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A hyperbolic lattice allows for any p-fold rotational symmetry, in stark contrast to a two-dimensional
crystalline material, where only 2-fold, 3-fold, 4-fold, or 6-fold rotational symmetry is permitted. This unique
feature motivates us to ask whether the enriched rotational symmetry in a hyperbolic lattice can lead to any new
topological phases beyond a crystalline material. Here, by constructing and exploring tight-binding models in
hyperbolic lattices, we theoretically demonstrate the existence of higher-order topological phases in hyperbolic
lattices with 8-fold, 12-fold, 16-fold or 20-fold rotational symmetry, which is not allowed in a crystalline lattice.
Since such models respect the combination of time-reversal symmetry and p-fold (p = 8, 12, 16, or 20) rotational
symmetry, p zero-energy corner modes are protected. For the hyperbolic {8,3} lattice, we find a higher-order
topological phase with a finite edge energy gap and a gapless phase. Our results thus open the door to studying
higher-order topological phases in hyperbolic lattices.
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I. INTRODUCTION

Recently, hyperbolic lattices have been experimentally re-
alized in circuit quantum electrodynamics [1] and electric
circuits [2–4], igniting great interest in study of various
properties of hyperbolic lattices [5–19], such as topological
properties, hyperbolic band theory, and flat band properties.
Different from a hyperbolic lattice, it is a well-known fact
that only twofold, threefold, fourfold, or sixfold rotational
symmetry is permitted in two-dimensional (2D) crystalline
materials. In other words, one can only use regular p-sided
polygons with p = 3, 4, or 6 to tessellate the 2D Euclidean
plane. However, for a hyperbolic lattice with constant negative
curvature, such a restriction is lifted so that one can use regular
p-gons for any integer p > 2 to tessellate a hyperbolic plane
[see Fig. 1(a)]. As a result, any p-fold rotational symmetry
can be realized in a hyperbolic lattice. This leads to a natural
question of whether the enriched rotational symmetry of a
hyperbolic lattice will result in any new topological phases
beyond crystalline systems.

Recent generalizations of topological phases to the higher-
order case provide us with an opportunity to study the
effects of the enriched rotational symmetry. Different from the
conventional first-order topological system, such a topologi-
cal phase supports (n − m)-dimensional (1 < m � n) gapless
boundary modes for an n-dimensional system [20–40]. For
instance, a 2D second-order topological insulator may support
two, four, or six zero-energy corner modes [20,32,38]. Since
the number of corner modes is closely related to the crystalline
symmetry of a system, one thus may wonder whether the new
rotational symmetry in hyperbolic lattices can allow for the
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existence of new higher-order topological phases that cannot
exist in a crystalline material.

In this work, we theoretically demonstrate the existence
of higher-order topological phases in hyperbolic lattices
with 8-fold, 12-fold, 16-fold, or 20-fold rotational symmetry
by constructing and exploring tight-binding models on the
lattices. Such Hamiltonians respect the combination of time-
reversal symmetry and p-fold (p = 8, 12, 16, or 20) rotational
symmetry, which is not allowed in a crystalline lattice. While
a quasicrystal may allow for the 8-fold or 12-fold rotational
symmetry, to the best of our knowledge, it is unclear whether
16-fold or 20-fold rotational symmetry can occur there [41].
For clarify of presentation, we mainly focus on a hyperbolic
{8, 3} lattice where regular 8-gons are used to tessellate a hy-
perbolic plane such that each lattice site is connected to three
neighboring sites [see Fig. 1(b)]. Note that for the Euclidean
plane, only {3, 6}, {4, 4}, and {6, 3} lattices can achieve the
tessellation. For the hyperbolic {8, 3} lattice, we find a gapped
and a gapless higher-order topological hyperbolic phase by
numerically computing the quadrupole moment and energy
band properties of a 4D momentum-space Hamiltonian based
on the hyperbolic band theory [8]. We further study a Hamil-
tonian on a hyperbolic lattice without translational symmetry
and find the existence of 8-fold degenerate zero-energy modes
localized at eight corners in a phase with a finite edge en-
ergy gap. The topology of this phase is characterized by
the corner charge. Interestingly, there also appears a gapless
phase with vanishing edge energy gap where states near zero
energy are mainly localized on the boundary of the hyper-
bolic lattice. In addition, the real space results also show a
reentrant gapped topological phase with zero-energy corner
modes, which may arise from finite-size effects. Finally, we
show the existence of 12, 16, or 20 zero-energy corner modes
in a hyperbolic lattice with the corresponding rotational
symmetry.
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FIG. 1. (a) Projection of a hyperbolic {8, 3} lattice onto a
Poincaré disk. Regular hyperbolic octagons are used to tessellate
the hyperbolic plane (described by the equation z2 − x2 − y2 = 1) so
that each lattice site is connected to three neighboring sites through
the geodesics on the hyperbolic plane. The lattices on the hyperbolic
plane are projected onto the unit disk on the z = 0 plane through
a line connecting points on the lattices to the point at (0, 0, −1),
leading to the Poincaré disk model. In fact, one can achieve the
tessellation through applying translational operations (generated by
four generators γ1, . . . , γ4) to a unit cell [the region enclosed by the
green curve in (b)]. Such translational operations form a group that is
non-Abelian. (b) The Poincaré disk model for the hyperbolic {8, 3}
lattice (see Appendix A). Solid yellow circles describe the corner
modes of a higher-order topological phase on the hyperbolic lattice.

II. MODEL WITH HYPERBOLIC
TRANSLATIONAL SYMMETRY

To demonstrate the existence of higher-order topological
phases in hyperbolic lattices, we will construct two types of
tight-binding models in a hyperbolic lattice described by the
Poincaré disk model [see Fig. 1(b)]. We start by constructing
the first tight-binding model in a hyperbolic {8, 3} lattice with
hyperbolic translational symmetry by following Ref. [15]. We
first construct the onsite and hopping term inside the first unit
cell [the region enclosed by the green curve in Fig. 1(b)],

H0 =
∑
α,β

[∑
i

m|1iα〉[τzσ0]αβ〈1iβ|

+
∑
〈i, j〉

|1iα〉[T (θi j )]αβ〈1 jβ|
⎤
⎦, (1)

where |riα〉 denotes the state of the αth degree of freedom
at the site i in the rth unit cell in the Poincaré disk. At each
site, there are four degrees of freedom, and {τν} and {σν} with
ν = x, y, z are two sets of Pauli matrices that act on these
degrees of freedom. In H0, the first term mτzσ0 describes
the on-site energy, and the second term depicts the hopping
between two neighboring connected sites inside the unit cell
with the hopping matrix

T (θi j ) = [t0τzσ0 + it1(cos θi jτxσx + sin θi jτxσy)

+ gcos(pθi j/2)τyσ0]/2, (2)

with p = 8, where θi j is the polar angle of the vector from the
site j to site i in the first unit cell. In the following, we will set
the system parameters t0 = t1 = 1 as the units of energy.

