
PHYSICAL REVIEW B 107, 184104 (2023)

Ground-state fractal crystals
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We propose a generalization of the crystalline order: the ground-state fractal crystal. We demonstrate that by
deriving a simple continuous-space-discrete-field model whose ground state is a crystal where each unit cell is a
fractal.
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I. INTRODUCTION

Matter, described by quantum fields in a continuous space,
can spontaneously break space translation symmetry by self-
organizing into a periodic structure. This phenomenon of
crystallization is one of the cornerstone concepts in physics.
Crystals realize various states of condensed matter, such as
metals, insulators, and superconductors. In recent decades
multiple discussions focused on the generalizations of the
crystallization phenomenon. One such concept is the moire
crystals in twisted multilayer materials [1], leading to crystals
with extremely large unit cells. A separate class of order is
quasicrystals [2,3]. Another generalization that attracted inter-
est for a long time is the class of order where a classical field
demonstrates crystallization coexisting with the spontaneous
breaking of additional symmetries. The most known state of
a crystal in a classical field is a vortex lattice in a supercon-
ductor. This is also the case in a class of supersolids, i.e., the
systems that break transition symmetry and have superfluid
order (for a review see References [4]). A class of systems, the
so-called Fulde-Ferrell-Larkin-Ovchinnikov superconductors
[5], exhibit a crystallization in the form of superconducting
Cooper-pair density wave. Corresponding transition in the
classical field theory is a particular case of the Lifshitz point.
It has been argued that dense quark matter in the cores of
neutron stars is such a crystal [6]. Cluster crystal is another
different type of crystallization where a unit cell is a cluster
of particles [7]. This state is believed to form in outer regions
of neutron stars and has direct counterparts in soft matter [8]
and the quantum Hall effect [9,10]. Another topic of recent
interest is time crystals, where the crystallization is in time or
in time and space [10,11].

In this work, we propose a new generalization of the con-
cept of a crystal: the ground-state fractal crystal.
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Fractals are ubiquitous in nature. In condensed matter,
they usually appear as a result of a dynamic/kinetic process
[12,13]. These random fractals were found, for example, in
liquid crystal colloids by self-assembly [14] and in polydis-
perse emulsions [15]. Moreover, deterministic fractals can
appear as boundary phenomena arising due to competing ef-
fects in bulk and at interfaces. An example of the latter is the
Landau pattern in type-I superconductors [16] or states similar
to Apollonian packing of circles in smectic A liquid crystals
[17]. Fractal solitonic excitations were discussed in models
such as the Davey-Stewartson model [18].

Below we investigate the possibility of a different state—
the ground-state fractal crystal. We define it as a state that
satisfies the following conditions:

(i) The state should spontaneously break space translation
symmetry down to a crystalline group.

(ii) The unit cell of the resulting crystal should have an
infinite number of elements, with each unit cell forming a
fractal.

(iii) The state should present an energy minimum of a
Hamiltonian that respects translation invariance.

A particularly interesting question is whether there are
classical field theories with such a ground state. Classi-
cal field theories could be grouped into four categories by
continuous/discrete space and field. For example, the Ising
model [19] is a discrete-space, discrete-field model. While the
lattice XY model is a discrete-space continuous-field model.
An example of a continuous-space continuous-field model
is Ginzburg-Landau theory [20]. All these models have a
uniform or crystal-like modulated ground states. To realize a
fractal crystal that does not suffer short-distance cutoff, only
models with continuous space can be potential candidates.

II. CSDF MODEL DERIVATION

Here we formulate the simplest continuum-space discrete-
field (CSDF) model1 that can have fractal crystal as a ground

1This model is in some sense related to elasticity theory [21–24]
which also studies zero-thickness limit of interfaces, which are ob-
tained from homogenization of microscopic models. At the same
time our model is rather different and is dependent only on curvature
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FIG. 1. Parametrization of the interface curve between phases
one (gray) and two (white). Here r is the coordinate of the point
on the interface parameterized by arc length s. t is unitary vector
tangent to the curve t = r′. n is unitary vector orthogonal to the curve
n = t′/κ = t × ẑ.

state. To phenomenologically derive the CSDF model, an
analogy with static Cahn-Hilliard [25] model is useful. So,
first, let us briefly recap the phenomenological derivation of
the static Cahn-Hilliard model that describes structure forma-
tion in the standard problem of phase separation [25]:

FCH[c(r)] =
∫

f (c(r),∇c(r),∇2c(r), ..) dr

f = V (c) + γ (∇c)2 + · · · , (1)

where space is two dimensional r = (x, y), the usually used
form of the potential is V (c) = −2c2 + c4, and c is order
parameter of the model. The model describes a binary system.
We will refer to c = 1 as the first phase and c = −1 as the
second phase (in general phases can have different values of
c). Note that to justify expansion in orders of c and derivatives
in the Cahn-Hilliard model one assumes that c is small and
slowly changing in space.

