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Data-driven forecasting of nonequilibrium solid-state dynamics
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We present a data-driven approach to efficiently approximate nonlinear transient dynamics in solid-state
systems. Our proposed machine-learning model combines a dimensionality reduction stage with a nonlinear
vector autoregression scheme. We report an outstanding time-series forecasting performance combined with an
easy-to-deploy model and an inexpensive training routine. Our results are of great relevance as they have the
potential to massively accelerate multiphysics simulation software and thereby guide the future development of
solid-state-based technologies.

DOI: 10.1103/PhysRevB.107.184306

I. INTRODUCTION

Demanding and complex solid-state dynamics are at the
core of many challenging multiphysics problems. Examples
include solar cells [1], semiconductor lasers [2–7], mode-
locked semiconductor lasers [8–11], semiconductor optical
amplifiers [12–14], and nanophotonic devices based an plas-
monic nanostructures [15,16]. Often, the dynamics of excited
charge carriers and phonons themselves are not at the center of
attention but, nonetheless, need to be solved by multiphysics
simulation codes, e.g., to acquire the needed degree of accu-
racy to calculate macroscopic dynamics. In order to maintain
reasonable computational costs, microscopic solid-state dy-
namics are then either completely eliminated or treated within
some kind of approximation, e.g., the relaxation-time approx-
imation[17]. Such approaches come at the cost of predictive
power, but have—nevertheless—revealed countless valuable
insights into multiphysics phenomena (see previous refer-
ences for examples).

In this manuscript, we intend to fill the gap between com-
putationally expensive microscopic calculations and rough
analytic approximations by proposing a numerically efficient
data-driven approximation scheme. Our approach is highly
motivated by the immensely successful application of the
machine-learning paradigm to tasks in science, technology,
and everyday life [18–24]. Within science, data-driven ap-
proaches have been especially popular among the data-rich
fields such as particle physics [25], fluid dynamics [26], as-
trophysics [27], and x-ray free electron laser experiments
[28,29]. Similarly, other scientific fields such as biology
[30], medicine [31], and chemistry [32] have been deploying
data-driven methods for some time. However, data-driven ap-
proaches only start to slowly rise in quantum optics [33,34]
and solid-state material science [35]. A few examples in-
clude the prediction of static quantities to predict new stable
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materials [36–43], the prediction of material parameters
[44–46], and speed-up of first principle calculations [47].

For our purpose of developing a data-driven approximation
for solid-state dynamics, we devise a two-dimensional cou-
pled electron-phonon system as a toy model. For convenience,
we consider parameters for transition metal dichalcogenide
monolayers [48–52], MoSe2 in our case. In thermal equilib-
rium, the electron system follows a Fermi-Dirac distribution
and the phonon system a Bose-Einstein distribution, both
with a common temperature T . After such a system has
been subject to a perturbation, it exhibits transient dynamics
during its thermalization. For weak perturbations, analytic
approximations—the relaxation time approximation which
assigns a single number to the complex relaxation process—
have been successfully developed [17]. Strong perturbations,
e.g., as they are induced by powerful optical pulses, however,
defy analytic efforts so far and thus represent this works
target. We therefore consider the task of forecasting the tran-
sient dynamics of the electron system from a given strongly
perturbed initial state. The focus is given to the electrons,
since they easily couple to another physical system, e.g., via a
macroscopic electric field. The calculated phonon dynamics,
on the other hand, is intentionally hidden from the data-
driven model. Note that this renders the observed electron
dynamics non-Markovian, since the hidden phonon system
augments the electron trajectory with a path dependence. Our
investigated electron-phonon system can therefore represent
a wide class of problems: The electron system represents the
subsystem, which couples to another physical system, and is
therefore of primary interest. The phonon system, on the other
hand, is only of secondary interest, since it represents some
internal dynamics, which affect the interaction with the other
physical system only indirectly via the coupling subsystem
(the elecrons in our case).

With the goal of accelerating the simulation of a multi-
physics problem by replacing the expensive computation of
the complex nonlinear system (the coupled electron-phonon
system) by a data-driven approximation, we put a strong
constraint on the latter. This approach becomes only viable,
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if the combined efforts of generating the training data; im-
plementing, training, and testing the data-driven model; and
performing the forecasting are considerably less than the
direct simulation in order to justify the potential loss of ac-
curacy. Hence, one must be careful and deliberate with the
choice of the forecasting approach from the vast number of
options that have been developed in the past decades.

Traditionally, time-series forecasting has almost been
synonymous with autoregressive (AR) models and vari-
ants thereof such as autoregressive moving-average models
(ARMA) or vector autoregressive (VAR) models [53,54].
These models propagate the system based on a linear com-
bination of past system states. By feeding their output back
as input, they yield autonomous dynamical systems and can
generate forecasts of arbitrary length. Such models, how-
ever, perform unsurprisingly poorly for strongly nonlinear
systems. To overcome this issue, one popular approach has
been the usage of artificial recurrent neural networks, both
in the manifestation of long short-term memory networks
(LSTMs) [55–61] and echo state networks (ESNs)/reservoir
computers [60,62–67]. Both, however, come with their spe-
cific limitations: LSTMs, e.g., are comparatively expensive to
train, both in terms of training data and computational costs
[65] and reservoir computers require tedious hyperparameter
optimizations and long warm-up times [68]. On that account,
models based on nonlinear vector autoregression (NVAR)
have recently demonstrated excellent forecasting abilities with
inexpensive training costs, easy deployability, and negligible
warm-up time [67–71]. For those reasons, we follow this ap-
proach and develop a nonlinear autoregressive reduced-order
model (NARROM) by complementing the aforementioned
NVAR model with dimensionality reduction stage. This al-
lows us to greatly reduce the computational demands by
performing the forecasting in a reduced-order latent space.

In this work, we discuss the design, the implementation,
the application to the coupled electron-phonon system, and
the optimization of the nonlinear autoregressive reduced-order
model. Our results demonstrate that a well tuned model
can excellently forecast the high-dimensional nonlinear tran-
sient dynamics, which are well beyond the scope of analytic
approximations. We therefore believe that our data-driven
approach to the approximation of nonequilibrium solid-state
dynamics has the potential to greatly accelerate the simulation
of challenging multiphysics problems.

The manuscript is organized as follows. Section II intro-
duces and illustrates nonequilibrium transient dynamics of the
coupled electron-phonon system. Section III rigorously walks
through the design, training, and operation of the nonlinear au-
toregressive reduced-order model. The forecasting abilities of
the model are benchmarked and analyzed in detail in Sec. IV
for two different nonlinear transformations. Lastly, the results
are summarized and discussed in Sec. V.

II. ELECTRON-PHONON DYNAMICS

To study the coupled electron-phonon dynamics, we
numerically solve the Boltzmann scattering equations for
electrons and phonons (see Appendix A). Throughout this
manuscript, we solve the Boltzmann equations for two-
dimensional MoSe2 as an exemplary material, taking into
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FIG. 1. Color-coded dynamics of the electron occupations
(a) and the T O phonon branch occupation (b). Insets show slices
of the respective distributions at the times t ∈ {0, 0.1, 0.4, 1.7} ps
(indicated by dashed horizontal lines).

account the LA, TA, T O, and A′ phonon branches. The
dispersion of the acoustic modes is treated in the Debye
approximation with velocities of sound taken from ab initio
calculations [48]. The dispersion of of the optical modes is
treated in the Einstein approximation with constant energies
taken from ab initio calculations [48]. The full parameter
set of our evaluation is given in Appendix A. We note that
although excitons dominate the properties of transition metal
dichalcogenides, we ignore the influence of them on the
dynamics, as the scope of our work is to demonstrate the
applicability of the data-driven approach to the semiconductor
dynamics. As initial conditions for the electrons, we consider
Gaussians f 0

k = A exp( −k2−2mẼ
4mσ 2 ) with varying height A, center

energy Ẽ , and width σ of the distribution. Such distributions
appear for instance after strong off-resonant excitations [72].
The phonons are initialized with a Bose-Einstein distribution
at T = 300 K.

Figure 1 illustrates an exemplary time trace of the ther-
malization of the electron-phonon system. Figure 1(a) shows
the temporal evolution of the electron occupation. The inset
illustrates snapshots of the electron occupation at selected
times. As electron-phonon scattering sets in, the electrons
scatter down to lower energies. Interestingly, in the transient
regime before thermalization, fringes in the electron distribu-
tion with a period of 30 meV can be observed, which originate
from the fast relaxation of electrons under the emission of
optical phonons. On short time scales, this relaxation channel
dominates over the relaxation assisted by acoustic phonons,
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due to the larger energies of the involved phonons. However,
acoustic phonons act on longer timescales leading mainly to a
smoothing of the electron distribution and to the relaxation of
electrons with kinetic energies smaller than the optical phonon
energy. The electrons reach a quasi Fermi-Dirac distribution
after ≈2 ps. Figure 1(b) illustrates the temporal evolution of
the phonon occupation of the T O mode. We find that for most
momenta, the occupation increases due to phonon emission
processes, which indicates the energy transfer from the elec-
tron system to the phonon system, i.e., a heating of the phonon
system. We find an enhanced formation of optical phonons at
certain momenta, which correspond to those momenta, where
energy and momentum conservation are simultaneously ful-
filled during the electron-phonon scattering [see Eqs. (A1) and
(A2)].