For the hopping term between the sites in the first unit cell
and the sites in the neighboring four unit cells described by
the set S1, we define it as

H1 =
∑
r∈S1

∑
α,β

∑
〈i, j〉

|riα〉[T (θ̃(ri),(1 j) )]αβ〈1 jβ| + H.c. (3)

To ensure that the system has CpT symmetry (here p = 8)
where Cp is the p-fold rotational operator and T is the time-
reversal operator, we have to consider a modified θ̃(ri),(1 j)

(see Appendix B). The entire Hamiltonian can be generated
by applying translational operations (generated by generators
γ1, . . . , γ4).

When g = 0, the system respects in-plane mirror symmetry
M1 = τzσz, time-reversal symmetry T = iσyκ where κ is the
complex conjugate operator, chiral symmetry 
 = τxσz, and
thus particle-hole symmetry � = τxσxκ . Owing to the eight-
fold rotational symmetry about the z axis preserved by the
hyperbolic lattice, the Hamiltonian also respects the eight-
fold rotational symmetry Cp = τ0e−i π

p σz Rp, where Rp|iα〉 ≡
|gp(i)α〉 with gp(i) rotating the lattice site i by an angle 2π/p
about the z axis (here p = 8). With these internal symmetries,
the system belongs to the DIII class corresponding to a Z2

topological insulator whose nontrivial phase exhibits helical
edge modes. To generate a higher-order phase with corner
modes, we add the term gcos(4θi j )τyσ0 to break the time-
reversal symmetry so as to open the gap of the helical modes
at a boundary; this term thus acts as an edge mass term. As
this term changes its sign once θi j increases by π/4, a corner
state may arise at the location where the mass flips its sign.
Since the change of sign occurs eight times, a total of eight
corner modes may appear. While the term also breaks the
C8 symmetry, the combination of T and C8 symmetry is still
conserved. The symmetry ensures that the number of corner
modes must be an integer multiple of eight given the fact that
if there is a zero-energy corner mode |ψc〉 mainly localized
at r, then C8T |ψc〉 is also a zero-energy corner mode mainly
localized at g8(r).

We now employ the twisted boundary conditions to con-
struct the momentum-space Bloch Hamiltonian based on the
hyperbolic band theory [8,11,17]. In the Hamiltonian, the
hopping between two sites in two different unit cells which
are connected by a translation operator γ j should carry an
extra phase term e−ik j . We thus obtain a 64×64 Hamiltonian
H (k) = H (k1, k2, k3, k4) in a four-dimensional Brillouin zone
with k j ∈ [0, 2π ] for j = 1, . . . , 4 (see Appendix B).

While time-reversal symmetry is broken in the Hamil-
tonian H , chiral symmetry is still preserved so that H (k)
respects chiral symmetry. In light of the fact that the
quadrupole moment [42,43] is protected to be quantized by
chiral symmetry [44,45], we can utilize the quadrupole mo-
ment to characterize the topological property of H (k) spanned
by two of the four momenta. Specifically, one can regard H (k)
spanned by ki and k j (i, j ∈ 1, . . . , 4 and i �= j) with the other
two momenta kī and k j̄ fixed as the momentum-space version
of a Hamiltonian Hs in an L×L square lattice. The quadrupole
moment for the occupied states is defined as [42–45]

Qi j (kī, k j̄ ) =
[

1

2π
Im log det(U †

o D̂Uo) − Q0

]
mod 1, (4)
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FIG. 2. Topological and band properties of a hyperbolic {8, 3}
lattice. (a) Q12 as a function of g. (b) The energy spectrum of the
tight-binding Hamiltonian in Eq. (7) under open boundary condi-
tions with respect to g. Red lines highlight the zero-energy corner
modes. (c) Zero-energy average density of states (DOS) defined as
ρ = (1/N )

∑
r∈S ρ(E = 0, r) at the position near a corner (red line),

the center of an edge (green line), and in the bulk (blue line). For the
red (green) line, S is a set consisting of 11 (12) sites on the boundary
in the vicinity of a corner (the center of an edge). For the bulk one,
S contains 16 sites located in the central unit cell. N denotes the
number of elements in S. Inset: The corner charge versus g at epoch
4 (black line) and 5 (yellow line). (d) The Fourier coefficient d− (red
line) and d+ (green line) of the local DOS ρ− and ρ+, respectively.
(see the text on how to evaluate the coefficient). In (b)–(d), the system
has 768 sites at epoch 4, and four distinct phases are separated by
three dashed vertical lines. Here m = 0.8.

where Uo = (|ψ1〉, |ψ2〉, . . . , |ψnc〉) with |ψ j〉 being the jth
occupied eigenstate of Hs (one of nc = 32L2 occupied states)
and D̂ = diag{e2π ix j y j/L2}64L2

j=1 with (x j, y j ) denoting the square
position of the jth lattice site. Here Q0 is the contribution from
the background positive charge distribution.

To distinguish between an insulating phase and a
semimetal phase, we calculate the average quadrupole mo-
ment over all fixed momenta (kī, k j̄ ),

Qi j = 1

(2π )2

∫
dkīdk j̄Qi j (kī, k j̄ ). (5)

The system respects C8M1 symmetry, that is,
UC8M1 H (k1, k2, k3, k4)(UC8M1 )−1 = H (−k4, k1, k2, k3). It
follows that Qi j should satisfy the following relations (see
Appendix C for proof):

Q12 = Q23 = Q34 = Q41

and Q13 = Q24. (6)

Note that a similar relation for the Chern number has been
derived in Ref. [15]. We find that Q13 is always equal to zero
and thus use Q12 to characterize the topological property.