Let us next consider a phase-separation-like process but
in a different limit where instead c is not small in general
and changes very fast in space, i.e., the width of the interface
between the phases is negligibly small. Hence we can approx-
imately set c = ±1 everywhere. Namely, now configuration
is uniquely defined by coordinates of interfaces between two
phases labeled by c = 1 and c = −1. There could be multiple
disconnected interfaces. Let us enumerate the interfaces by the
index i = 1, . . . , N and parametrize curves associated with
the interfaces by arc length s, such that each interface is given
by ri(s), see Fig. 1. Hence the energy functional is given by:

F [c(r)] =
∑

i

G[ri(s)], (2)

and its derivatives and is derived from different generic considera-
tions.

where G is a new energy functional that depends on the shape
and size of the given interface. Now let us phenomenologi-
cally derive the explicit form of the energy functional G in the
spirit of the Cahn-Hilliard model Eq. (1). To do that we need to
ensure that the model satisfies different symmetry conditions.
Also, we need to determine what will play the role of the order
parameter. In analogy with Eq. (1) we can write:

G[r(s)] =
∫

g(r(s), r′(s), r′′(s), . . .) ds. (3)

The model should be translationally invariant. Hence g should
not depend on r. Namely, shifting the patch of one phase
should not change the energy. Next r′ ≡ t, where t(s) is uni-
tary vector tangent to the interface, see Fig. 1. We demand that
the model should be rotationally invariant. Hence g should not
depend on t. The next derivative gives r′′ = t′ = κn, where
κ (s) is the signed curvature of the interface curve. Vector
normal to the curve is n = t × ẑ, where ẑ = (0, 0, 1) is unit
vector orthogonal to xy plane. Since n′ = −κt and t′ = κn,
any higher-order derivatives of r will be spanned by vectors
n and t and depend on curvature and it’s derivatives. Namely,
r(n) = an + bt, where a and b are functions of κ, κ ′ . . . . For
example, r′′′ = κ ′n − κ2t. This means that model Eq. (3) de-
pends only on signed curvature κ and its derivatives. Hence
it is the natural equivalent of the order parameter in such a
model.2 Hence we can rewrite Eq. (3) in terms of κ:

G[κ (s)] =
∫

g(κ (s), κ ′(s), κ ′′(s), . . .) ds. (4)

III. SMALL CURVATURE κ EXPANSION

Next, consider the case where κ (s) is small and slowly
changing function of s. This leads to the expansion:

g = V (κ ) + γ (κ ′)2 + · · · . (5)

Let us consider the case where γ is very large and hence
κ ′ = 0. In that case, the curvature is constant along the inter-
face, making it a circle. Note that the sign of the curvature
depends on the phase. Namely, if we set the disk of phase one
(two) on phase two (one) background, then we have positive
(negative) curvature. Let us consider different ground states
that this model can have depending on the potential V (κ ).

(i) If V > 0, then the system will have one uniform phase.
(ii) If V < 0, then the system will make infinitely many

interfaces. Since we have interfaces of zero thickness (unlike
the Cahn-Hilliard model) these interfaces will be infinitely
close to each other and energy will diverge.

(iii) Energy of a single interface circle as a function of
κ changes sign and has a negative minimum. Circle energy
is then U (κ ) = 2π

|κ|V (κ ). Hence if U (κ ) has minimum with
Umin < 0 and U (0), U (+∞) > 0, then the ground state of
this model can represent a nontrivial configuration of inter-
faces.

2Consider another way to see how curvature appears in this model.
When expanding Cahn-Hilliard model to higher orders in derivatives
one obtains that, for example, for c(r) we get ∇2c = c′′ + κc′. After
integrating orthogonal to the interface one obtains a model that is
functional of curvature. See [26] for a similar approximation.
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FIG. 2. The crystalline ground state of the model Eq. (5) and
Eq. (6) in the form of hexagonal packing of disks. Phase one (two) is
colored black (white).

(iv) Potential V (κ ) cannot be an even function of κ to
have a convergent minimum. Since then there would be two
minimums of equal energies for ±κmin. Hence it would be
beneficial to put a phase two disk with curvature κ2 < 0 inside
the phase one disk with κ1 > 0. Since this model has zero
thickness interfaces these circles could have infinitely close
curvatures κ1 → −κ2. This process can be repeated and in-
finitely many circles then would be inserted. This means that
energy would diverge.

