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Atomistic modeling of a superconductor–transition metal
dichalcogenide–superconductor Josephson junction
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Using an atomistic tight-binding model, we investigate the characteristics of a Josephson junction formed
by monolayers of MoS2 sandwiched between Pb superconducting electrodes. We derive and apply Green’s
function–based formulation to compute the Josephson current as well as the local density of states in the junction.
Our analysis of diagonal and off-diagonal components of the local density of states reveals the presence of triplet
superconducting correlations in the MoS2 monolayers and spin-polarized subgap (Andreev bound) states. Our
formulation can be extended to other systems where atomistic details and large scales are needed to obtain
accurate modeling of Josephson junction physics.
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I. INTRODUCTION

Josephson junctions (JJs), where two superconductor elec-
trodes are separated by a thin barrier layer of an insulating
material, continue to provide a fertile ground for the ex-
ploration of novel physical phenomena. Much of the recent
activity in this area stems from the search for Majorana
fermions in connection with topological quantum computing
applications [1,2]. However, other aspects of JJs have also
been studied. For instance, it has been recently found that
JJs can show rectification effects [3–7]; in addition, when the
insulating material is topological, it has been demonstrated
experimentally that Josephson currents become 4π periodic
[8–10], corroborating earlier theoretical predictions [11,12].
JJs have also been used to reveal subtle topological ordering
[13] effects. These findings point to the richness of novel
possibilities that could be driven by combining the supercon-
ductivity of the electrodes with unconventional properties of
the barrier layer material.

In this context, few-layer transition-metal dichalcogenides
(TMDs) have gained some prominence. Among the TMDs,
MoS2 is of particular interest because of its high mobil-
ity upon doping or gating. Experiments have shown a high
critical current for single- and double-layer MoS2 JJs and
strong evidence of multiple Andreev resonances (MARs),
which are both suppressed as more layers are added [14,15].
The homogeneity and tunability of few-layer MoS2 also
have the potential to yield high-quality JJs for use in
superconducting qubits and superconducting interconnects
[16,17]. Going further, TMDs have been used to fabricate
the entire JJ, including the superconductors, yielding high
transparency devices [18]. The literature about experimen-
tal realizations of TMD-based JJs is already quite robust
and it served as motivation for our theoretical modeling
effort as atomistic computational studies of these systems
are few.

In this work, we develop and employ a formalism for
the computation of Josephson currents and local density of
states that is suitable for large-scale, atomistic JJ modeling.
We apply the formalism to a JJ in which the insulating ma-
terial consists of an atomically thin layer of MoS2 and the
superconductors (SCs) are bulk fcc Pb. MoS2 is chosen as
the insulating material due to current interest in fabricat-
ing high-quality superconducting qubits with well-controlled
functionalized structures, in contrast to traditional AlOx bar-
riers. As a semiconductor with a relatively wide band gap and
strong spin-orbit coupling, the barrier properties of MoS2 are
expected to be different from those seen in generic junction
models. Pb was chosen as a conventional s-type superconduc-
tor. We employ a Slater-Koster type multiband tight-binding
model Hamiltonian that accurately reproduces the corre-
sponding first-principles band structure. We delineate the role
of spin-orbit coupling in MoS2 on the composition of the
Josephson current and its dependence on the superconductor
phase, as well as on the onset of superconducting correlations
in MoS2 via the proximity effect. Our computations show an
exponential dependence of the critical current on the number
of atomic MoS2 layers, consistent with the experimental data.
We find a significant number of subgap MARs for monolayer
MoS2, as well as a strong spin polarization and a dependence
on the coupling between Pb and MoS2. Spin polarization is
weaker in the case of bilayer MoS2, which we attribute to
the interplay between the junction’s symmetry and spin-orbit
coupling (monolayer and bilayer junctions have different sym-
metry properties). We also identify manifestations of triplet
superconducting correlations in the MoS2 layers.

The paper is organized as follows. In Sec. II, we discuss
our formulation of the Josephson current (Sec. II A) and the
construction of the tight-binding model (Sec. II B). In Sec. III,
we present and interpret the results of our numerical cal-
culations. We conclude in Sec. IV with a summary and an
outlook. Technical details of the Green’s function derivation
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FIG. 1. Schematic representation of a superconductor–normal
metal/insulator–superconductor junction. The total Hamiltonian of
the system is split into five terms [see Eq. (1)].

of Sec. II A are presented in Appendixes A and B. The model-
ing of the semi-infinite superconducting leads and the details
of the tight-binding model are presented in Appendixes C and
D, respectively.

