin. Black and green arrows show the pseudospin up and pseudospin down indicated by the phase evolution

around hexagon corners, respectively.

wave will propagate along certain interface with same valley
projection [11,40-42]. The generated elastic wave is projected
by the K valley according to the group velocity in projected
band structure [Fig. 1(c)]. Therefore, the elastic wave will
only propagate along the K-valley projected topological in-
terfaces. Note that apart from DMD modes shown in Fig. 7(b)
and Fig. 7(d) which have the largest amplitudes in the DMD
spectra, other DMD modes inside the band-gap region are also
interface states.

APPENDIX C: DMD IMPLEMENTATION ON THE
TOPOLOGICAL STATE PROPAGATION EXCITED
BY A TRANSIENT SOURCE

In the main text, our system with Z-shaped interface is
excited by a constant harmonic force. Now, we explore the
system excited by a transient source. In our example, we use

the Gaussian tone burst F = Foe’(%)2 cos(wt) to excite our
system and follow the procedure introduced in the main text to
analyze the system’s response using DMD. Figure 8(a) shows
several snapshots of wave propagation along the Z-d interface;
we can observe that an elastic wave can propagate through
the shape bend smoothly due to the topological protection.
Figure 8(b) exhibits the reconstructed wave propagation by
DMD reconstruction, which is visually similar to the original
evolution dynamics although it starts to blow up at the input
port at the end of the reported time horizon, suggesting the
qualitative nature of the reconstruction. Similar to the situ-
ation in the main text, Fig. 8(c) exhibits the magnitude of
DMD modes showing that an elastic wave can travel along
an interface featuring bends. As shown in Fig. 8(d), the phase
of the DMD mode indicates the phase difference around the
corners of the honeycomb and the valley pseudospin of the
excited valley in our system. This demonstrates the ability of

DMD to learn the topological nature of the wave propagation
in topological metamaterials.

APPENDIX D: DYNAMIC MODE DECOMPOSITION WITH
TIME-DELAY EMBEDDING

Recently, the approach of time-delay embedding has been
shown to be a general method to generate proper observable
measurements to render the reconstruction more accurate as
discussed in the main text. By embedding future temporally
consecutive snapshots into the current snapshot, time-delay
embedding augments the limited spatial observables and
provides extra observables. The DMD with time-delaying em-
bedding can be achieved by the augmented data matrix X,,s by
shift stacking the original data matrix as shown below:

[ | ]

X1 X2 Xm—h
| | |
| | |

X2 X3 Xm—h+1

Xaug = | | " | ) (Dl)

| | |

Xn Xh+1 Xm—1

L | I

where £ is the number of stacks. X/, can be induced likewise.
Using the augmented data matrix to conduct DMD, the recon-
struction error can be reduced. As shown in Fig. 9, the relative

error calculated by E = 'Xp_(f_“’

the number of stacks and becomes saturated at around 0.65
even with a larger number of stacks. The error may come
from the inherent deficiency of DMD on the wave propagation
problem as discussed in Sec. III. However, when the number
of stacks increases, the augmented data matrix becomes large,

decreases with the increase of
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FIG. 9. Relative error of reconstruction as a function of number
of stacks.

leading to a heavy computation cost. Therefore, there is a
tradeoff balance between accuracy and efficiency in the case
of real-world applications and practitioners should seek to
strike a relevant balance to that effect.

APPENDIX E: CLASSIFICATION OF TOPOLOGICAL AND
TRADITIONAL METAMATERIALS WITH DIFFERENT
INTERFACES

For classification of topological and traditional metama-
terials with different interfaces, we follow the method we
introduce in the main text. The topological metamaterial is
composed of the metamaterial with m; = 0.8 kg and m, =

(@)

—
O
~
|

o
-
o
o
a

1.2 kg and the metamaterial with m; = 1.2 kg and m, = 0.8
kg. The traditional metamaterial is constructed based on the
defect states by the metamaterial with m; = 0.8 kg and m, =
1.2 kg, where the masses are replaced by m, = 1.2 kg along
the straight and cross interface to create defects. Following the
method in the main text, we extract the principal components
of the library composed of DMD modes of topological and
traditional metamaterials with different interfaces (straight
and cross interfaces). As for different shapes of the inter-
faces, the feature space from the principal components for
the DMD modes to project on can be determined as visual-
ized in Figs. 10(a) and 10(c), corresponding to the straight
interface and cross interface. Similarly, the feature spaces are
also the second principal components in the SVD, in which
the main difference between topological wave propagation
and nontopological wave propagation is reflected, and hence
can classify two types of metamaterials. We test the feature
space on the case excited under different forces and different
frequencies. After the DMD modes inside the band gap for
both topological and traditional metamaterials are projected
onto the feature space, the DMD modes lead to a scalar value,
which is separated well between the two families, and can
be classified using the k-means unsupervised clustering, as
shown in Figs. 10(b) and 10(d). For both wave propagation
along straight interface and cross interface, the classification
results and ground truth have excellent agreement.