Consider the simplest example

V (κ ) = V0 + V1κ + V2κ
2. (6)

Hence U (κ ) = 2π ( V0
|κ| + V1sgn(κ ) + V2|κ|), where V0, V2 >

0, and V1 �= 0. We can always rescale the model to get rid of
V0 and V2. The sign of V1 just sets whether positive or negative
κ will be preferred. Let us set V1 = −v, where v > 0 resulting
in circular interface energy:

U (κ ) = 2π

(
1

|κ| − sgn(κ )v + |κ|
)

. (7)

This energy is minimal for κmin = 1 and equals Umin =
2π (2 − v). For v > 2 it can have hexagonal lattice of cir-
cles as ground state with κhex = (v − √

v2 − 3)−1, see Fig. 2.
Where κhex < κmin since κhex is found to minimize energy
density ρ = 3U (κ )/Shex, with hexagon area Shex = 6

√
3/κ2.

See Appendix A for a comparison of energy of this state to
other packings, where we prove that it has lower energy than
all other compact packings of disks and all packings with
lower density. Compact packing is a packing where every pair
of disks in contact is in mutual contact with two other disks.

IV. EXPANSION IN SMALL CURVATURE RADIUS R

Let us consider the case opposite to the one studied in the
previous section. Namely, here we assume that curvature κ is
rather large. In this case we can expand in signed curvature

FIG. 3. The crystalline ground state of the model Eq. (8) and
Eq. (9) in the form of hexagonal packing of disks with smaller disks
in between the large disks. Phase one (two) is colored black (white).

radius R ≡ 1/κ . We obtain expansion similar to Eq. (5):

g = V (R) + γ (R′)2 + · · · . (8)

Term proportional to (R′)2 here plays similar role as (κ ′)2

in Eq. (5). The only difference is that (R′)2 diverges if the
interface is not convex—meaning that R along the interface
should be sign definite. Otherwise, it plays the same role
of fixing the shape of the interface. In this section, we also
assume that γ is rather large so that interfaces form circles.

First, let us study the simplest (rescaled) model:

V (R) = 1 − vR + R2, (9)

which leads to single circle energy U (R) = 2π |R|(1 − vR +
R2). We suppose that this model has various ground states.
For 0 < v < 2 the ground state is a uniform single phase. At
v > 2 the model spontaneously breaks transitional symmetry:
For 2 < v < 6.20 . . . it is a hexagonal lattice (Fig. 2) with
disk radius R = 1.14 . . . . Another phase transition happens
at v = 6.20. For 6.20 . . . < v < 13.17 . . . it is a hexagonal
lattice with an additional set of smaller disks Fig. 3. Larger
disks have radius R = 1.29 . . . . To check that we compared
the energy densities of different packings of the disks [27],
see Appendix B. This pattern may continue by adding more
and more smaller circles.

V. THE GROUND-STATE FRACTAL CRYSTAL

In this section, we demonstrate a model where the transla-
tion invariance breaks down to the ground-state fractal crystal.
To achieve that it has to be energetically beneficial to add
circles to any-sized gaps between already placed circles. It
means that we can set V (R) → 0− for R → 0+. Hence let
us assume that potential V (R) → −Rα in that limit. Energy
density for hexagonal lattice of small circles is then ρ =
2π |R|V (R)/Shex → −Rα−1 for R → 0+. So we obtain the
condition that α � 1. Otherwise, the energy diverges as many
circles of size R → 0+ populate the system.
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FIG. 4. The energy of a disk U (R) as a function of its signed
curvature radius R for different models. Namely, the models, which
are obtained by expanding in powers of curvature κ Eq. (7) (blue)
and radius R Eq. (9) (orange). Here we fixed v = 2.2 and hence they
have hexagonal packing of disks as the ground state. Fractal crystal
is obtained as the ground state in model Eq. (10) (green).

Note that α = 1 is a special case since in R → 0+ limit
all packings fully covering the plane have the same energy.
Hence if the subleading order in energy density is positive,
then the ground-state energy will diverge by the inclusion of
infinitely small disks. If the subleading order is negative, then
the ground state can be realized by some nontrivial fractal
packing of disks.

One of the simplest options is to set α = 3 and the potential
to be

V (R) = −R3 + R4. (10)

This model has circle energy given by U (R) = 2π |R|(−R3 +
R4). For comparison of U (R) plots in different models, studied
in this work, see Fig. 4.

First, it is easy to see that disks occupying the plane in
model Eq. (10) will fully cover the plane. This can be seen
as follows: If they do not and there are some gaps between
disks, then the energy can be decreased by placing smaller
disks there.