III. NONLINEAR AUTOREGRESSIVE REDUCED
ORDER MODEL

For the efficient forecasting of the electron dynamics at
discrete times, we propose and develop a data-driven non-
linear autoregressive reduced order model (NARROM). Our
approach combines a dimensionality reduction scheme with
a nonlinear vector autoregressive (NVAR) model [68,69,73].
Hence, it can be broken apart into two independent parts:

Firstly, the dimensionality reduction is achieved by truncat-
ing the expansion of the system state in a suitable basis. This
is motivated by the fact that all transient dynamics, despite
their complexity and diversity, are constraint by the laws of
physics, i.e., the electron-phonon interaction and therefore
only occupy a small subspace of the electron configuration
space. We therefore expect low dimensional patterns in the
transient dynamics and thus aim to construct a basis to cap-
ture those with only a few relevant modes. Specifically, we
want the aforementioned subspace to be well represented by a
few dominant modes, such that expansions of transient states
quickly converge and an appropriate truncation only produces
small errors. This, however, also means that we generally
expect this dimensionality reduction approach to be lossy.

Secondly, the nonlinear vector autoregressive (NVAR)
model constructs a feature vector via a nonlinear transform of
the past system states. The next system state is then inferred
via a linear transformation of this feature vector. The model
therefore provides both a memory of past system states and
a nonlinearity, which are relevant in the considered electron
dynamics, by design. Taking into account the past system
states can also be thought of as a delay embedding in the
sense of Taken’s embedding theorem [74]. Hence, the ne-
glected internal dynamics, i.e., the phonon system in our
case, are implicitly taken into account for a sufficient delay
embedding dimension. Note that in order to build an efficient
and well performing model, a suitable feature space must
be constructed. This is by no means a trivial task, since the
possibilities for nonlinear transforms are vast.

In the following, we formalize the proposed model. The
complete structure of the nonlinear autoregressive reduced
order model is sketched in Fig. 2 as a flow diagram. It il-
lustrates the forecasting of the next system state at the time
tn+1 based on the prior system states. The current system state
at time tn is represented by the state vector sn ∈ Rds (orange

FIG. 2. Flow diagram of the nonlinear autoregressive reduced
order model (NARROM). sn, rn, and r̃n denote the system, reduced
system, and scaled reduced system state vectors at the discrete time n.
VAR(�) state denotes the concatenation of the past � state vectors and
NVAR state a nonlinear transform f (·) thereof. The model is trained
by optimizing the regression weights W. In autonomous mode, the
model output r̃n+1 is feed back as an input.

box) on the very top. Time itself is assumed to be discretized
into equidistant steps �t with tn = t0 + n�t . In the first step,
the system state is mapped to the reduced-order vector rn ∈
Rdr<ds (green box) via the dimensionality reduction scheme,
Each element of the reduced state vector, i.e., the features of
the reduced-order latent state space, is subsequently rescaled
and represented by r̃n ∈ Rdr (blue boxes). This step is crucial,
since the magnitudes of the linear features critically determine
the response of the following nonlinear transformation. Be-
fore that, however, the scaled reduced state is also passed to a
buffer, which stores the past (� − 1) states and provides them
for further processing. The concatenation of the � scaled re-
duced state vectors r̃n, . . . , r̃n−�+1 in the blue shaded row then
represents the linear VAR(�) state [73,75] in the reduced latent
space. The VAR(�) state is passed to a nonlinear function f (·),
which produces the NVAR(�) state fn = f (̃rn, . . . , r̃n−l+1) ∈
Rd f [53] (purple box), i.e., the feature vector of the nonlinear
autoregressive reduced order model. Next, the regression step
is performed via a linear transformation of the feature vector
to produce the scaled reduced state vector

r̃T
n+1 = fT

n W (1)

at the time tn+1. The matrix W ∈ Rd f ×dr contains the re-
gression weights. Note that transposed vectors (row vectors)
are used since the data matrices, on which W is trained,
are constructed from rows of data vectors. Lastly, the scaled
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reduced system state is descaled and the full system state sn+1

is reconstructed in the two most bottom steps of the flow
diagram.

The model is trained using the supervised learning
paradigm, where the models parameters are optimized to
minimize a loss function of some training data and its cor-
responding model output. In principle, the training of our
proposed model can include the dimensionality reduction
stage, the feature scaling stage, and the regression weights W.
For the sake of training simplicity, we treat the feature scaling
stage as a hyperparameter problem and train the compression
stage and the regression weights separately. This is, we first
optimize the dimensionality reduction stage to best reproduce
the training data for a given dimensionality dr and then opti-
mize the regression weights W.

To facilitate the model training, we first sample M trajec-
tories at NM discrete times and build the data matrix

S = (
s1

1, . . . , sm
n , . . . , sM

NM

)T
, (2)

where the rows correspond to the system state vectors sm
n of

the mth trajectory at the time tm
n .

To optimize the dimensionality reduction stage, we mini-
mize the reconstruction error

arg min{R}‖R−1(R(S)) − S‖2
F, (3)

where R and R−1 denote the dimensionality reduction and
reconstruction functions and ‖ · ‖F the Frobenius norm. The
optimization parameters {R} are specific to the chosen ap-
proach and are exemplarily discussed in Sec. IV A.

We then proceed to construct the feature matrix

F = (
f1
1 , . . . , fm

n , . . . , fM
NM−1

)T
, (4)

where the feature vectors fm
n are computed according to Fig. 2

from the system states. Each trajectories final state sM
NM

is
omitted and only appears in the target matrix. If necessary
(� > 1), the trajectories sm

n are padded with the trajectories
initial state sm

1 to fill up the VAR(�) state and calculate the
initial feature vectors fm

n<�. Lastly, the target matrix

T = (̃
r1

2, . . . , r̃m
n , . . . , r̃M

NM

)T
(5)

is constructed from all scaled reduced system states r̃n except
each trajectories initial state. Hence, the feature matrix and the
target matrix are shifted by one time step �t with respect to
each other.

The regression weights W are then determined by solving
the least-squares problem

arg min
W

[‖FW − T‖2
F + α‖W‖2

F

]
, (6)

where ‖ · ‖F is the Frobenius norm and α the Tikhonov reg-
ularization (ridge) parameter [76–78]. A nonzero α penalizes
large weights wnm and thereby counteracts overfitting prob-
lems. The solution to this problem is known and reads

W = (FT F + αI)−1FT T, (7)

where (·)−1, depending on the rank of (FT F + αI), either
denotes the inverse or the Moore-Penrose pseudoinverse.

Once trained, the model can be used to advance the system
by one discrete time step �t as shown in Fig. 2. Trajecto-
ries of arbitrary length can be produced from the model in

autonomous mode, in which the models output is fed back
as an input. Since the regression error accumulates in this
mode, exceptionally good per-step predictions are required to
achieve high-quality trajectories.

IV. RESULTS

In this section, we construct a complete nonlinear autore-
gressive reduced order model by specifying the individual
stages. This includes the dimensionality reduction, the fea-
ture scaling, and the nonlinear transformation. We propose
multiple approaches for each stage and discuss and compare
them in terms of their forecasting accuracy and their compu-
tational demands. For that purpose, we simulate a dataset with
n = 1000 individual trajectories, which we use for training
and testing. The relevant details can be found in Appendix C.

A. Dimensionality reduction

First, we set out to find and optimize a linear dimen-
sionality reduction scheme that works well for our data. As
elaborated in Sec. III, this translates into constructing a basis
in which the expansion of the considered system states con-
verges sufficiently with a minimal number of basis vectors.
On that account, we evaluate the performance in terms of
the reconstruction error for three dimensionality reduction
schemes:

In the first case, we use the left singular vectors of the
singular value decomposition (SVD) [78,79]

ST = U�VT , (8)

which is successfully utilized in many branches of science
and engineering [78,80–84]. The SVD has a long history
[78,79] and is known across different disciplines as the
Karhunen–Loève transform (KLT) [85,86], empirical orthog-
onal functions [87], proper orthogonal decomposition (POD)
[82], and canonical correlation analysis [88].