The average quadrupole moment illustrates a sharp decline
from a quantized value of 0.5 to a nonzero fractional value as
g increases as shown in Fig. 2(a), indicating the presence of
two distinct phases. One phase is a higher-order topological

hyperbolic insulator with Q12 = 0.5. The other one is a
higher-order topological hyperbolic semimetal with vanishing
energy gap in the 4D momentum space [46]. In fact, there
are several degenerate nodes in momentum space. In the
Brillouin zone spanned by (k3, k4), a part has the quadrupole
moment Q12 of 0.5 and the other part has zero Q12, leading
to a fractional value of the average quadrupole moment (see
Appendix D). The existence of the gapless phase is in stark
contrast to the higher-order phase on Euclidean square {4, 4}
lattices where the system is always gapped as we increase the
term that breaks the time-reversal symmetry [20,26].

III. MODEL WITHOUT HYPERBOLIC
TRANSLATIONAL SYMMETRY

For the model with translational symmetry, while the hy-
perbolic band theory predicts the existence of higher-order
topological phases, we find that its energy spectrum in real
space changes dramatically for different system sizes possibly
due to large boundary effects (see Appendix E). We therefore
construct another tight-binding model Hamiltonian in a hyper-
bolic {p, q} lattice as

H =
∑
α,β

⎡
⎣∑

i

m|iα〉[τzσ0]αβ〈iβ| +
∑
〈i, j〉

|iα〉[T (θi j )]αβ〈 jβ|
⎤
⎦,

(7)

where |iα〉 denotes the state of the αth degree of freedom at
the site i in the disk and θi j is the polar angle of the vector from
the site j to the site i, rather than a modified one. This model
respects the CpT symmetry. Note that p should be an integer
multiple of 4 to ensure that the Hamiltonian is Hermitian.

To illustrate the existence of zero-energy corner modes, we
calculate the eigenenergies and eigenstates of the Hamiltonian
in Eq. (7) in real space under open boundary conditions. We
further compute the local density of states (DOS) defined as

ρ(E , r) =
∑
i, j

δ(E − Ei )|�i, j (r)|2, (8)

where �i, j (r) is the jth component of the ith eigenstate at site
r with the eigenenergy Ei.

The energy spectrum in Fig. 2(b) shows the existence of
eightfold degenerate zero-energy states when 0 < g < 1.15.
These modes are mainly localized near the corner positions on
the boundary at the polar angle θc = π/8 + nπ/4 with n =
0, 1, . . . , 7 as shown by the local DOS in Fig. 3(a). Such a
feature is also revealed by the average local DOS near a corner
and the center of an edge (e.g., θ = 0) (here an edge refers
to the collection of the boundary sites between two nearest
neighboring corners). When g = 0, the system is in the first-
order topological phase, and thus the gapless edge states are
almost equally distributed on the edge and corner sites. As
we increase g, the energy gap at the edge is opened, leading
to the appearance of corner modes, reflected by the increase
(decrease) of the average local DOS at the corner (the center
of an edge) [Fig. 2(c)]. In this regime, the average local DOS
in the bulk almost vanishes.

To further characterize its topology, we calculate the cor-
ner charge CS (see Appendix F for its definition) and find
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FIG. 3. The local DOS ρ(E , r) at zero energy. Each figure corre-
sponds to a typical local DOS for each phase shown in Fig. 2(b).

that it approaches the quantized value of 0.5 as shown in
the inset of Fig. 2(c). In Appendix G, we show that with
increasing the system size, while the minigap (determined
by the first nonzero eigenenergy) declines, the edge energy
gap (determined by the energy where the degeneracy sud-
denly drops from the eightfold to the double one) remains
almost unchanged. More interestingly, for a larger system,
the corner charge becomes closer to 0.5, indicating a better
topological behavior, which arises due to a significant drop
of the energy splitting of the zero-energy states. These results
strongly suggest the existence of the topological phase in the
thermodynamic limit. See Appendix G for finite-size analysis
of the energy gap and local DOS.

As we further increase g, the energy spectrum in Fig. 2(b)
becomes continuous near zero (1.15 < g < 1.44), leading to
a gapless phase (vanishing edge energy gap) with finite local
DOS in the bulk [Fig. 2(c)]. The local DOS at zero energy in
Fig. 3(b) exhibits the distribution mainly localized on bound-
aries, implying that the gapless modes are mainly comprised
of boundary modes including the states localized at corner
positions and other positions at the boundary. Such a fact is
also revealed by a significant rise of the average local DOS
near a corner and the center of an edge when we enter into
this regime [see Fig. 2(c)].

To show how the states near zero energy affects the lo-
cal DOS when the system enters into the gapless phase,
we approximate the density of an eigenstate by ni(θ ) =∑

j |�i, j |2 ≈ a + b cos(8θ ), which is the expansion of the
density in a Fourier series up to the first order. Here we write
the density as a function of the polar angle θ in the Poincaré
disk for each site on the boundary, and ni(θ + π/4) = ni(θ )
due to the C8T symmetry. For this approximate density, if
b < 0, then it takes a maximum value at the corner position,
i.e., θ = θc; if b > 0, then the maximum occurs at the center
of two neighboring corners, i.e., θ = θe = nπ/4 with n being
an integer. For each state, we calculate the Fourier coefficient
b and then use the states with b < 0 (b > 0) to calculate

FIG. 4. The local DOS at zero energy for hyperbolic (a) {12, 3}
lattice with m = 0.9 and g = 0.8, (b) {16, 3} lattice with m = 0.975
and g = 0.57, and (c) {20, 3} lattice with m = 1 and g = 0.6.

the corresponding local DOS ρ− (ρ+). We then expand ρ±
as c± + d± cos(8θ ) and plot the Fourier coefficient d± in
Fig. 2(d). In the region 0 < g < 1.15, d− (d+) is finite and
negative (vanishes), consistent with our previous results that
the eight zero-energy modes are mainly localized at the posi-
tion near θc. When the system enters into the gapless regime,
we see a sharp rise of d+, suggesting the appearance of states
near zero energy with large occupation close to the center of
an edge (see Appendix H for more discussion).