Next, we can show which type of packing will be present
for disks in the limit R → 0. To that end, consider an empty
gap of area S → 0 between already placed disks. We want to
find what type of disk packing will give the lowest energy for
this gap. Energy in this limit in general is

E = −Ak with k > 2. (11)

For the case Eq. (10) we have k = 4. Ak is a sum of radii to
power k, which is given by [28]:

Ak =
+∞∑
i=0

niR
k
i = −ck

∫ R0

0
Rkn′(R) dR, (12)

where ck are constants, ni is number of disks with radius Ri,
sorted such that R0 > R1 >, whereas n(R) is number of disks
with radii r such that R0 � r � R. For a given packing of
circles, for R → 0 it is possible to show [29] that

n(R) = cR−d , (13)

where d is the Hausdorff dimension of the packing and c
is some other constant characterizing it. Hence Ak can be
estimated as

Ak = ckcd

k − d
Rk−d

0 , (14)

where parameters c, d , and R0 depend on the packing. Using
relation πA2 = S we can eliminate the parameter c:

Ak = b
2 − d

k − d
Rk−2

0 , (15)

where the packing-independent constant b = Sck/c2. From
Eq. (15) we see that maximum of Ak and hence minimum of
energy E = −Ak is achieved for maximal R0 and minimal d .
Maximal R0 means that the largest disk should be as large
as the gap allows (which corresponds to Apollonian pack-
ing). It was shown in Ref. [29] that d ∈ [dA, 2] for various
disk packings, where dA 
 1.3056867 . . . is the dimension of
Apollonian packing. Hence we see that for R → 0 the ground
state is fractal Apollonian packing of disks.

For the model shown in Eq. (10) we propose a candidate for
the global minimum (Fig. 5) where the radius of the biggest
circle is R = 2A4

3A5
|R0=1 = 0.667379 . . . and energy density ρ =

− 8πA3
4

27SA2
5
|R0=1 = −0.269622 . . . .

VI. PHASE TRANSITION BETWEEN FRACTAL
AND UNIFORM STATES

To study transition between fractal and uniform phases
consider the following modification of the model shown in
Eq. (10):

V (R) = aR2 − R3 + R4, (16)

where for a = 0 the fractal phase is the ground state. As a
is increased up to 1/4 supposedly larger and larger disks are
removed from the fractal. For a > 1/4, Eq. (16) has uniform
ground state with energy density ρ = 0. We can define order
parameter in this case as density of area which is not occupied
by disks,

σ = (Stotal − Sdisks)/Stotal. (17)

Now let us introduce a critical exponent ω defined by

σ ∝ aω for a → 0. (18)

Consider configuration Fig. 5 with small disks of radius R <

Rn removed. Similarly to Eq. (12) and Eq. (14) in the limit
a → 0 we can compute σ as:

σ = πS−1
total

+∞∑
i=n+1

niR
2
i = c2cdA

2 − dA
R2−dA

n+1 ∝ R2−dA
n+1 . (19)

Hence we need to find the relation between Rn+1 and a param-
eter. To do so note that the energy density is given by ρn =
2π

aAn
3R3

0−An
4R4

0+An
5R5

0

R2
0S0

, where An
k = ∑n

i=0 niη
k
i with ηi = Ri/R0

and the unit cell area S0 are rescaled in terms of the radius
of the largest disk R0. Then we can minimize ρn in terms of
R0 and expanding in a we get:

ρn
min = 4πAn

4

3S0An
5

[
−2

(
An

4

)2

9An
5

+ aAn
3

]
+ O(a2). (20)
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FIG. 5. Fractal crystal in the form of a periodic Apollonian pack-
ing arising as the energy minimum state in the model Eq. (8) and
Eq. (10). Colors correspond to different energies of phase one disks.
For some finite number of generations of circles of a certain size, the
second phase occupies the gaps between them. As smaller circles are
included the fraction of the second phase goes to zero. The interfaces
between the phases are drawn in black.

Hence when a is decreased the configuration with n + 1 disks
will become the ground state instead of the configuration with
n disks when ρn

min = ρn+1
min . Solving the latter for a, which we

denote as an+1 in this case:

an+1 = 2An
4

3An
5

ηn+1 + .. ∝ Rn+1, (21)

which means that the critical exponent:

σ ∝ aω, with ω = 2 − dA 
 0.6943 . . . . (22)

VII. EFFECTS OF FLUCTUATIONS

The fact that fractal, in our model, arises as a ground
state raises the interesting question about the effects of the
fluctuations.

FIG. 6. Number of disks n of given radius R in the unit cell of
a fractal crystal (Fig. 5). At finite temperatures, we expect peaks to
be widened by thermal fluctuations. Nonetheless, by searching for
peaks in n(R) distribution, one can identify radii that can be used to
define corresponding order parameters in terms of structure factors
Fig. 7.