Note that we have transposed our data matrix S such that
the system states are organized as column vectors, in order to
conform to the common SVD literature. The matrices U and
V are unitary and contain the left and right singular vectors
of ST and � is a diagonal matrix with the singular values in
descending order. Their magnitude naturally organizes the left
and right singular vectors according to their share in recon-
structing the data matrix ST . Specifically, the Eckart-Young
theorem [78,89] states that the best rank-r approximation of a
matrix with respect to the Frobenius norm can be achieved via
the truncation over the leading r singular values of the SVD.
To reduce a given system state sn, we therefore compute the
SVD of the training data to obtain the basis U. We then use
the truncated matrix Ur = (u1, . . . , ur ) to project sn onto the
first r left singular vectors um to obtain the reduced state

rn = (r1, . . . , rr )T = UT
r sn. (9)

The corresponding reconstructed system state ŝn is then ob-
tained via

ŝn = Urrn = UrUT
r sn, (10)

where the hat denotes the expansion of the state in the trun-
cated basis. Note, that this dimensionality reduction scheme
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is entirely data driven. We therefore expect its performance
to critically depend on the quality of the training data. This
means that the training data should be representative of the
relevant system configuration subspace, to generate a basis
that is optimally adapted to the task.

In the second case, we expand the system state into the
modes of the discrete Fourier transform (DFT). This approach
is well established and has the advantages of computational
efficiency via the fast Fourier transform (FFT) as well as in-
terpretable modes in terms of their characteristic frequencies.
In the case of a real valued system state with dimension ds, we
obtain ds/2 unique complex Fourier coefficients. Instead of
naively truncating the expansion at some frequency, we split
the complex coefficients into their real and imaginary parts
and then compute the mean of all ds coefficients of the trans-
formed training data. This allows us to sort the Fourier modes
by the descending order of their mean coefficients and only
keep the leading r in the truncation. Note that this strategy
adds a data-driven element to the DFT reduction scheme, in
order to better adapt it to the data at hand. The reconstruction
is achieved by calculating the inverse fast Fourier transform,
where the coefficients of the previously truncated modes are
set to zero.

In the last case, we construct a basis using the Hermite-
Gauss functions

ψn(x) = (2nn!
√

π )−
1
2 e− x2

2 Hn(x)

= (−1)n(2nn!
√

π )−
1
2 e

x2

2
dn

dxn
e−x2

, (11)

which form an orthonormal basis of L2(R). This is motivated
by the fact that the zeroth mode

ψ0(x) = π− 1
4 e− x2

2 (12)

approximates the quasiequilibrium Fermi-Dirac electron dis-
tribution (up to a constant factor), if we substitute x with
h̄k/

√
2mkBT and assume large temperatures or low densities.

Deviations from the equilibrium state can then be expanded
in the higher modes ψn. To build the desired basis, we sample
the Hermite-Gauss functions at the discretization points k
to construct the matrix H̃ ∈ Rds×ds . The matrix elements are
given by

h̃lm = ψm(l�k), (13)

where �k denotes grid size in k space. The columns h̃m thus
correspond to the different modes. Note that those vectors
are in general not orthonormal, unlike the original functions,
since they have been obtained via a finite number of samples
from the bounded interval [0, kmax]. We therefore apply a
Gram-Schmidt process to H̃ to obtain the orthonormal matrix
H ∈ Rds×ds . This leaves the lower modes almost untouched
and mostly modifies the higher modes, which extend to larger
k and are thus more affected by the sampling cut-off at
kmax. Similar to the DFT reduction scheme, we reorganize
the columns, i.e., the order of the modes, according to the
descending order of the transformed training data’s expan-
sion coefficients to obtain the matrix H. This way, the first r
columns hm maximize their share in the expansion of the train-
ing data. Hence, we can reduce and reconstruct a given system
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FIG. 3. Minimum compression ratio dr/ds to achieve a recon-
struction error score below 0.01 as a function of the number of
discretization points ds. Blue, orange, and green lines denote the
SVD, DFT, and Hermite dimensionality reduction schemes. The
error score adds up the mean and one standard deviation from a
tenfold cross-validation procedure of the training data. To evaluate
the individual trajectories, both the rms error and the maximum
absolute error are utilized and the results are presented in (a) and
(b), respectively.

state using the truncated matrix Hr , which only contains the
first r columns. Lastly, we further optimize this dimension-
ality reduction scheme by treating the temperature T not as
an external parameter, but as an optimization parameter to
minimize the Frobenius norm between the reconstructed train-
ing data and the training data. The Hermite reduction scheme
is thus both physically motivated and subject to data-driven
optimizations.

In order to benchmark the three dimensionality-reduction
schemes, we determine the minimum required compression
ratio dr/ds to achieve a reconstruction error score below
0.01. For that purpose, we simulate training datasets (see Ap-
pendix C) with an increasing number of discretization points
ds ∈ {50, 60, . . . , 250} but identically constructed initial
conditions.

To evaluate the quality of the reconstruction, we use a
tenfold cross-validation procedure (see Appendix B) to ob-
tain reconstruction errors for all individual trajectories. The
error score is then computed as the mean plus one standard
deviation in order to penalize large spreads in the individual
reconstruction errors. Figure 3 shows the results for both
the rms error (a) and the maximum absolute error (b) (see
Appendix B) as a function of the number of discretization
points ds. Blue, orange, and green denote the SVD, DFT, and
Hermite reduction schemes.

With respect to the rms error, the DFT reduction scheme
performs rather poorly. For ds = 50, all modes are required
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to achieve the desired error score. For an increasing number
of discretization points ds, the minimum compression ratio
slightly improves but then plateaus around dr/ds ≈ 0.8 for
ds � 100. The SVD and Hermite schemes, on the other hand,
offer much better error scores and exhibit a ∝ 1/ds behavior.
Specifically, the SVD scheme requires nine modes and the
Hermite scheme requires 19 modes to achieve the error score
target within the discretization point number range 80 � ds �
250. Hence, the SVD reduction scheme performs better by a
factor of two than the Hermite scheme with respect the rms
error.

Those results, however, change when considering the max-
imum absolute error. In that case, both the DFT and the
Hermite reduction scheme perform badly and exhibits min-
imum compression ratios close to one for all discretization
point numbers ds. The SVD reduction scheme, on the other
hand, requires a compression ratio of dr/ds = 0.52 at ds =
50 and improves to a compression rate of dr/ds = 0.16 at
ds = 250.

We attribute the performance differences among the three
different dimensionality reduction schemes to their specificity
to the examined data. The DFT is naturally best suited for
periodic and harmonic signals: two properties, which the
considered electron distributions do not fulfill. The Hermite
scheme achieves much better rms errors, since it is designed
to describe electron distributions close to a quasi equilibrium.
This condition is fulfilled for many system states of the con-
sidered trajectories. However, the Hermite reduction scheme
fails to approximate the Gaussian initial states as well as
the fringes at intermediate states well (see Fig. 1). Hence, it
only scores poorly with respect to maximum absolute error.
The SVD mitigates this issue by being entirely data-driven
and thus adapted to the initial, intermediate, and final system
states along the nonlinear transients. Note, however, that the
superior performance of the SVD reduction scheme is only
achieved by providing a suitable training dataset. System
states that are not well represented by the training data may
suffer from strong reconstruction artifacts. A further discus-
sion of the SVD reduction scheme applied to an example
trajectory is presented in Appendix D.

The fact that the required compression ratio of the SVD
based approach improves with an increasing number of dis-
cretization points demonstrates that the transient dynamics
indeed exhibit low dimensional patterns. Hence, we choose
the SVD approach to build the nonlinear autoregressive re-
duced order model.

We further would like to highlight that we only presented
three dimensionality reduction schemes, which are all trun-
cated linear transformations. Recent research on autoencoder
deep neural networks has produced promising and exciting re-
sults for low dimensionality latent representations of complex
dynamical systems [90–92]. Such approaches, however, come
with expensive training and computational costs.

B. Forecasting with polynomial features

Having chosen the appropriate dimensionality reduction
scheme leaves us with designing the nonlinear transformation
fn = f (̃rn, . . . , r̃n−l+1) alongside a suitable feature scaling
scheme. In the following, we propose, evaluate, and discuss

two transformations f (·). The first one is based upon poly-
nomial features and the second one generates its nonlinear
features via an extreme learning machine (ELM).

In both cases, we first construct a linear feature vector by
concatenating the past � system states r̃

f lin
n = r̃n ⊕ r̃n−1 ⊕ · · · ⊕ r̃n−�+1, (14)

where ⊕ denotes the concatenation operator. This corresponds
to the VAR(�) state. For a reduced dimensionality dr of the
state vectors r̃n, the dimension of the linear feature vector f lin

n
thus becomes dr�.