In Fig. 2(b), we also see that with the further increase of g
until 2, the energy spectrum becomes gapped again with eight
zero-energy states separated from the other states. The phase
arises because of the overlap between edge wave functions,
leading to the energy gap opening of the edge states. Such an
overlap is reflected by the sudden drop of the proportion of
edge states on the boundary with respect to g [see Fig. 13(a)
in Appendix]. In other words, the finite-size effect opens the
gap of the edge wave functions, leaving the corner modes at
zero energy [also evidenced by the zero-energy local DOS in
Fig. 3(c)]. The finite-size effect will be reduced by increasing
the system size so that the gapless regime becomes smaller
(see Appendix G). In addition, when g > 2, zero-energy cor-
ner modes bifurcate into four branches away from zero energy,
and no corner states are observed in this phase [Fig. 3(d)]
(see Appendix G).

IV. HIGHER-ORDER TOPOLOGICAL PHASES
WITH 12, 16, OR 20 CORNER MODES

We now proceed to study the higher-order topological
phase in a hyperbolic lattice respecting 12-fold, 16-fold or
20-fold rotational symmetry by constructing the Hamiltonian
in hyperbolic {12, 3}, {16, 3}, or {20, 3} lattices. Such Hamil-
tonians respect chiral symmetry and the corresponding CpT
symmetry with p = 12, 16, or 20. Figure 4 illustrates the
local DOS at zero energy in the Poincaré disk, indicating
the existence of 12, 16, and 20 corner modes, respectively
(see the energy spectrum in Appendix I). All these phases
arise from the allowed rotational symmetry of a hyperbolic
lattice and thus cannot exist in a crystalline material. Even in a
quasicrystal, it is unclear whether 16-fold or 20-fold rotational
symmetry can occur, to the best of our knowledge [41].

V. CONCLUSION

In summary, we have theoretically predicted higher-order
topological phases in hyperbolic lattices with 8-fold, 12-fold,
16-fold, or 20-fold rotational symmetry, which have 8, 12,
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FIG. 5. (a) Schematic of how to determine an inversion circle O′ with center O′ and radius R′. Points A′ and B′ are the inverses of A and
B with respect to the circle O. The inversion circle O′ is the circle on which the four points A, B, A′, and B′ lie. (b) Schematic of how the
vertices of a new octagon adjacent to an edge AB are generated. The vertices C′, . . . , H ′ of the new polygon correspond to the inversion points
of C, . . . , H with respect to the circle O′. Two neighboring points are connected by the geodesic lines, which is the circular arc of an inversion
circle determined by these two points.

16, and 20 corner modes, respectively. Such phases are not
allowed in a crystalline material. For the hyperbolic {8, 3}
lattices, we identify a higher-order topological phase with
a finite edge energy gap and a gapless phase. Given that
hyperbolic lattices have been experimentally realized in cir-
cuit quantum electrodynamics [1] and electric circuits [2–4],
higher-order topological phases in hyperbolic lattices may be
observed in these systems. In fact, higher-order topological
phases in square lattices have been observed in phononic [47],
microwave [48], electric circuit [49], and photonic systems
[50]. Our work may also inspire the interest of studying
higher-order topological phases in hyperbolic lattices in quan-
tum simulators, such as cold atom systems [51,52].

Note added. Recently, we became aware of a related work
[53] where higher-order topological phases in hyperbolic lat-
tices are also studied.
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APPENDIX A: GENERATION OF HYPERBOLIC
LATTICES BASED ON CIRCULAR INVERSION

In this Appendix, we will follow Ref. [54] to give a ped-
agogical introduction to how the hyperbolic lattices on the
Poincaré disk are generated based on circular inversion.

Hyperbolic lattices can be described by the Poincaré disk
model, where points are written as z = x + iy = reiθ . The
metric on this disk is

ds2 = (2κ0)2 dx2 + dy2

(1 − r2)2
, (A1)

where κ0 is the curvature radius, which is equal to the radius
R of the disk (here we set R = 1). According to this metric,
the geodesic line between points A and B is the circular arc of
an inversion circle.

Consider the outmost cirlce of the disk with center O [see
Fig. 5(a)]. We now show how to obtain another circle O′

determined by the points A, B and their inverses with respect
to the circle O. The inverse of A (marked as A′) (similarly for
B) lies on the ray from O to A satisfying

OA · OA′ = R2. (A2)

These four points lie on the inversion circle O′ with center O′
and redius R′. The geodesic line between A and B on the disk
is the circular arc of the inversion circle O′.

We are now in a position to present the process of con-
structing a hyperbolic {p, q} lattice with inversion circles.
First, we plot the central polygon with p vertices and con-
nect two neighboring ones through geodesic lines, which is
the lattice at epoch 1 [see Fig. 6(a)]. These p vertices are
determined by z j = r0ei(2π j/p+δ) where j = 1, . . . , p, δ is an
arbitrary value, and r0 is the distance from the center O to a
vertex determined by

r0 =
√√√√cos

(
π
p + π

q

)
cos

(
π
p − π

q

) . (A3)

Second, we show how to generate a new polygon adjacent to
an edge (e.g., AB) of the first one. The vertices C′, . . . , H ′ of
this polygon are the inverses of C, . . . , H with respect to the
circle O′ [see Fig. 5(b)]. Similarly, one can obtain the vertices
adjacent to other edges, ending up with a lattice at epoch 2
[see Fig. 6(b)]. In Figs. 6(c) and 6(d), we also plot the hyper-
bolic lattices at epoch 3 and 4, respectively.

APPENDIX B: MODEL WITH HYPERBOLIC
TRANSLATIONAL SYMMETRY AND THE

MOMENTUM SPACE HAMILTONIAN

In this Appendix, we will provide Fig. 7 where the mod-
ified angle θ̃i j is defined and show how to construct the
momentum space Hamiltonian via twisted boundary condi-
tions.

Figure 7 displays the hyperbolic {8,3} lattice with nine
unit cells u1, . . . , u9. In the hopping matrix T (θi j ) in the
Hamiltonian in Eq. (4) in the main text, θi j is the angle of
the vector from the site j to the site i. Note that here i and
j can be either a composite index or a single index uniquely
labeling each site. For example, i = (2, 14) denotes the site 14
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(a) Epoch 1 Epoch 2(b) (c) Epoch 3 Epoch 4(d)

FIG. 6. The hyperbolic {8,3} lattice with δ = π/8 at (a) epoch 1, (b) epoch 2, (c) epoch 3, and (d) epoch 4. Two neighboring sites are
connected by geodesic lines. The numbers of vertices in these figures are 8, 48, 200, and 768, respectively.

in the unit cell u2 (see Fig. 7). In Eq. (4) in the main text, the
hopping from the site 11 in the unit cell u1 to the site 14 in the
unit cell u2 is determined by the angle θ(2,14),(1,11) labeled in
the figure. However, this model breaks the translational sym-
metry. To restore the translational symmetry without breaking
the C8T symmetry, we follow Ref. [15] to modify the intercell
hopping by replacing θi j by a modified one θ̃i j . For example,
for the hopping mentioned above, we use the modified angle
θ̃(2,14),(1,11), the polar angle of the direction of the generator γ3

(green line in Fig. 7). The other angles for the intercell hop-
ping are also modified similarly (see the green lines in Fig. 7).
After that, we apply the translational operations (generated
by four generators γ1, . . . , γ4) to generate the entire Hamil-
tonian, which preserves both translational symmetry and C8T
symmetry.