Here we speculate how thermal fluctuations can induce a
new kind of hierarchical phase transition and how they can
be characterized. The discussion in this section is more gen-
eral than the concrete realization of the ground-state fractal
considered in the previous section; rather, we want to discuss
how to characterize the melting of a fractal. Suppose that, for
nonzero temperature, the order is destroyed for disks with a
radius smaller than R ∝ T

1
α+1 , where α is the power of the

energy potential Eq. (10). This is of course just an assumption
that may require a generalization of the model to realize. If it
or a similar situation does realize, then increasing temperature
from zero will disorder bigger and bigger disks.

To describe such a transition, we need a new kind of
order parameter with an infinite number of components that
describes a ground-state fractal and fluctuations therein. We
propose the following order parameters. Consider the case
where fluctuations affect both the positions and radii of the
disks. To characterize the ordering, one can plot the number
of disks n in the system as a function of their radius R. The cor-
responding plot for a zero-temperature case is given in Fig. 6.
Then this plot can be used to identify peaks corresponding
to radii of disks that may form some crystal structure or be
in a liquid state. Then, even if there are size fluctuations, the
peaks allow grouping of the disks into various “generations”.
Next, by plotting the structure factor for disks in the chosen
peak/generation, one can see whether they are disordered
(i.e., liquid or glass state) or form a crystal. We define this
structure factor for a given peak as follows:

S(k) =
∣∣∣∣∫

phase one
eik·rdr

∣∣∣∣ = 2π

∣∣∣∣∣∑
i

J1(kRi )

kRi
eik·ri

∣∣∣∣∣, (23)

where, without loss of generality, we set phase one (two)
to be 1 (0), so the integral is only over phase one—namely
over disks in the given peak. The integral is solved by Bessel
functions of the first kind J1. So the overall structure factor
depends on the radii of disks Ri and the positions of their
centers ri.
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We compute structure factor Eq. (23) for zero temperature
fractal crystal state Fig. 5 for given disks size Ri:

S(k) = 2π
J1(kRi )

kRi

∣∣∣∣∣∣
∑

j

eik·r0
j

∣∣∣∣∣∣δ2π (k · a1)δ2π (k · a2), (24)

where delta functions are up to 2π addition: δ2π (x) =∑+∞
n=−∞ δ(x + 2πn), which gives delta functions at sites in the

reciprocal lattice. Primitive vectors of direct hexagonal lattice
are a1 = R0(2, 0) and a2 = R0(1,

√
3), while r0

j are positions
of disk centers in the unit cell, which are indexed by j.

We plot these structure factors in Fig. 7. Note that they
form different patterns, which can help distinguish order pa-
rameters for different i. However, some of them will look very
similar, so peaks in n(R) are needed to identify order param-
eters. Hierarchical melting then would imply a sequence of
losing the peaks of the structure factors of various colors,
corresponding to different generations of the disks.

VIII. CONCLUSIONS

We presented the concept of the ground-state fractal crystal
as a state generalizing crystalline order. We phenomenologi-
cally derived the model that is defined on a two-dimensional
continuous space and has a two-valued discrete field. The
model respects space translation symmetry. The energy of this
model is expressed as an integral over interfaces between two
phases of function that depends on signed curvature κ and its
derivatives. We demonstrated that the energy minimization in
this model leads to the spontaneous breakdown of translation
symmetry in the form of a crystal where each unit cell can be
a fractal.

The model can be generalized to the situation with some
finite interface thickness d . Then the fractal structure will
be present only down to order d . This is similar to other
fractals in physical systems which generically feature some
microscopic cutoff length scale.

The open question is whether these states are realized in
physical systems with complex order, such as the general-
izations of the phases occurring in quantum Hall systems
between stripe and bubble phases [30], phases between a
two-dimensional electron liquid and Wigner crystal [31], and
soft matter states or hierarchical structure formation in poly-
disperse vortex clusters [32].

The fractal energy minimizers in a classical field theory
that we find can in principle be related to quantum problems.
In our case, the energy minimizer is a crystal of Apollonian
packing in each unit cell. On the other hand, the fractals
similar to integral Apollonian packing are related to Hofs-
tadter butterfly [33], i.e., the energy spectrum of electrons in a
magnetic field.

Finally, we note that we presented the simplest continuous-
space discrete-field model that can be easily generalized.