In the case of the polynomial features transformation, we
chose a degree p and construct the feature vector according to

fn = 1 ⊕ f lin
n ⊕ M(2)(f lin

n

) ⊕ · · · ⊕ M(p)(f lin
n

)
, (15)

where the operator M(p)(·) generates a vector, which contains
all unique monomials of the order p from the elements of
a given input vector. The linear feature vector f lin

n can be
understood as the first-order transformation and the constant
element 1 (bias/intercept term) as the zeroth-order transfor-
mation. This transformation represents a truncated discrete
Volterra series [93,94], where the regression weights wmn,
which are to be estimated, correspond to the discrete-time
Volterra kernels [95,96]. Note that the Volterra series is trun-
cated both in time (only the past � inputs are considered) and
in the polynomial order p. On the one hand, this approach
has the advantage of interpretable and intuitive features, but
on the other hand, it requires the Volterra series to quickly
converge in order to be computationally tractable. In particu-
lar, each order p adds ∝ (dr�)p elements to the feature vector.
In practice, however, low orders p have often proved to be
sufficient [67,68]. This, nonetheless, highlights that a small
reduced state dimension dr is greatly desirable to minimize
the dimension of the feature vector fn.

To complete the model, we lastly specify the feature scal-
ing scheme. This component determines the magnitude of
the inputs, which the nonlinear transformation receives, and
thereby critically controls its response. Since the polynomial
features are unbounded, i.e., do not saturate, we want to avoid
large outliers and scale each feature by the range, which we
observe in the training data. Specifically, the mth feature of
the reduced state rn is transformed according to

r̃nm = rs

[
rnm

max j{r jm} − min j{r jm} − 1

2

]
. (16)

The parameter rs determines the output range, to which the
features are scaled, j enumerates all system states in the
training data, and the last term ensures that the scaled features
are approximately symmetric with respect to the origin. We
refer to this approach as feature normalization.

The entire model, which contains the SVD dimensionality
reduction, the feature normalization, the polynomial features
transformation, and the regularized least-squares optimization
then contains the following hyper parameters: The number of
past time steps �, the polynomial order p, the reduced state
dimension dr , the feature scaling range rs, and the regular-
ization parameter α. In the following, we will explore the
impact of the last three hyper parameters onto the model’s
prediction capabilities. The first two are kept constant at � = 2
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FIG. 4. Demonstration of the nonlinear autoregressive model
with SVD-based dimensionality compression and polynomial fea-
tures up to second order. (a) Example trajectory with the same
initial state as in Fig. 1. (b) Prediction error plotted as the difference
between the predicted trajectory f pred

k and the ground truth fk . The
inset shows the error at t ∈ {0, 0.1, 0.4, 1.7} ps (indicated by dashed
horizontal lines). rms error εrms = 0.0034 and the maximum error
εmax = 0.0926. (c) Prediction error with respect to the reduced and
reconstructed trajectory. rms error εrms = 0.0022 and the maximum
error εmax = 0.0072. Parameters: ds = 200, dr = 20, � = 2, rs = 0.1,
and α = 10−3.5.

and p = 2, since larger values offer almost no performance
improvements for the considered data but increase the com-
putational costs. Nevertheless, these two parameters should
be optimized in the context of new data, where larger values
of � and p correspond to systems with longer correlations and
stronger nonlinearities, respectively.

To start off with, we want to demonstrate the forecasting
performance of a well tuned model. For that purpose, as well
as the following discussions, we simulate the electron-phonon
dynamics with ds = 200 discretization points. Figure 4 then
presents the results, which have been obtained with the identi-
cal initial conditions as in Fig. 1. The model has been trained
on the complete training dataset (see Appendix C) and the
hyper parameters are given in the figure caption.

Panel (a) plots the predicted transient electron dynamics,
which visually appear very similar to the ground truth ob-
tained from the simulation shown in Fig. 1. To highlight
the small deviations, we plot the differences in the electron
distribution f pred(εk, t ) − f (εk, t ) in Fig. 4(b), where positive
deviations are indicated by red colors and negative deviations
by blue colors. The inset furthermore shows the error at the

times t ∈ {0, 0.1, 0.4, 1.7} ps, which are indicated by dashed
horizontal lines in the main panel.

The largest absolute deviations are found at the bottom,
i.e., in the beginning of the transient dynamics, where the
distribution is still dominated by the Gaussian initial condi-
tions. In particular, the forecasted system state periodically (in
k space) over and undershoots the true dynamics (black line
in the inset), which is caused by a worst-case performance of
the SVD dimensionality reduction scheme (see Appendix D).
The initial state consequently produces the maximum error
εmax = 0.0926. However, once the electron distribution tran-
sitions to the intermediate and final states, its characteristic
features broaden, which facilitates a much better reconstruc-
tion via the truncated SVD. Consequently, the absolute errors
significantly reduce. For times t � 0.2 ps, the errors decrease
below | f pred(εk, t ) − f (εk, t )| = 0.01. A careful further in-
spection of Fig. 4(b) reveals that the most dominant prediction
errors for times t � 0.2 ps are found at kinetic energies εk �
0.15 eV. Here, the prediction overestimates the true dynamics
as indicated by the weakly red colors on the left side. This
also drives the root-mean-square (rms) error, which amounts
to εrms = 0.0034.

To better understand the origin of the observed prediction
errors, we moreover plot the prediction error with respect to
the reconstructed ground truth f pred(εk, t ) − f recon(εk, t ) in
Fig. 4(c). This way, we can separate the reconstruction error
and highlight the autoregression error. First and foremost, we
find that the observed errors are reduced by approximately
one order of magnitude when compared to the full error. The
maximum error now only amounts to εmax = 0.0072.
The distribution of errors, however, is somewhat similar to the
full error. At initial times t � 0.3 ps, where nonlinear physics
are the strongest, the regression both over and undershoots its
targets. At later times, the errors are again most pronounced
for small kinetic energies εk � 0.15 eV as highlighted by
the red stripe on the left. From this, we can conclude that
the prediction error with respect to the true dynamics in
this region is mostly caused by regression errors and not by
reconstruction errors from the SVD scheme. It is further note-
worthy, that the rms error yields εrms = 0.0022 with respect to
the reconstructed dynamics. The comparison to εrms = 0.0034
from the true dynamics then reveals that the larger part is
caused by regression errors. The maximum error, on the other
hand, is mostly driven by the reconstruction error. Given those
insights, we will, nevertheless, be using the prediction error
with respect to the true dynamics for further performance
benchmarking, since we consider the dimensionality reduc-
tion stage as an integral part of the model.

Having inspected the autoregression example presented
in Fig. 4, we proceed to study the impact of the reduced
system state dimension dr , which has previously been set
to dr = 20. Unlike the other model hyper parameters, the
reduced system state dimension not only affects the prediction
accuracy, but also, critically, the computational costs. For that
purpose, we set the feature normalization range to rs = 0.1
and automatically optimize the regularization strength α for
each scanned reduced dimension dr . The results are obtained
using a tenfold cross-validation procedure (see Appendix B)
and are presented in Fig. 5, where (a) plots the rms error and
(b) the maximum error. The error bars indicate one standard
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FIG. 5. Regression error as a function of the reduced dimension-
ality dr . rms error (a) and maximum error (b). The errorbars indicate
one standard deviation. (c) plots the mean of both error norms as
a function of the feature vector dimension df . The regularization
parameter α is individually optimized for each dr . Parameters: � = 2,
p = 2, ds = 200, and rs = 0.1.

deviation. The dimension of the feature vector fn, which is
given by

d f = 1 + dr� + dr�(dr� + 1)/2 (17)

for polynomial features up to second order, is further indicated
on top of panel (a).

We observe, that both error norms decrease with an in-
creasing reduced state dimension, however, both with specific
nuances. The rms error exhibits a relative plateau between
around 15 � dr � 32, where both the mean and the standard
deviation only marginally reduce. The maximum error, on the
other hand, does not exhibit such a plateau. Both the mean and
the standard deviation of the individual errors monotonically
decrease with the reduced dimension dr . We attribute this
behavior to a better reconstruction ability of the full dynamics
from a higher dimensional reduced state. As we have seen
before, this especially benefits the distinct features of the early
stage transients, which drive the maximum error. Since the
smaller errors at the early stages of the transient also improves
the rms error, we conclude that those play a minor role and
the observed plateau arises due to dominating autoregression
errors.

To gain practical insights from data, we relate the autore-
gression error to the computational costs of the model. For
that purpose, Fig. 5(c) plots the mean rms error (blue) and
the maximum error (orange) as a function of feature vector
dimension. The reduced system dimension dr is indicated on
the top. Note that we choose the feature vector size d f , since

FIG. 6. Hyperparameter optimization of the nonlinear autore-
gressive model with polynomial features up to second order: the
Tikhonov regularization parameter α and the feature scaling range
rs are tuned to minimize the tenfold cross-validated rms score.
The rms error score is defined as the mean regression error plus
one standard deviation. (a) Plots the color coded results and (b) a scan
along rs = 0.1, where blue denotes the regression error and orange
the score. Parameters are ds = 200 and dr = 20.

it provides both a measure for computation time of the feature
vector Eq. (15) itself and the matrix multiplication of the
autoregression step Eq. (1), and the memory requirements of
the feature matrix Eq. (4), which is required for the model
training procedure.