We now provide the 64×64 momentum space Bloch
Hamiltonian based on the hyperbolic band theory [8,11,17].
The onsite and hopping term inside the first unit cell (the light
orange region in Fig. 7) is

2 1

23

4

5

6 7

8

9

10
11

14 15

16

1u1u4 u8
12

u7

14 15

13

u9 14

12

13

11

12u6
1011

9

u5

13

10

16

9

15
u3

16

4

u2

3

FIG. 7. The hyperbolic {8,3} lattice with nine unit cells
u1, . . . , u9. We label each site in a unit cell by numbers. The mod-
ified angle for the hopping from the site 11 in the unit cell u1 to
the site 14 in the unit cell u2 is labeled as θ̃(2,14),(1,11), determined by
the polar angle of the direction of the generator γ3 (green line), in
contrast to the angle θ(2,14),(1,11).

H0 =
∑
α,β

⎡
⎣∑

i

m|1iα〉[τzσ0]αβ〈1iβ| +
∑
〈i, j〉

|1iα〉[T (θi j )]αβ〈1 jβ|
⎤
⎦. (B1)

The Bloch Hamiltonian is given by

H (k) = H (k1, k2, k3, k4) = H0 + (e−ik1 H8,1 + e−ik2 H9,1 + e−ik3 H2,1 + e−ik4 H3,1 + H.c.), (B2)

where

H8,1 =
∑
α,β

[|1, 12, α〉[T (θ̃(8,12),(1,9))]αβ〈1, 9, β| + |1, 13, α〉[T (θ̃(8,13),(1,16))]αβ〈1, 16, β|], (B3)

H9,1 =
∑
α,β

[|1, 14, α〉[T (θ̃(9,14),(1,9))]αβ〈1, 9, β| + |1, 13, α〉[T (θ̃(9,13),(1,10))]αβ〈1, 10, β|], (B4)

H2,1 =
∑
α,β

[|1, 15, α〉[T (θ̃(2,15),(1,10))]αβ〈1, 10, β| + |1, 14, α〉[T (θ̃(2,14),(1,11))]αβ〈1, 11, β|], (B5)

H3,1 =
∑
α,β

[|1, 16, α〉[T (θ̃(3,16),(1,11))]αβ〈1, 11, β| + |1, 15, α〉[T (θ̃(3,15),(1,12)]αβ〈1, 12, β|], (B6)

where θ̃(2,i),(1, j) denotes the modified angle from the jth site in the unit cell u1 to the ith site in the unit cell u2.

APPENDIX C: PROOF OF THE RELATION ON THE QUADRUPOLE MOMENT

In this Appendix, we will prove that Q12 = Q23 = Q34 = Q41, where Qi j is the average quadrupole moment defined in Eq. (2)
in the main text. The system in the main text respects the C8M1 symmetry, and with this symmetry, the Hamiltonian H (k) in
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momentum space satisfies

UC8M1 H (k1, k2, k3, k4)(UC8M1 )−1 = H (−k4, k1, k2, k3), (C1)

where UC8M1 is a unitary matrix. Fixing parameter momenta (k3, k4) and spanning square lattice momenta (k1, k2), we obtain the
set of occupied eigenstates Uo,12(k3, k4) = (|ψ1〉, |ψ2〉, · · · , |ψnc〉) with |ψ j〉 being the jth occupied eigenstate of Hs (one of nc =
32L2 occupied states). One can obtain the column vector |ψ j〉 using the eigenstate of H (k), that is, [|ψ j〉](nm) = eik12·rn [|ψλ(k)〉]m,
where k12 ≡ k1ex + k2ey, rn denotes the position of the nth unit cell and |ψλ(k)〉 is an eigenstate of H (k). For clarity, we write
down the definition of the quadruple moment as

Q12(k3, k4) =
[

1

2π
Im log det([Uo,12(k3, k4)]†D̂Uo,12(k3, k4)) − Qo

]
mod 1, (C2)

where we have explicitly indicated that Uo,12 is a function of k3 and k4.
Thanks to the C8M1 symmetry, UC8M1 |ψλ(k)〉 is an eigenstate of H (−k4, k1, k2, k3). It follows that applying U ⊕L2

C8M1
(for an L×L

square lattice) to Uo,12(k3, k4) leads to Uo,23(−k4, k3)Uexc, that is,

U ⊕L2

C8M1
Uo,12(k3, k4) = Uo,23(−k4, k3)Uexc, (C3)

where in the Hamiltonian H (k1, q2, q3, k4), k1 is replaced by −k4 and k4 is replaced by k3. Uexc realizes the exchange of column
vectors so as to arrange the occupied eigenstates in a certain order (in fact, the order is not important). As a result, we have

Q23(−k4, k3) =
{

1

2π
Im log det[U †

o,23(−k4, k3)D̂Uo,23(−k4, k3)] − Qo

}
mod 1

=
{

1

2π
Im log det

[
UexcU

†
o,12(k3, k4)

(
U ⊕L2

C8M1

)−1
D̂U ⊕L2

C8M1
Uo,12(k3, k4)U −1

exc

] − Qo

}
mod 1

=
{

1

2π
Im log det

[
U †

o,12(k3, k4)
(
U ⊕L2

C8M1

)−1
D̂U ⊕L2

C8M1
Uo,12(k3, k4)

] − Qo

}
mod 1. (C4)

Clearly, D̂ commutes with the U ⊕L2

C8M1
, i.e., [D̂,U ⊕L2

C8M1
] = 0. We thus arrive at

Q23(−k4, k3) =
{

1

2π
Im log det[U †

o,12(k3, k4)D̂Uo,12(k3, k4)] − Qo

}
mod 1,

= Q12(k3, k4). (C5)

Averaging the quadrupole moment over parameter momenta (k3, k4), we have the following relations:

Q12 = 1

(2π )2

∫ 2π

0
dk3

∫ 2π

0
dk4Q12(k3, k4) = 1

(2π )2

∫ 2π

0
dk3

∫ 2π

0
dk4Q23(−k4, k3)

= 1

(2π )2

∫ 2π

0
dk1

∫ 2π

0
dk4Q23(k1, k4) = Q23. (C6)

Similarly, one can also prove that Q23 = Q34 = Q41 and Q13 = Q24 by choosing different pairs of parameter momenta.