For example, one can consider a three-dimensional ver-
sion with principle curvature for two-dimensional interfaces
between phases. Next, more phases can be included, which
will result in new types of interfaces. Namely, for three or
more phases one can also have a vertex in two dimensions (or
vertices and lines in three dimensions) where three or more
phases meet. Energies of these lower-dimensional interfaces

FIG. 7. Examples of structure factors Eq. (24) for disks of a
given radius Ri. Index i enumerates disks from biggest to smallest.
Another way to put it is that i enumerates peaks/generations of disks,
and hence coloring corresponds to Fig. 5 and Fig. 6. Note that in
all cases, structure factor configuration is given by the hexagonal
lattice of delta functions. To illustrate that, we plot disks placed at
the delta function positions, with the radii of the disks corresponding
to the magnitudes of the delta function prefactors. i = 3, 4 plots are
zoomed in.

can be set in addition to functional that depends on curva-
ture. Moreover, in order to obtain fractal packing of disks
one in principle can have other models that somehow favor
specific shape and bigger sizes of areas of a given phase, see
Appendix C.
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For a one-dimensional system, the interface is just a point
that has no curvature. However, it is still possible to obtain
some fractal patterns as the ground state in it, see Appendix D.

Having a theory where a ground state is a fractal raises an
interesting question about the nature of thermal fluctuations
and melting. It appears that thermal fluctuations in such sys-
tems might result in a hierarchical melting, with weak thermal
fluctuations destroying the order of smaller-scale sublattices,
with the system getting more disordered at increased tem-
peratures. We have shown how one can construct an order
parameter for such a hierarchical melting.
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APPENDIX A: COMPARISON OF DIFFERENT
CONFIGURATIONS IN THE κ EXPANSION MODEL

Here we present analysis suggesting that the ground state
of the model [Eq. (5) and Eq. (7)] for v � 2 is hexagonal
packing of equal sized disks, see Fig. 2.

1. Proof that hexagonal packing has lower energy
than any compact packing of disks

We rewrite energy of a disk Eq. (7) in terms of curvature
radius R ≡ 1/κ:

U (R) = 2π

(
R − v + 1

R

)
, (A1)

where R � 0. Consider a system of area S → +∞ (such that
boundary effect is negligible) which has ni disks of radius
Ri. Index i ∈ [0, N − 1] and R0 > R1 > R2 . . . > RN−1. Then
energy density that we want to minimize is as follows:

ρ = 2π
R0A1 − vA0 + A−1

R0

R2
0S0

, with

Ak =
N−1∑
i=0

niη
k
i S = R2

0S0, ηi = Ri/R0, (A2)

where we wrote all lengths rescaled in terms of radius of the
biggest disk R0. Now for given ηi and ni we can minimize
energy density with respect to R0. It gives:

R0 = A0

A1
(v −

√
v2 − 3λ2) ρ = αλ3 f (v/λ), (A3)

where

λ =
√

A−1A1

A2
0

, α = A3
0

S0A2
−1

f (q) = 2π
q2 − 2 − q

√
q2 − 3

(q −
√

q2 − 3)3
.

(A4)

As seen from Fig. 8 energy density is a monotonically
decreasing function of v, which is stretched in horizontal
direction by λ and in vertical direction by αλ3. It is negative

FIG. 8. Auxiliary function f (q) defined in Eq. (A4).

for v > 2λ, so the ground state should have the smallest λ

of all other configurations. Moreover, to have the lowest ρ

for all v it should have the lowest asymptotic. Namely, for
v → +∞, we have ρ → − 8π

27 αv3, and hence the ground state
should have the largest α.

First, let us consider the λ parameter. Configurations with
one-sized disks (N = 1) have λ = 1 since Ai = n0. Let us
prove that this is the lower bound for λ. Namely, that

λ2 = A−1A1

A2
0

> 1 for N > 1. (A5)

It is easy to show that Eq. (A5) is true for N = 2. Namely,
that

(n0 + n1/η)(n0 + ηn1)

(n0 + n1)2
> 1 (A6)

by rearranging we obtain

(η − 1)2n0n1/η > 0, (A7)

which is indeed true.
Next, we prove N > 2 cases of Eq. (A5) by induction.

Assume that Eq. (A5) is true for N and let us prove it for
N + 1. Namely we need to prove that:

(A−1 + nN/ηN )(A1 + ηN nN )

(A0 + nN )2
> 1 if

A−1A1

A2
0

> 1. (A8)

This inequality can be rearranged into the following form:

(ηN
√

A−1 − √
A1)2

2ηN
+ √

A−1A1 − A0 + A−1A1 − A2
0

2nN
> 0,

(A9)
which is true since the first term is a complete square, and
the other terms are positive by assumption of induction. This
concludes the proof of Eq. (A5).