In this representation, both curves clearly show elbows
between 231 � d f � 861 (10 � dr � 20) and exhibit dimin-
ishing returns for d f � 861 (dr � 20). We therefore conclude
that models with dr ∈ [10, 20] represent the Pareto optimum
[78], i.e., they optimally balance small autoregression errors
and model complexity. For this very reason, we have chosen
the reduced dimension dr = 20 for the results presented in
Figs. 4 and 6.

Lastly, we systematically study the impact of the regu-
larization parameter α and the feature normalization range
rs. On that account, we define the autoregression error score
as the mean plus one standard deviation of the rms error
obtained from a tenfold cross validation procedure (see Ap-
pendix B) applied to the training dataset (see Appendix C). We
specifically incorporate the standard deviation to encourage
similar autoregression performances across different trajec-
tories. The resulting map is color coded and presented in
Fig. 6(a).

The likely most striking fact is that the regression error
score diverges in the upper left triangle (white color), i.e., for
weak regularization parameters and/or large feature normal-
ization ranges. This implies that the forecasting of at least one
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trajectory failed and diverged, which renders the associated
hyper parameter set (α, rs) unsuitable for general applications.
Stable operation, on the other hand, can be observed in the
lower right triangle, i.e., at strong regularization parameters
and/or small feature normalization ranges. The best scores are
indicated by bright and the worst scores by dark colors. Note,
however, that almost all nondivergent scores are found in the
rather small range from ≈0.01 to ≈0.015.

Quite importantly, the hyper parameter combinations,
which offer the best error scores, can be safely chosen, since
they exhibit a comfortable margin to the boundary of stability.
Among the best error scores is the configuration α = 10−3.5

and rs = 0.1, which was used for the example presented in
Fig. 4 and produces the excellent score 0.0063 + 0.0039 =
0.0102. Its autoregression error statistics are further discussed
in Appendix E.

The structure of the regression error scores indicates that
the regularization strength α and feature normalization range
rs have a similar effect, even though they act differently on
the model. The feature normalization range rs controls the
magnitude of the inputs and thereby the response of the
polynomial features transformation. On the one hand, large
inputs destabilize the model due to their unbounded trans-
formation (the unique monomials) and eventually cause the
autoregression to diverge. On the other hand, small inputs
quickly become negligible even for second-order monomials
and thereby render the model approximately linear. The fact
that feature normalization ranges rs ∈ [0.1, 0.2] provide the
best model performances thus indicates that the second-order
monomials can be interpreted as a small but relevant correc-
tion to a linear model. It furthermore explains the lack of
performance improvements observed for higher-order trans-
formations (p > 2).

On the contrary, the regularization strength α only
indirectly affects the nonlinear response via errors that are ac-
cumulated during the repeated self-injection of the predicted
state as a new input (see Fig. 2). Tikhonov regularization is
a well established [76–78] approach to improve the out-of-
sample prediction for regression problems with multicollinear
features. This turns out to be especially relevant in our case,
since the polynomial features of our transformation are not
orthogonal and thus create approximately multicollinear fea-
tures by construction. Hence, for each feature normalization
range rs, a specific regularization strength α best balances
the stability (strong α) and the accuracy (weak α) of the
autoregressive model.

The impact of the regularization strength is further illus-
trated in Fig. 6(b), which presents the regression error as
function of the regularization parameter α for the fixed fea-
ture normalization range rs = 0.1. Blue circles and error bars
indicate the mean rms error and its standard deviation and
orange squares the autoregression error score as it is used in
Fig. 6(a). Increasing the regularization strength starting from
α = 10−4.1, we observe a decreasing error score to a global
minimum around α ≈ 10−3.5. Notably, the improvement is
mostly due to a decreasing standard deviation, which we at-
tribute to an increase in stability as discussed above. Further
increasing the regularization strength then leads to a mono-
tonically growing mean regression error, which we attribute
to a lack of specificity and adaption of the regression weights

due to the stronger regularization constraints. Similarly, the
standard deviation also grows such that the corresponding
relative error remains approximately constant. A qualitatively
identical behavior can also be observed for other feature nor-
malization ranges rs, as can be seen in Fig. 6(a).

In summary, the nonlinear autoregressive reduced order
model built upon polynomial features offers an excellent fore-
casting performance and interpretability due to its connection
to discrete Volterra series [93,94]. Moreover, the individual
features can be easily computed via the upper(lower) triangle
of the linear feature vector’s pth-order tensor product. On the
downside, however, one must be very careful with the feature
scaling and regression weight regularization, in order to avoid
diverging forecasts. Furthermore, the feature vector size scales
with the order of the polynomial features transformation,
which can become restrictive even at the second order (p = 2)
for large linear feature vectors.

C. Forecasting with ELM features

With the intend to overcome some of the shortcomings
of the polynomial features transformation, we further pro-
pose and investigate a nonlinear transformation based on
an extreme learning machine (ELM) [97]. ELMs refer to
feed-forward artificial neural networks, where only the linear
output layer, but not the internal hidden layers, are trained.
This allows for a simple one-step learning, which can be
orders of magnitude faster than the gradient-based meth-
ods employed for the complete training of artificial neural
networks, while also keeping the required training datasets
small [67,98]. Despite this restriction, ELMs have been shown
to have universal approximation capabilities for continuous
regression tasks [99,100]. Since they are not part of the train-
ing procedure, the internal parameters are typically drawn
randomly from suitable distributions. The internal layers
therefore perform a random projection of the input data into
a nonlinear feature space, from which the output is generated
via the trained linear mapping.

In the case of the ELM transformation, we construct the
feature vector according to

fn = 1 ⊕ f lin
n ⊕ fELM(

f lin
n

)
. (18)

The first two vectors represent the bias term and the linear
features and the last vector represents the nonlinear features
generated by an ELM. Specifically, the function fELM(·) is
given by

fELM
(
f lin
n

) = φ
(
WELMf lin

n + β
)
, (19)

where a nonlinear activation function φ acts on each element
of the input vector, which is generated by the weight matrix
WELM ∈ RL×d f , the linear feature vector f lin

n , and the bias
vector β ∈ RL×d f . Hence, each nonlinear feature is given by
a nonlinearly transformed linear combination of all linear
features. This nonlinear transformation can be represented by
a fully connected feed-forward network with one hidden layer,
to which a nonlinear activation function is applied. The matrix
WELM further defines the number of neurons (nodes) L in the
hidden layer via its shape RL×d f . This fact constitutes a major
advantage of the ELM approach compared to the polynomial
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features: The size of the feature vector, which is relevant for
the computational costs, does not depend on the order of the
nonlinearity and can be explicitly controlled.

For our purposes, we use the hyperbolic tangent tanh(·)
as the nonlinear activation function φ(·). Note that this
nonlinearity behaves fundamentally different than the previ-
ously used polynomial transformation (see Sec. IV B). For
small inputs |u| 	 1, the hyperbolic tangent behaves linearly;
for intermediate inputs |u| ∼ 1, the hyperbolic tangent is
strongly nonlinear; and for large inputs |u| � 1, the hyper-
bolic tangent saturates. Hence, we can tune the strength of
the nonlinearity by controlling the input u, i.e., the magnitude
of the individual features, without ever risking a diverging
response.

On that account, we standardize the individual features by
subtracting their mean μm and scaling them by their standard
deviation σm:

r̃nm = rnm − μm

σm
. (20)

Coordinated with that we draw the weights wELM
mn from a

normal distribution NW(0, d−1
f ) with zero mean and the vari-

ance given be the inverse feature vector dimension d f . Given
the standardization of the features, the scaling of the vari-
ance ensures that the expected magnitude of the inputs unl =∑

m wELM
lm f lin

nm is of the order ≈1. This construction has been
shown to optimally harness the tanh nonlinaerity and produce
the best regression results [101]. Similarly, the biases βm are
drawn from the uniform distribution Uβ (−1.0, 1.0).

The insight that the presented combination of feature scal-
ing and random weights already optimizes the regression
potential of the ELM features therefore relieves the human
operator from the obligation to optimize any of the related
parameters. This simplification thus facilitates an easier im-
plementation of the nonlinear autoregressive reduced order
model.

We forgo the presentation of the ELM based autoregres-
sion applied to the example trajectory (see Fig. 1), since the
results turn out to be very similar to polynomial features based
autoregression (see Fig. 4). In order to investigate the autore-
gression performance of ELM transformation, we evaluate the
rms error in the model hyperparameter plane spanned by the
reduced system dimension dr and the number of ELM neurons
L. We optimize the regularization parameter α independently
via a simple linear search for each parameter combination. To
account for the randomly drawn ELM parameters (WELM, β ),
we consider five different realizations. Figure 7(a) plots the
color-coded mean rms score, which adds the mean regression
error and one standard deviation and averages the result over
the five different ELM parameter sets.