APPENDIX F: SYNTHETIC WAVE PROPAGATION ALONG
THE GIVEN INTERFACE USING DMD

We demonstrate another application of the usefulness of
DMD modes in topological metamaterials. Synthetic wave

()

06T T 11

g o fF FE Tpd §olEd oRd  Tpd |-

§o2tcz =2 FTE 4 FIL L11:7%s 7]
-0.4f - 1 F . L . ]
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FIG. 10. Classification of topological and traditional waveguides with different interface. (a), (c) Feature space of topological metamaterials
with straight interface and cross interface. (b), (d) Projected values of each DMD mode extracted from the system under excitation of different
forces and different frequencies, corresponding to straight interface (a) and cross interface (c). Red and blue regions indicate topological and
traditional DMD modes, respectively. Error bars indicate the range of the minima and maxima of projected values.
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FIG. 11. Synthesis of topological states propagation along the
given interface. (a) Snapshots of horizontal displacement u, from
0 to 200 ms used for training. (b) Top panel displays one of the
DMD modes inside the band gap of the training data. Bottom panel
displays the corresponding extended and shifted DMD modes along
the Z-shaped interface. (c) Snapshots of the horizontal displacement
u, for the synthetic wave propagation at t = 2, 192, 380, 570, and
758 ms. (d) Synthesis error and correlation coefficient as a function
of duration are shown in black line and blue line, respectively.

propagation along the given interface is important when there
is lack of data due to the sensor problems or measurement
difficulties. DMD is capable of extracting the time dynamics
and corresponding dynamic modes, which can help with the
synthetic topological state propagation along the given inter-
face. Here, we use DMD modes calculated from a part of data
(training data) to build a low-dimensional model, and with
the knowledge of the position of interface further to synthe-
size the future propagation of elastic wave. Here, as shown
in Fig. 11(a), we use the wave propagation in topological
metamaterials from 0 to 200 ms as the training data. Then,
DMD is used to extract the DMD modes inside the band
gap and the corresponding time dynamics (two pairs of DMD
modes inside the band gap are used). Since wave propagation
is a process with time and space variation together, the DMD
modes are limited in space due to the nature of spatial modes,
resulting in stoppage of the wave and, accordingly, failure of
the synthesis. A feasible way that we have found relevant
towards bypassing this issue is to extend the DMD modes

along the (a priori) given interface and to approximate the
future wave propagation using the extended DMD modes and
the time dynamics from the training data.

First, the least-squares method is used in order to identify
the time-varying wave velocity ¢(z) by a set of pairs of the
positions of wave front and corresponding time. Therefore,
the position of wave front can be determined at arbitrary time.
Next, after the extracted DMD modes inside the band gap are
reshaped to a matrix form, they are truncated based on the
displacement d = for c(t")dt’, corresponding to the number of
matrix columns, as shown in the training data in Fig. 11(b).
The DMD is used again to predict the DMD modes in the
future when the elastic wave propagates to the arbitrary po-
sition. The synthesis time is determined by the length of the
given interface. Note that extension by DMD only considers
the speed of wave propagation, assuming that it is effectively
constant during each segment of the interface, instead of other
associated properties such as the dispersive radiation, which
is found to be minimal in the present setting. Then, the ex-
tended DMD modes ¢, are shifted according to the shape of
the interface, resulting in the shifted DMD mode ¢,. As an
example, one of the DMD modes inside the band gap is shown
in Fig. 11(b), where the DMD mode is constrained in space
which will cause the stoppage of wave propagation after 200
ms. After being extended by DMD and shifted by the shape
of interface, the DMD mode constrained in a certain space
can cover the given interface (Z-shaped interface), as shown
in Fig. 11(b). Finally, after we extend and shift all DMD
modes inside the band gap from the training data, the time
dynamics of the training data are used to synthesize the wave
propagation along the Z-shaped interface, detailed as below:

X =d,A7'Z, (F1)

where @ is formed by ¢;. The diagonal entries of A contain
DMD eigenvalues from training data and Z; = & \x. xj is
the initial condition of our system. As shown in Fig. 11(c),
several snapshots of synthetic wave propagation clearly ex-
hibit the elastic wave traveling along the Z-shaped interface.
This process is qualitatively similar to the snapshots shown in
Fig. 2(b). According to Fig. 11(d), the relative error compared
with the reconstructed results in Fig. 2(b) is in the range of
0.95 ~ 1. Likewise, we use the correlation coefficient to char-
acterize the qualitative performance of reconstruction, which
is around 0.5. This is smaller than that for the reconstruction
due to the limited number of modes and time dynamics. Yet,
this synthesis of wave propagation along the given interface
still provides a reasonable visualization of future wave propa-
gation. It should be mentioned that aforementioned approach
of DMD with time-delay embedding can also be used in the
synthesis since this approach can generate the dynamics and
corresponding modes.
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