Now let us consider the α parameter. For single-size disks
N = 1 we obtain α = n0/S0 = δ/π , where δ is the density of
disks—the area of disks divided by the total area. The quantity
δ is maximal for hexagonal packing of disks Fig. 2 for which
αmax = 1

2
√

3
.

Next, let us cover the plane by nonoverlapping regions. If
all the regions indexed by a have αa � αmax, then the total α

for the plane will be α � αmax. To show that, consider two
regions a and b with αa � αb. Then we will prove that αab �

184104-7



ALBERT SAMOILENKA AND EGOR BABAEV PHYSICAL REVIEW B 107, 184104 (2023)

FIG. 9. α parameter of a triangle formed by three touching disks
as function of their radii. It is maximal for R1 = R2 = R3 and equals
α = αmax = 1

2
√

3
.

αa, namely:

αab

αa
= (1 + A)3

(1 + S)(1 + B)2
� 1 for

αb

αa
= A3

SB2
� 1, (A10)

where A = Ab
0/Aa

0, B = Ab
−1/Aa

−1, and S = Sb
0/Sa

0 . Hence, we
obtain that:

αab

αa
� [1 + (SB2)1/3]3

(1 + S)(1 + B)2
� 1, (A11)

where the last inequality can be rearranged into:

(B1/3 − S1/3)2(2B1/3 + 2BS1/3 + B4/3 + S1/3) � 0, (A12)

which is indeed true.
Now consider all the different compact packings of disks.

Contact graph of this type of packing is a triangulation of the
plane. By contact graph we mean a graph that has one vertex
for each disk and an edge between pairs of disks that are mu-
tually tangent. Consider one of such triangles: It is formed by
lines connecting the centers of three touching disks. Without
loss of generality assume that their radii are R1 � R2 � R3.
We can then compute the α corresponding to this triangle,
which attains its maximum α = αmax when all radii are equal,
see Fig. 9. Hence total alpha for the plane will be α � αmax

for compact packings of disks.
To summarize, we showed that among all the packings

λ = 1 is the minimum, which is attained for all N = 1 pack-
ings. Next, among all the compact packings, αmax is the
maximal value of α, which is attained by hexagonal packing
of disks. These relations prove that hexagonal packing has
energy lower than any compact disk packing.

2. Proof that hexagonal packing has lower energy
than any packing with lower density

Let us show that for any disk packing:

α � αmax for δ < δhex = παmax, (A13)

where α is defined in Eq. (A4), αmax = 1
2
√

3
, and density is

δ = πA2/S0. Using that and second inequality in Eq. (A13)
we obtain:

α < αmax
A3

0

A2A2
−1

. (A14)

Hence to prove first inequality in Eq. (A13) it is sufficient to
show that

A3
0

A2A2
−1

� 1. (A15)

We will show that by induction. For the case N = 1 when
we have only one-sized disks we obtain Ak = n0 and hence
inequality Eq. (A15) holds. Then assuming that Eq. (A15) is
true for N sizes of disks, let us show it for N + 1 size disks.
Namely, that:

(A0 + nN )3(
A2 + nNη2

N

)
(A−1 + nN/ηN )2

� 1 (A16)

if Eq. (A13) is true. Which is possible to show by rearranging
Eq. (A16) using Eq. (A13), that with Ã = A1/3

2 /(ηN A1/3
−1 ) and

ñ = nN/(ηN A−1) becomes

−(Ã − 1)2[Ã(2 + ñ) + 1 + 2̃n] � 0, (A17)

which is indeed true.
So that proves the inequality Eq. (A13) for α. In the previ-

ous subsection, we showed that among all the packings λ = 1
is the minimum. Hence it shows that hexagonal packing has
lower energy than any packing with lower density.

APPENDIX B: COMPARISON OF COMPACT PACKINGS
IN THE R EXPANSION MODEL

Here we consider model Eq. (9), which for any disk pack-
ing results in energy density:

ρ = 2π
A1R0 − A2vR2

0 + A3R3
0

S0R2
0

, (B1)

minimizing it with respect to R0 we obtain:

R0 =
√

A1/A3 ρ = −2vδ + 4π
√

A1A3/S0, (B2)

where disk density δ = πA2/S0. Which shows that when in-
creasing v configurations with lower density δ will become
ground states. We compare some compact packings in Fig. 10.
It shows that states shown in Fig. 2, Fig. 3, and Fig. 11 are
likely to be ground states as v is increased.

Let us study the v → +∞ limit of this model. By rescaling
radii R → R̃ = vR and potential V → Ṽ = V/v2 we obtain:

Ṽ (R̃) = 1

v2
− R̃ + R̃2, (B3)

which means that for v → +∞ we get Ṽ → −R̃ + R̃2. Note,
that this model is unstable towards the formation of many
infinitely small disks, as was shown in the main text.