APPENDIX D: THE BAND AND TOPOLOGICAL
PROPERTIES OF THE SEMIMETAL PHASE

IN THE 4D MOMENTUM-SPACE

In this Appendix, we will provide more detailed discussion
on the band and topological properties of the higher-order
topological hyperbolic semimetal phase in the 4D momentum
space. In Fig. 8(a), we plot the gap of H (k) as a function of
g in the 4D Brillouin zone for different system sizes. Clearly,
the gap of H (k) closes when g > 1.31, leading to a gapless
phase.

To illustrate the gapless structure in the semimetal phase,
we plot the gapless region for g = 1.35 in Fig. 8(b) with color
denoting k1. We find eight degenerate nodes. We also display
the distribution of the quadrupole moment Q12 in the (k3, k4)
plane in Fig. 8(c). We see that a part in the Brillouin zone
exhibits Q12 of 0.5 and the other part has zero Q12, resulting
in a fractional value of the average quadrupole moment. The

degenerate nodes projected on the (k3, k4) plane cannot com-
pletely separate topologically nontrivial and trivial regimes.
This is due to the fact that a quadrupole topological insulator
can undergo phase transitions through edge energy gap clos-
ing without involving any bulk energy gap closing [34].

APPENDIX E: THE ENERGY SPECTRUM
AND LOCAL DOS FOR THE MODEL

WITH TRANSLATIONAL SYMMETRY

In the Appendix, we will show the energy spectrum and lo-
cal DOS for the model with translational symmetry calculated
in a geometry with open boundaries. The energy spectrum in
Fig. 9(a) clearly illustrates the existence of zero-energy states,
which are localized in the vicinity of a corner position as
reflected by the local DOS at zero energy in Fig. 9(d). We
also see the existence of a gapless phase. However, for larger
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FIG. 8. (a) The energy gap of H (k) with respect to g for different system sizes. The 4D Brillouin zone is spanned by {(k1, k2, k3, k4)|ki =
2πni/Lk, ni = 0, . . . , Lk − 1, i = 1, . . . , 4} with Lk = 10, 20, 30, or 40. (b) The degenerate nodes in the 4D energy spectrum of H (k) with
g = 1.35. Color denotes the value of the momentum k1. Gray nodes are the projection of gapless nodes onto the (k3, k4) plane [also see (c)].
(c) The quadrupole moment Q12 in the (k3, k4) plane for H (k) with g = 1.35. In the blue region, Q12 = 0, whereas in the yellow region,
Q12 = 0.5. Here m = 0.8.

systems at epoch 5 and 6, we find that the energy spectrum
changes dramatically for different system sizes. The conse-
quence is that for a large system, we cannot observe a local
DOS with a clear main peak on the boundary [see Fig. 9(f)]. In
this case, we can hardly claim that the system is a topological
phase in the thermodynamic limit.

APPENDIX F: CORNER CHARGE

For gapped topological phases with corner modes, bound-
ary obstructions lead to the corner-localized fractional charges
±e/2 [34,55]. In our case, such corner charges should appear

over a 1/8 sector S1/8 [see Fig. 10(a)]. Therefore, we use
the net charge over a sector at half filling to characterize
the topological feature of the system in real space, which is
defined as

CS = 2NS1/8 −
∑
i∈occ

∑
r∈S1/8

∑
j

|�i, j (r)|2, (F1)

where NS1/8 is the number of sites in this sector and �i, j (r) is
the jth component of the ith occupied eigenstate at site r. The
first term arises from the background positive charge over S1/8

(each site contributes a +2 charge in units of e). To determine
the part contributed by electrons, we introduce a small δ term
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-0.01
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FIG. 9. The energy spectrum of the model with translational symmetry versus the system parameter g calculated in real space for a
hyperbolic {8,3} lattice at (a) epoch 4, (b) epoch 5, and (c) epoch 6. The local DOS at zero energy over the 1/8 sector (θ ∈ [0, π/4]) for
(d) g = 0.45 at epoch 4, (e) g = 0.4 at epoch 5, and (f) g = 0.28 at epoch 6. The center and two boundary points of the x axis refer to a corner
position (θ = π/8) and the center of an edge (θ = 0 and θ = π/4), respectively. The corresponding g′s are marked out as red circles in (a)–(c).
Here m = 0.8.
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FIG. 10. (a) Schematic of the Poincaré disk model for the hyper-
bolic {8,3} lattice. The yellow region represents the 1/8 sector S1/8.
(b) CS with respect to g for the tight-binding model Hamiltonian in
Eq. (4) in the main text with 768 sites at epoch 4. Here m = 0.8.

Hδ = ∑
i,α,β δ|iα〉[τxσz]αβ〈iβ|, so that the eightfold degener-

acy of the zero-energy states is lifted, leading to four corner
states with positive energy and the other four with negative
energy. As a result, only four corner states are occupied at
hall filling.

In Fig. 10(b), we plot CS with respect to g. In the deep
gapped (0 < g < 1.15) and reentrant gapped (1.44 < g < 2)
regimes, |CS| approaches the quantized value of 0.5, reflecting
that these two regimes are topologically nontrivial. Note that
when g is small, there is a small gap for the corner modes due
to finite-size effects, leading to the inaccurate evaluation of

the corner charge. We in fact also plot the corner charge for a
larger system at epoch 5, illustrating that it is closer to 0.5 in
the gapped regime (see the inset in Fig. 2 in the main text). In
the gapped trivial phase (g > 2), the corner charge declines to
zero. Also note that in the gapless region, the corner charge is
not a well defined quantity.

APPENDIX G: FINITE-SIZE ANALYSIS

In this Appendix, we will first show that the higher-order
topological phase continues to exist in a much larger system
even though the minigap becomes very small and then discuss
how the reentrant gapped phase and the branching arise.