For an increasing number of ELM neurons L, we observe
improving autoregression scores, irregardless of the reduced
system dimension dr . This is in accordance with the ELM
literature [99,100], where more ELM neurons increase
the nonlinear feature space and thus improve the ELM’s
approximation capabilities. Scanning along the reduced
system dimension dr , however, yields a different behavior: for
an increasing reduced system dimension, the autoregression
score initially decreases rapidly, then reaches a global mini-
mum around dr ∼ 15, and finally slowly increases again. It is
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FIG. 7. Hyperparameter optimization of the nonlinear autore-
gressive model with ELM features in the parameter space spanned
by the number of ELM neurons L and the reduced dimensionality
dr . (a) plots the mean rms score, which is evaluated as the regression
error plus one standard deviation averaged over five different sets of
random ELM parameters (WELM, β ). The regularization parameter
α is optimized for each parameter combination. (b) and (c) plot
one-dimensional slices along dr = 20 and L = 200 [indicated by
white dashed lines in (a)], where different colors denote the five ELM
parameter sets. Other parameters: � = 2 and ds = 200.

further important to note that the minimum itself shifts to
a larger reduced dimensions dr with an increasing number
of neurons L. Specifically, from dmin

r = 13 at L = 50 to
dmin

r = 15 at L = 400. We interpret this result as follows.
If the reduced state dimension is increased, the nonlinear
feature space must be increased in order to accommodate
the additional information and to reliably generate suitable
features, upon which the regression step is build. Moreover,
the additional information, which is provided by the additional
features, has a diminishing relevance for the reconstruction
of the full system state [proportional to its corresponding
singular value σl , see Fig. 11, note the kink at l = 14 in (a1)].
Hence, keeping the number of neurons constant and increas-
ing the reduced state dimension might wash out the more
relevant contributions in the first few components via the ran-
dom linear combination with the ELM weight matrix WELM.

We further illustrate those findings by showing one dimen-
sional scans along the number of ELM neurons L for dr = 20
in Fig. 7(b) and along the reduced dimension dr for L = 200
in Fig. 7(c). These scans are indicated by white dashed lines in
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Fig. 7(a). However, unlike Fig. 7(a), we plot the rms error with
one standard deviation indicated by errorbars and represent
the five different ELM realizations by different colors. Both
(b) and (c) reveal that the changes in the rms score, as they
are portrayed in (a), are produced by roughly equal changes
of the mean and the standard deviation. Thus the error score
minimum at dr = 14 both represents the smallest mean and
the smallest standard deviation. Moreover, the separate repre-
sentation allows to eyeball the impact of the randomly drawn
ELM weights WELM. For all investigated hyper parameters,
the variation of both the mean and the standard deviation is
well within the corresponding error ranges. Hence, we con-
clude that an ELM based model can be initially implemented
and optimized without giving extra attention to the ELM re-
alization. Nonetheless, the autoregression performance can be
maximized by generating multiple ELMs and picking the best.

Furthermore, we report that the optimization of the regu-
larization parameter α is of relatively small importance for
the ELM based model. Unlike the polynomial features based
model (see Sec. IV B), we only obtain diverging trajectories
for very small reduced system dimensions d < 8 and almost
negligible regularization strengths α < 10−5. Moreover, for
reduced system dimensions dr � 12, the optimizations of reg-
ularization strength typically yields improvements of only a
few percents. For practical and fast implementations of the
model, the regularization parameter can therefore be safely
set to intermediate values such as α = 10−2 and ignored
afterwards.

In summary, the ELM based implementation of the
nonlinear autoregressive reduced order model yields very
competitive results with only few hyper parameters to be
optimized. The unique hyper parameter, i.e., the number of
neurons L, can be furthermore understood as an advantage,
since it directly affects the computational performance and
can be explicitly set. Moreover, the ELM approach shows a
high resilience against diverging trajectories, which we at-
tribute to the saturating tanh nonlinearity. On the downside,
the evaluation of the tanh nonlinearity is computationally
more expensive than the monomials. Furthermore, the slight
stochasticity of the forecasting performance due to the ran-
domly drawn weights inhibits the usage of hyperparameter
optimization algorithms, e.g., Bayesian optimization, which
require smooth goal functions.

D. Training dataset size dependence

Lastly, we study the relation between the autoregres-
sion error and the training dataset size. For that pur-
pose, we subsample the complete training dataset with
n = 1000 (see Appendix C) into chunks with the sizes n ∈
{10, 20, 50, 100, 200, 500}. Both for a model with ELM and a
model with polynomial features, we then obtain a regression
error for each trajectory from the complete set by performing
a tenfold cross-validation procedure on each of the subsets
(see Appendix B). Inferring the optimal ELM parameters from
Fig. 7, we set the relevant model parameters to dr = 15 and
L = 400, which yields a feature vector with the size d f = 431.
Similarly, the polynomial features model is operated with
dr = 15, which yields a feature vector with the dimension
d f = 496. Hence, both models have roughly the same number
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FIG. 8. Autoregression error as function of the size of the train-
ing dataset. For sizes <1000, the complete dataset with n = 1000 is
subsampled to generate error scores for all trajectories via a tenfold
cross-validation procedure for each subset. Autoregression is per-
formed with SVD based dimensionality reduction and ELM features
(blue) and polynomial features (orange). Parameters: ds = 200, � =
2, dr = 15, and α = 10−2. ELM parameters: L = 400. Polynomial
features parameters: p = 2 and rs = 0.1.

of regression weights wnm that must be optimized by exposing
them to the training data. The regularization parameter is set
to α = 10−2 for both models, which was required to ensure
that no forecasts with the polynomial features based model
diverge for small training dataset sizes. The results in terms
of the mean regression error and its corresponding standard
deviation are presented in Fig. 8, where (a) shows the rms
error and (b) the maximum error. Blue denotes the model with
ELM features and orange the model with polynomial features.

For both error scores and both models, we find that the
regression error and its standard deviation monotonically de-
creases with the training dataset size. However, both error
scores clearly exhibiting diminishing returns, both in terms
of the mean and the standard deviation, for training dataset
sizes beyond n ∼ 100. This behavior is especially prominent
for the model with ELM features, whose autoregression per-
formance degrades much stronger for training dataset sizes
below n ∼ 100. Note, however, that the ELM features based
model also achieves a slightly better performance for larger
training dataset sizes (n � 100) than the polynomial features
based model. We attribute the advantage of the polynomial
features based model at small training dataset sizes to a better
specificity of the transformation. I.e., the truncated Volterra
series is a more “natural” representation of nonlinear dynam-
ics at hand, which facilitates a data efficient optimization of
the regression weights wnm and a better generalization capa-
bilities on unseen trajectories. Moreover, we want to highlight
that the diminishing returns effect is slightly stronger for the
maximum regression error, which we attribute to the limits of
the reconstruction error from the reduced order latent space.

In conclusion, we find that n ∼ 100 training trajectories
are sufficient to obtain a well trained model for the problem
at hand, irregardless of the chosen nonlinear feature map-
ping. However, if only few training trajectories are available,
the polynomial features transformation offers a better perfor-
mance than the ELM features transformation.
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V. DISCUSSION

In this work, we have demonstrated a nonlinear autoregres-
sive reduced-order model (NARROM) for the forecasting of
nonlinear transient dynamics in a coupled electron-phonon
system. This data-driven model is designed to be minimal
and thus efficient, both in terms of the computational training
and forecasting costs, in order to replace expensive simula-
tions in multiphysics problems. Our approach capitalizes on a
dimensionality reduction scheme, which extracts an optimal
set of low dimensional patterns from the transient dynam-
ics. Those patterns constitute a reduced-order latent space,
which facilitates a computationally efficient, yet accurate,
approximation of the system state. In particular, the reduced
dimensionality helps to mitigate the curse of dimensionality.
This becomes especially relevant, since the (reduced) sys-
tem states are projected into a generally higher dimensional
nonlinear feature space, before performing the regression
step.