184104-8



GROUND-STATE FRACTAL CRYSTALS PHYSICAL REVIEW B 107, 184104 (2023)

FIG. 10. Difference of energy density of a given packing and a
hexagonal packing Fig. 2 as function of v parameter in the model
Eq. (8) and Eq. (9). The first number denotes the number of different
sizes N in the packing. Packings with N = 2 are all possible compact
packings [27]. Packing with N = 3 is given in Fig. 11. Simplest
hexagonal packing Fig. 2 has lowest energy for 2 < v < v1, where
v1 = 6.20 . . . . Packing 2 c8, which is a packing plotted in Fig. 3, is
the ground state for v1 < v < v2, where v2 = 13.17 . . . . For v2 < v

packing with N = 3, see Fig. 11, has lowest energy. We expect
packings with higher N to become ground states for higher v.

APPENDIX C: OTHER WAYS TO HAVE GROUND-STATE
FRACTALS IN TWO-DIMENSIONAL SYSTEMS

To obtain fractal as a ground state we single out two con-
ditions:

(i) We set some preferred size for the monophase patch,
such that energy → 0− for size → 0. For example, one can
have energy as a function of patch area E (S), with the negative
minimum at S0 and E → −Sα for S → 0. Note that, similarly
to the discussion in the main text, we can set α > 1 to have
convergent solutions.

(ii) We fix the shape of the interface between phases to the
shape that cannot tile the plane. This ensures that there are
gaps between large patches, which will be filled by smaller
and smaller patches. This can be done in many ways, so we
discuss only a couple of examples, where the shape of the
interface is a circle.

FIG. 11. Hexagonal packing with three kinds of disks of different
sizes.

FIG. 12. Illustration of distances to interface in up, down, left,
and right directions. Note that only in a circular interface LuLd =
Ll Lr = R2 − r2.

One way to fix the shape of the interface to a circle is to
have energy that depends on the radius of the biggest circle
that can be inscribed into the interface Rin and the radius of
the smallest circle in which the interface can be inscribed into
Rout. Then one can have energy E (Rout/Rin ) such that E (1) =
0 and E → +∞ for Rout/Rin �= 1.

Another way is to have energy density ρ corresponding to
every point in the plane, which depends on distances to the
interface in four directions. Namely, one can pick directions:
up, down, left, and right (see Fig. 12). Then energy density
can be constructed such that ρ = 0 for LuLd = LlLr and ρ →
+∞ otherwise. This will make interfaces circular.

Note that in these and the example in the main text it is not
necessary to fix the interface to exactly the circle to have a
fractal ground state. Namely the γ parameter in Eq. (5) can be
finite or energy (density) for cases considered here can have
some finite values instead of → +∞. Then the interface will
be noncircular but still can be such that it will not tile the plane
and hence will have fractal packing.

APPENDIX D: GROUND-STATE FRACTAL
IN ONE-DIMENSIONAL SYSTEM

Here we consider a one-dimensional CSDF model with two
phases that has fractal as the ground state. It is defined on finite
space of size 1 and is given by energy:

H =
N∑

i=1

E (Li ) +
N−1∑
i=1

C(Li+1/Li ), (D1)

where N is number of line segments of alternating phases, Li

is length of the i’s line segment, E (L) is energy of a single line
segment, and C(Li+1/Li ) is energy of interface of the phases.
We choose energy E such that short segments are preferred
and set E (L) = L2. Energy of interface C is chosen such that

184104-9
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x q x q2 x q3 x q4 x q5 x q6 x

FIG. 13. One-dimensional fractal of alternating phase one
(black) and phase two (orange) line segments. Ratio of lengths of
consecutive line segments is q = 3/4 and length of the longest seg-
ment is x = 1 − q.

some given ratio of segment lengths Li+1/Li = q is preferred.
Moreover, we consider the limit when:

C(Li+1/Li ) = 0 for Li+1/Li = q

C(Li+1/Li ) → +∞ for Li+1/Li �= q. (D2)

Hence the ratio is fixed to Li+1/Li = q. In this case en-
ergy of N line segments of lengths Li = xqi−1 equals H =
x2(1 − q2N )/(1 − q2). Using that total length is

∑N
i=1 Li = 1,

we obtain x and energy:

x = 1 − q

1 − qN
→ 1 − q H = 1 − q

1 + q

1 + qN

1 − qN
→ 1 − q

1 + q
, (D3)

where we take the limit N → +∞ since H is a decreasing
function of N . Hence the ground state of the model Eq. (D1)
is given by a fractal, see Fig. 13.
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