1. Energy spectra, energy gap, and local DOS for larger systems

In this subsection, we will show that the higher-order topo-
logical phase may exist in the thermodynamic limit through
finite-size analysis. In Fig. 11, we plot the energy spectrum for
a hyperbolic {8,3} lattice at epochs 4, 5, and 6 corresponding
to 768, 2888, and 10 800 sites, respectively. The figure shows
that the transition point from the gapped phase to the gapless
one changes very slightly with the system size, suggesting
its presence in the thermodynamic limit, which is very dif-
ferent from the hyperbolic model with translational symmetry
as shown in Fig. 9. In this figure, we also see an apparent
decline of the energy gap [defined as the minigap shown
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FIG. 11. The energy spectrum of the Hamiltonian in Eq. (4) in the main text as a function of g on a hyperbolic {8,3} lattice at (a) epoch 4,
(b) epoch 5, and (c) epoch 6. The vertical lines divide the spectrum into four phases with the transition points labeled above the lines. (d) The
corner charge with respect to g for the system at epoch 4 (black line) and 5 (yellow line). (e) Eigenenergies with respect to energy indices for
g = 0.6 at epoch 6. The minigap refers to the first nonzero positive energy and the edge gap refers to the energy where the degeneracy suddenly
drops from eightfold to the double one. (f) The zoomed-in view of (e) showing the presence of eightfold degeneracy at the energy smaller
than the edge energy gap. (g) The density profiles of the wave functions near zero energy over the 1/8 sector (θ ∈ [0, π/4]) on the boundary
corresponding to the labeled states in (e). The green lines describe the density profile of the states encircled by a green circle in (f). The center
and two boundary points of the x axis refer to a corner position (θ = π/8) and the center of an edge (θ = 0 and θ = π/4), respectively. (h)
The edge energy gap (black line) and minigap (red line) with respect to the epoch number. Here m = 0.8.
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FIG. 12. The local DOS at zero energy over the 1/8 sector (θ ∈ [0, π/4]) on the boundary for the Hamiltonian in Eq. (4) in the main text
on a hyperbolic {8,3} lattice at (a) epoch 4, (b) epoch 5, and (c) epoch 6. The center and two boundary points of the x axis refer to a corner
position (θ = π/8) and the center of an edge (θ = 0 and θ = π/4), respectively. Here m = 0.8 and g = 0.6.

in Fig. 11(e)] as the system size increases [also see the red
circles in Fig. 11(h)]. Despite the decrease of the gap, we are
surprised to see that the eightfold degeneracy of zero-energy
modes becomes better. For example, at g = 0.08, there exists
a small energy splitting of 0.01 for the zero-energy states
for a system at epoch 4 [Fig. 11(a)]; however, the splitting
drops to about 10−6 for a much larger system at epoch 6
[Fig. 11(c)]. Such a significant decline strongly suggests the
existence of eightfold degeneracy at zero energy and thus the
topological phase in the thermodynamic limit. To further char-
acterize the topology, we calculate the corner charge CS for
different system sizes and find that it is closer to the quantized
value of 0.5 for a larger system compared with a smaller one
[see Fig. 11(d)].

Our numerical results also show that the minigap states
are also eightfold degenerate [see Fig. 11(e)] and are mainly
localized near a corner [see Fig. 11(g)]. In fact, we find many
eightfold degenerate states with small finite energies. Inter-
estingly, as we increase the energy, the degeneracy suddenly
drops to the double one corresponding to the states mainly
localized at the center of edges (see the density profile [green
line in Fig. 11(g)] of the state encircled by the green cir-
cle in Fig. 11(f)). There the energy spectrum becomes more
continuous. We therefore call the gap determined by this en-
ergy the edge energy gap [see Figs. 11(e) and 11(f)]. While
the minigap decreases with the system size, the edge en-

ergy gap remains almost unchanged for different system sizes
[see Fig. 11(h)].

To further confirm the existence of the topological phase
in the thermodynamic limit, we plot the distribution of the
zero-energy local DOS on the boundary of a hyperbolic
lattice at three distinct epochs in Fig. 12. All these fig-
ures show the existence of peaks of the local DOS near the
corner positions. All these results strongly suggest that the
topological phase can exist in the thermodynamic limit.

2. How do the reentrant gapped phase and the branching arise?

In the main text, we show the existence of a reentrant
gapped phase. In the subsection, we will show that it arises
from finite-size effects, which open the gap of edge states
while leave the gap of corner modes unchanged.

To elaborate on the effect, we calculate the average pro-
portion pα of particles on the boundary for the corner modes
(α = c) and edge modes (α = e) by

pα = 1

Nα

∑
i∈Sα

∑
r∈L

∑
j

|�i, j (r)|2, (G1)

where �i, j (r) is the jth component of the ith eigenstate at site
r of the Hamiltonian in Eq. (4) in the main text under open
boundary conditions, and L denotes a set consisting of bound-
ary sites of the hyperbolic lattice. Sc is a set consisting of four
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FIG. 13. (a) The average proportion pα of particles on the boundary for the corner modes α = c and edge modes α = e as a function of g.
(b) The density profile of a state nearest to zero energy for g = 2.5, showing a significant portion of the density permeating into the bulk. In
(a) and (b), we consider the hyperbolic {8,3} lattice at epoch 4 with 768 sites, which is the same as in Fig. 2(b) in the main text, and m = 0.8.
(c) The energy spectrum of the tight-binding Hamiltonian in Eq. (4) in the main text as a function of g on a 8×8 square lattice with m = 0.5
under open boundary conditions. (d) The density profile of a state highlighted as red circle in (c) at g = 5.
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FIG. 14. The density profile of eigenstates over the 1/8 sector (θ ∈ [0, π/4]) on the boundary (in the gapless region) under the lattice
structure at (a) epoch 4, (b) epoch 5, and (c) epoch 6. Red (blue) lines denote the states very close to zero energy with negative (positive)
Fourier coefficient b. Here the center and two boundary points of the x axis refer to a corner position (θ = π/8) and the center of an edge
(θ = 0 and θ = π/4), respectively. (d) The number of boundary (Nb) and bulk (Nbulk) sites, and the inverse of the mean inverse participation
ratio (IPR) with respect to the total number of sites Nall. To calculate the mean IPR, we choose 60 eigenstates closest to zero energy forming a
set. We then write the set as a union of two sets S− and S+, where the density of each state exhibits the negative and positive Fourier coefficient
b, respectively. The mean IPR is defined as I± = 1

N±
∑

i∈S±
∑

r(
∑4

j=1 |�i, j (r)|2)2, where N− and N+ denote the number of states in S− and S+,
respectively. 1/I− and 1/I+ are plotted as red and blue lines, respectively. Here g = 1.3.

eigenstates with lowest positive energy, which correspond to
the corner modes in the regime with finite edge energy gap.
Se is a set containing ten eigenstates from the fifth positive
energy level to the fourteenth positive level; these modes
mainly correspond to the edge modes in the regime with finite
edge energy gap. Nα denotes the number of elements in Sα .