Our results show, that a dimensionality reduction scheme
based on the singular value decomposition extracts an op-
timal truncated basis for the considered transient dynamics,
and thereby easily outperforms established dimensionality re-
duction schemes based on Fourier modes and Gauss-Hermite
functions. Hence, we recommend a SVD based dimensional-
ity reduction scheme almost unconditionally—the only caveat
is the lack of a straight-forward physical interpretation of the
extracted modes. Regarding the nonlinear feature mapping,
we must formulate a recommendation with some important
nuances. We have demonstrated that both the polynomial
features and the ELM features can yield excellent forecast-
ing performances. On the one hand, the polynomial features
are easily constructed and evaluated and provide an intu-
itive interpretation in terms of the well-established discrete
Volterra series. On the downside, however, the feature space
dimension scales with the largest polynomial degree and the
features must be appropriately scaled and regression weights
must be well regularized in order to avoid diverging forecasts.
On the other hand, the ELM features yield a model that is
much less prone to diverging forecast and thus requires fewer
hyper parameters to be optimized. This allows for a more
straight forward and safe deployment of the model. On the
downside, the utilized tanh nonlinearity is more expensive
to evaluate than the polynomials and thus comparatively de-
teriorates the computational performance of an ELM based
model. This apparent tie between the two nonlinear trans-
formations is broken by their response to different training
dataset sizes: polynomial features offer a better performance
for small datasets, but loose that advantage at larger datasets.
Hence, we recommend the use of the polynomial features
transformation for small training dataset sizes. The additional
optimization of the critical model hyper parameters is facil-
itated by the inexpensive training due to the small training
dataset size. The optimization may further be automatized,
e.g., by a Bayesian optimization algorithm. For larger training
dataset sizes, we recommend the ELM features transformation
due to its easier deployment and superior stability. Up to this
point, we have abstained from the discussion of the computa-
tional demands of the nonlinear autoregressive reduced-order
model in comparison to the direct integration of the equa-
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FIG. 9. Simulation time as a function of the number of trajec-
tories. The blue line denotes the ground truth as obtained from the
integration of the differential equations with an adaptive step-size
Runge-Kutta algorithm. The dashed orange line denotes the sim-
ulation with reduced accuracy. The thick green line denotes the
data-driven approach, where the initial steps result from generating
the training data and optimizing the model hyperparameters. The
latter two are configured to yield an average maximum error of
� 0.06.

tions of motion. The bare results of such a comparison are
to be taken with a grain of salt, because both the runtime
and the allocated memory critically depend on the actual
implementation the equations of motion, the ODE solver, and
the data-driven model. Nonetheless, we want to illustrate the
performance figures, which we have achieved to highlight the
qualitative trends. With our implementation, the simulation of
the training dataset with n = 1000 and ds = 200 takes about
10 hours on an Intel Core i7-8700 with six physical cores.
In our test scenario, we decide that this time is unfeasible,
but we are willing to accept and average maximum error
of εmax ≈ 0.06 for the trajectories. The traditional approach
would be to decrease the accuracy of the integration method.
With the data-driven approach, on the other hand, we first
have to generate sufficient training data and then optimize the
model hyperparameters. To be efficient, we simulate trajec-
tories with quasilogarithmic steps, i.e., 10, 20, 50, 100, . . . ,
and perform a hyperparameter optimization each time until
the cross-validated error fulfills the threshold.

We presented the results in Fig. 9, where the simulation
time is plotted as a function of number of trajectories. The
blue line denotes the direct integration of the equations of
motion (A1) and (A2) with a forth-/fifth-order adaptive step-
size Runge-Kutta algorithm and represents the ground truth.
The dashed orange line denotes the integration with the same
method, but with reduced accuracy. The thick green line de-
notes the data-driven approach, where we use ELM features,
and fix the delay embedding to � = 2 and the regularization to
α = 10−2. The reduced dimension rd and number of Neurons
L are subject to an optimization, which we perform via a
simple grid search with 121 sample points. The integration
of the differential equations yields a linearly increasing simu-
lation time, where the reduced accuracy integration produces
a ≈66% speed improvement. The data-driven approach, on
the other hand, exhibits are more nuanced behavior, where
the initial steps result from generating the training data and
optimizing the model hyperparameters. A satisfactory model
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is obtained with n = 100 training trajectories, which is consis-
tent with Fig. 8. With the trained model, the simulation time
then grows linearly. However, it only amounts to 27 seconds
for the remaining 900 trajectories and therefore becomes neg-
ligible and appears flat in the figure. The turning point, where
the data-driven approach gains an advantage over the reduced-
accuracy integration is then located at n = 380 trajectories.

Hence, the data-driven approach becomes a viable option
for any application, where n > 380 trajectories are required.
However, it truly becomes powerful and may save orders
of magnitude in simulation time, if n � 380 trajectories are
needed, because the costs of obtaining the trained model
remain the same and the simulation of further trajectories
is very inexpensive. We attribute the enormous speed-up of
forecasting individual trajectories with the trained model to
three factors: Firstly, the data-driven model propagates the
nonlinear system in the reduced-dimensionality latent space.
Secondly, the data-driven model can take nonlinear steps and
therefore tolerates much coarser temporal discretizations.
Lastly, the phonon system must not be explicitly propagated
but is implicitly included in the delay-embedding of the
electron system.

Moreover, the computational demands of directly simulat-
ing the coupled system scale with the square of the number of
discretization points ds. The computational costs of the data-
driven model, on the other hand, only scale linearly with the
number of discretization points (the dimensionality reduction
and reconstruction stages). Thus the data-driven model’s ad-
vantage becomes even more pronounced for fine k-space dis-
cretizations. Lastly, we want to highlight that most of the pro-
posed data-driven methods build upon simple and well estab-
lished linear algebra routines, which makes them easy to adapt
and to implement, and computationally inexpensive to run.

Our results led us to conclude that the approximation of
computationally expensive nonlinear dynamics by a minimal
data-driven model (as opposed to, e.g., a deep artificial neural
network) has the potential to greatly accelerate the simulation
of multiphysics problems. This may have profound implica-
tions for the further development of, among others, solid-state
based optoelectronic devices.

The data generated in this work can be generated by run-
ning the publicly available code as described in Ref. [103].
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APPENDIX A: EQUATIONS OF MOTION

In this section, we briefly discuss the coupled electron-
phonon dynamics. To derive the corresponding equations of
motion, we start with the parametrization of a micro-
scopic Hamiltonian containing the dispersion of electrons
and phonons as well as the interaction between them. The
electron dispersion is treated in the parabolic approximation,
with parameters taken from ab initio calculations [102]. The
dispersion of the acoustic phonons is treated in the Debye
approximation with the velocity of sound taken from ab initio
calculations [48]. The dispersion of the optical phonons is
treated in the Einstein approximation with parameters taken
from ab initio calculations [48]. To study the coupled electron
phonon dynamics, our observables are the electron occupation
fk = 〈c†

kck〉, with electron annihilation (creation) operators
c(†)

k with the momentum k and the phonon occupation nq =
〈b†α

q bα
q〉, with phonon annihilation (creation) operators b(†)α

q
with the phonon branch α and the phonon momentum q.
To derive an equation of motion for the electron occupation
fk and the phonon occupation nα

q , we exploit the Heisen-
berg equation of motion. The upcoming hierarchy problem
is treated in a correlation expansion and a second-order
Born-Markov approximation [104]. The resulting coupled
electron-phonon Boltzmann scattering equations read

∂t fk = 2π

h̄

∑
k′,α,±

|gk−k′ |2
(

1

2
± 1

2
+ nα

k−k′

)
(1 − fk ) fk′δ

(
εk − εk′ ± h̄ωα

k−k′
)

− 2π

h̄

∑
k′,α,±

|gk−k′ |2
(

1

2
± 1

2
+ nα

k−k′

)
(1 − fk′ ) fkδ

(
εk − εk′ ∓ h̄ωα

k−k′
)
, (A1)

∂t n
α
q = 2π

h̄

∣∣gα
q

∣∣2 ∑
k

(1 − fk ) fk+q(1 + nq)δ
(
εk − εk+q + h̄ωα

q

)
− 2π

h̄

∣∣gα
q

∣∣2 ∑
k

(1 − fk+q) fknqδ
(
εk − εk+q − h̄ωα

q

)
. (A2)

Equation (A1) describes the temporal evolution of the elec-
tron occupation where the first term on the right-hand side
accounts for in-scattering processes and the second line ac-

counts for out-scattering processes. In both lines, the + terms
in the summation account for phonon emission processes
and the − terms account for phonon absorption processes.
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TABLE I. Material parameters used in the calculation.

me/m0 0.5 [102]
ω̄o (meV) 36 [49]
cLA (nm fs−1) 4.1 [49]
Da

1 (eV) 3.4 [49]
Do

0 (eV nm−1) 52 [49]

The rates depend on the electron-phonon coupling matrix
element gk with the momentum k. The appearing delta func-
tions ensure energy conservation during an electron-phonon
scattering event. We treat the dispersion of electrons in the
parabolic approximation εk = h̄2

k2 2me, the dispersion of acous-
tic phonons in the Debye approximation h̄ωa

k = cLA|k|, and
for optical phonons in the Einstein approximation h̄ωa

k = h̄ωo.
Equation (A2) describes the temporal evolution of the phonon
occupation. The first line on the right-hand side accounts for
phonon emission processes and the second line accounts for
phonon absorption processes. We numerically integrate the
coupled system of equations of motions for the exemplary
two-dimensional material MoSe2.