Figure 13(a) shows that as g enters into the reentrant
gapped regime, pe suddenly drops to a value smaller than
Nb/Nall, the proportion of boundary sites [Nb is the number
of boundary sites and Nall is the number of all sites]. It
indicates that the edge states may experience some overlap
due to finite-size effects so that their distribution in the bulk
increases. Indeed, when we increase the system size, such
overlap decreases so that the transition point from the gapless
phase to the reentrant gapped one also increases, leading to
a smaller reentrant regime [see Figs. 11(b) and 11(c)]. We
thus expect that in the thermodynamic limit, the phase may
disappear. The other factor accounting for the presence of the
phase is that the corner modes are less sensitive to finite-size
effects than the edge states, as reflected by Fig. 13(a).

However, when g is further increased to 2, pc experiences
a significant decline, leading to a finite gap for the corner
modes. The decline is also revealed by a significant portion of

the wave function permeating into the bulk [see Fig. 13(b)].
In fact, such a branching also occurs on square lattices [see
the energy spectrum of the Hamiltonian in Eq. (4) in the main
text on square lattice in Fig. 13(c)]. There, we also see the
permeating of the wave function into the bulk.

In the square lattice case, besides the branching phase,
we only see the gapped higher-order topological phase. We
thus conclude that the specific geometry of hyperbolic lattices
not only allows for the existence of higher-order topological
phases with the symmetry without crystalline counterpart, but
also the appearance of several phase transitions with respect
to g.

APPENDIX H: LOCAL DOS AND IPR
IN THE GAPLESS REGIME

In this Appendix, we provide the density profile of the
states very close to zero energy at g = 1.3 in the gapless
phase in Figs. 14(a)–14(c), showing the coexistence of states
with large occupation close to a corner or the center of an
edge. Interestingly, for the latter states, they have well lo-
calized property instead of an extended property. To identify
the localized property, we plot the number of boundary sites

(b) (c)(a)

{12,3} {16,3} {20,3}

FIG. 15. The distribution of vertices at epoch 2 for (a) the hyperbolic {12,3} lattice with δ = π/12, (b) the hyperbolic {16,3} lattice with
δ = 0, and (c) the hyperbolic {20,3} lattice with δ = 0.
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FIG. 16. The energy spectrum of the tight-binding Hamiltonian in Eq. (4) in the main text as a function of g for (a) the hyperbolic {12,3}
lattice with m = 0.9, (b) the hyperbolic {16,3} lattice with m = 0.975, and (c) the hyperbolic {20,3} lattice with m = 1. Solid red circles
highlight the parameters of g used in Fig. 4 in the main text.

Nb and the number of bulk sites Nbulk as a function of the
number of all sites Nall, as well as the inverse of the mean
inverse participation ratio (IPR) in Fig. 14(d). Different from
the crystalline system, in a hyperbolic lattice, Nb/Nall does not
change with respect to the epoch number x due to the fact that
Nall(x) ∼ eαx (α is independent of x) and Nb(x) = Nall(x) −
Nall(x − 1) [7,10]. In the {8,3} case, Nb/Nall = 0.73, and thus
the boundary sites take a large proportion. Figure 14(d) shows
that the inverse of the IPR for the states near zero energy
is much smaller than Nb, implying that these states are far
from uniformly distributed over the boundary sites. Such a
localized property may arise from the rapid change of the θi j

angle between two sites on the boundary, which plays the role
of disorder.

APPENDIX I: THE ENERGY SPECTRUM FOR THE
HYPERBOLIC {12,3}, {16,3}, AND {20,3} LATTICES

In this Appendix, we present the energy spectra of the
hyperbolic {12,3}, {16,3}, and {20,3} lattices with respect
to the system parameter g. In Fig. 15, we display their lattice
structures at epoch 2. Note that the initial setting about δ of the
central polygon is δ = π/12 for the hyperbolic {12,3} lattice,
and δ = 0 for the hyperbolic {16,3} and {20,3} lattices.

Figure 16 displays the energy spectra of the tight-binding
Hamiltonian in Eq. (4) in the main text as a function of g based
on these lattice structures. Similarly to the {8,3} case, there

exists a topological region with zero-energy modes (see Fig. 4
in the main text for the local DOS at zero energy for the pa-
rameter g marked out as red solid circles). In the {12,3} case,
we similarly see the presence of a gapless phase. However,
the {16,3} and {20,3} cases do not exhibit the presence of the
gapless phase.

APPENDIX J: STABILITY AGAINST DISORDER

In this Appendix, we discuss the effect of weak disorder on
topological phases by introducing the on-site disorder mass
term for the hyperbolic {8,3} lattice in the Hamiltonian in
Eq. (4) in the main text,

Hdis =
∑
i,α,β

mrWi|iα〉[τzσ0]αβ〈iβ|, (J1)

where Wi is a random variable that is uniformly distributed
in [−1, 1] respecting C8 symmetry and mr is the strength of
disorder. This term respects the chiral symmetry and C8T
symmetry, i.e., [Hdis, 
] = [Hdis,C8T ] = 0.

To illustrate that the higher-order topological hyperbolic
phases are stable against weak disorder, we calculate the local
DOS at zero energy averaged over 100 samples in the presence
of weak disorder with mr = 0.1. Figure 17 shows that the
existence of disorder does not destroy the corner modes, in-
dicating the stability of these topological phases against weak
disorder.

FIG. 17. The sample averaged local DOS at zero energy in the presence of weak disorder with mr = 0.1 for (a) g = 0.9, (b) g = 1.3, and
(c) g = 1.8, which correspond to Figs. 3(a)–3(c) in the main text. Here m = 0.8.
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