For our evaluation, we treat the appearing electron cou-
pling elements gk in the effective deformation potential
approximation [48]

gi
q =

√
h̄

2ρ�iA
Vq, (A3)

with the effective mass density of the unit cell ρ and the
semiconductor area A. The effective deformation potential
reads for acoustic phonon coupling Vq = D1q, and for optical
phonons Vq = D0. We take the parameters from Ref. [49] and
list them in Table I.

APPENDIX B: BENCHMARKING

With the intention of forecasting transient dynamics over
extended time periods in the closed-loop autonomous mode
of the model (see Fig. 2), we want to evaluate the model
performance for complete trajectories and not only for indi-
vidual time steps. Given a test trajectory S and its forecasted
approximation Ŝ, we use two different error scores for that
purpose. Firstly, the root-mean-squared (rms) error

εrms =
√

1

N

∑
m,n

(ŝmn − smn)2 =
√

1

NS
‖Ŝ − S‖F, (B1)

which corresponds to the Frobenius norm ‖ · ‖F, which is nor-
malized by the square root of the number of matrix elements
NS. The normalization ensures that different discretizations
of the dynamics produce comparable errors. Secondly, the
maximum error

εmax = max
mn

|ŝmn − smn|, (B2)

which yields the elementwise maximum absolute difference
between Ŝ and S. While the maximum error highlights the
worst part of an approximation Ŝ, the rms error considers an
average over all squared errors. However, large individual er-
rors are still represented strongly due to the square. Moreover,

the rms error directly relates via the Frobenius norm to the
loss function (6), which is minimized to obtain the regression
weights.

To benchmark a given model, we use a k-fold cross vali-
dation scheme, where we split the training dataset (in terms
of trajectories) into k equally sized folds. For each fold, we
train the model on all the other folds and then score the
trajectories contained in the selected fold. This way, we do
not mix training and testing data but, nonetheless, obtain a
score for each trajectory in the dataset. Using the individual
error scores, we can then compute the desired statistics, e.g.,
the mean score and the standard deviation of the scores.

APPENDIX C: TRAINING DATA

To generate a training dataset, we simulate 1000 trajecto-
ries with varying initial electron distributions. As we want
to consider the transient dynamics of the solid-state system
shortly after the excitation by a short laser pulse, we use
thermal distributions for the phonon system and a Gaussian
distribution for the electron system. The mean, the stan-
dard deviation, and the maximum value of each Gaussian
distribution are drawn from the continuous uniform distribu-
tions Umean(0.0 eV, 0.175 eV), U std(0.005 eV, 0.025 eV), and
Umax(0.5, 0.99), respectively. The variations of the Gaussian
parameters is attributed to laser pulses with different mean
frequencies, pulse widths, and powers. The bounds of the uni-
form distributions are chosen to ensure strong nonlinearities
in the resulting dynamics. Each initial condition is integrated
for 2 ps and then sampled every 50 fs to yield sequences with
400 equidistant snapshots of the system state. The sampling
interval has been chosen to yield visually smooth trajectories,
without unnecessarily inflating the training data size. Tuning
the sampling interval within a reasonable range has not been
found to significantly impact the forecasting performance.

The resulting training data is illustrated in Fig. 10, where
(a) and (b) plot the initial electron distribution at t = 0 ps and
the final electron distribution at t = 2 ps for each of the 1000
trajectories. The randomly generated Gaussian initial condi-
tions first cover a diverse range of occupation numbers across
the electron states and then relax towards quasi Fermi-Dirac
distributions. The corresponding chemical potentials and the
temperatures are determined by the amount and the energy of
the electrons that have been excited. To visualize the statistics
of the observed Fermi-Dirac distributions, Figs. 10(c) and
10(d) plot histograms of the electron density (the thermody-
namic conjugate to the chemical potential) and the electron
temperature. We observe densities from 0.03 to 0.25 nm−1

and temperatures from 250 to 430 K. Note that those electron
temperatures only characterize quasiequilibrium distributions,
which have not thermalized with respect the phonon system
yet.

APPENDIX D: SINGULAR VALUE DECOMPOSITION
BASED DIMENSIONALITY REDUCTION

In this section, we briefly illustrate how the singular value
decomposition (SVD) based dimensionality reduction applies
to our data. On that account, we use our standard dataset with
1000 trajectories and ds = 200 (see Fig. 10), and compute
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FIG. 10. Illustration of the training dataset with n = 1000 tra-
jectories. (a) Randomly drawn Gaussian initial states of the electron
distribution. (b) Final states after 2 ps integration time. (c) Histogram
of the electron densities. (d) Histogram of the electron temperature
after 2 ps integration time. Parameters: ds = 200.

the SVD according to Eq. (8). The resulting singular value
spectrum σl is plotted in Figs. 11(a1) and 11(a2) and the first
six left singular vectors ul are plotted in Fig. 11(b).

The singular spectrum exhibits the typical s-shape of full-
rank data matrices. The biggest jump between two adjacent
singular values can be observed between the first and the
second. The high energy found in the first singular value
thus highlights the importance of the first mode (left singular
vector) u1 for the expansion of the full electron state fk . As
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FIG. 11. Singular value spectrum split into (a1) and (a2), and the
first six singular vectors (b) obtained from the SVD of the training
dataset with ds = 200.
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FIG. 12. Compressed representation of the dynamics shown in
Fig. 1(a) and the corresponding reconstruction error (b). Dimension-
ality reduction is achieved by expanding the electron state fk (t ) in the
first r left singular vectors ul . The time evolution of the coefficients
rl (t ) is color-coded along the verticals of (a). The difference of the
occupation numbers between the reconstruction and the ground truth
produces the rms reconstruction error εrms = 0.0024 and the maxi-
mum error εmax = 0.0952. Parameters are ds = 200 and dr = 20.

presented in Fig. 11(b) by the blue line, this mode resembles
the electron quasiequilibrium state, which is a good descrip-
tion of the later part of most trajectories [see Fig. 10(b)].
The subsequent modes, however, to not intuitively resemble
physical features of the system, but rather portray exponential
decaying oscillations with increasing complexity, i.e., number
of extrema/roots.

To further demonstrate the dimensionality reduction, we
project the example trajectory fk (t ) presented in Fig. 1 onto
the first r = 20 left singular vectors ul to obtain the time evo-
lution of the reduced state r(t ). The evolution of the individual
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FIG. 13. Autoregression error statistics from a tenfold cross val-
idation procedure. Model with SVD based dimensionality reduction
and polynomial features up to second order. Other parameters: � = 2,
ds = 200, dr = 20, rs = 0.1, and α = 10−3.5.
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components rl (t ) is color coded and presented along vertical
lines in Fig. 12(a). The initial state (bottom row) is represented
by a mixture of all modes, but the first, with similar weights.
This indicates that the initial state is not well represented
by a few of the chosen first 20 modes. The relaxation to-
wards the quasiequilibrium distribution then causes the first
coefficient to grow and all others to decay to values close to
zero.

Lastly, the reconstruction error f recon
k (t ) − fk (t ) of the con-

sidered trajectory with dr = 20 is plotted in Fig. 12(b). Red
and blue colors represent positive and negative deviations.
Reconstruction errors can mostly be found in the early stage
of the transient dynamics, where the distribution is close to its
Gaussian initial conditions. There, the error alternates from
positive to negative values, with frequencies given by the
oscillatory structures of the left singular vectors ul . However,
once the early stage is passed, the reconstruction errors be-
come negligible as indicated by the vast white region. Hence,
further increasing the dimension of the reduced system state
mostly benefits the accurate description of the early stage
system states.

APPENDIX E: AUTOREGRESSION ERROR STATISTICS

In this section, we briefly discuss the autoregression error
statistics for the model with polynomial feature up to second
order. We apply a tenfold cross validation procedure (see
Sec. B) to our standard dataset with ds = 200 (see Sec. C) to
obtain individual error scores for each of the 1000 trajectories.
Figure 13 shows a histogram of the rms error in (a) and a his-
togram of the maximum error in (b). The model hyperparame-
ters are given in the caption. Both error scores exhibit a similar
qualitative behavior: Most errors cluster in a relatively small
region and small fraction produces a long tail towards larger
errors. Those outliers drive both the mean and the standard
deviation to large values even though they are not representa-
tive of most of the errors. Nonetheless, we deliberately do not
use outlier robust measures such as the median and the quar-
tiles, because we want penalize outliers in the regression error
scores, as they are used in the main body of the manuscript.
In that sense, even a single test trajectory, for which the
forecasting produces large errors, is highly undesirable for the
considered applications in multiphysics simulations.
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