II. METHODOLOGY

This section discusses the methodologies used to obtain the
Josephson current and other properties of the SC–TMD–SC
junction. We begin with a derivation of the formulation used
to compute the current and then describe the construction of
the tight-binding model.

A. Josephson current formulation

There are numerous formulations to compute the dc
Josephson current [19–32]. They can be roughly classified
into two groups: those based on energy considerations and
the explicit contribution of the resonant states at the junction
(Andreev bound states), and those based on the integration
over a nonequilibrium Green’s function that runs across the
junction. Here we present an alternative Green’s function ap-
proach that allows one to separate the superconductor contacts
from the normal region, effectively splitting the calculation
into two parts. The main advantage of this approach is that
only the retarded and advanced Green’s functions are needed,
which can be efficiently computed using recursive techniques.
This method borrows from the quantum-dot literature [33]
and, when applied to JJs, allows one to distinguish between
the dissipative and coherent contributions. Finite temperature,
chemical potential modulations, magnetic fields, microscopic
disorder, and spin-orbit couplings can be straightforwardly
included in the modeling. In the following, we present the
main points in the derivation of an expression for the current
that meets the needs for the numerical study presented in this
paper; further details are provided in Appendices A and B.

We divide the system into two semi-infinite superconductor
leads connected to a normal region (see Fig. 1). The total
Hamiltonian of the system is

Htotal = HL + HR + HC + UL + UR, (1)

where HL(R) corresponds to the left (right) superconductors,
HC corresponds to the finite-size (central) normal region, and
UL(R) denote couplings between the left (right) superconductor

and the normal region. To provide explicitly expressions for
these terms, we introduce a description of electron operators
as four-spinors:

�a =

⎛
⎜⎜⎜⎜⎜⎝

ca↑

ca↓

c†
a↓

−c†
a↑

⎞
⎟⎟⎟⎟⎟⎠ and �†

a = (c†
a↑ c†

a↓ ca↓ −ca↑).

The anticommuting operators caσ and c†
aσ annihilate and cre-

ate electrons on site a with spin σ , respectively. The index a
denotes a lattice site but can also include additional on-site
characteristics such as the atomic orbital number. In terms of
the four-spinor operators, the three subsystem contributions to
the Hamiltonian can be written (up to a constant) as

Hl = 1

2

∑
a,a′∈l

�†
a Ĥ l

a,a′�a′ , (2)

where l = L, R,C, and

Ĥ l
a,a′ = [

(ta,a′ + δa,a′va)σ̂0 + i
(
λx

a,a′ σ̂1 + λ
y
a,a′ σ̂2 + λz

a,a′
)
σ̂3

]
τ̂3

+ δa,a′ (εxσ̂1 + εyσ̂2 + εzσ̂3)τ̂0

+ δa,a′ σ̂0(Re	aτ̂1 − Im	aτ̂2), (3)

where ta,a′ are hopping amplitudes, λk
a,a′ are spin-orbit cou-

pling constants (λk
a,a′ = −λk

a′,a), and εk are Zeeman fields,
which may differ for each region of the system, and Re
(Im) denotes the real (imaginary) part. 	a denotes the
local s-wave superconductor order parameter in the mean-
field approximation. In the normal region, 	a = 0. For the
couplings between the superconductor and normal regions,
we have

Ul = 1

2

∑
a∈l

∑
a′∈C

(
�†

aÛ l
a,a′�a′ + �

†
a′Û l

a′,a�a
)
, (4)

where l = R, L and

Û l
a,a′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

ul↑↑
a,a′ ul↑↓

a,a′ 0 0

ul↓↑
a,a′ ul↓↓

a,a′ 0 0

0 0 ul↓↓∗
a,a′ −ul↓↑∗

a,a′

0 0 −ul↑↓∗
a,a′ ul↑↑∗

a,a′

⎞
⎟⎟⎟⎟⎟⎟⎠

. (5)

Here, ulσσ ′
a,a′ are the hopping amplitudes between site a in

the superconductor l and site a′ in the normal region, when
the spin orientation goes from σ to σ ′ upon hopping. It
is convenient to gauge out the superconductor phases from
the lead fermionic operators and move them into the cou-
pling operators: Let 	a = eiφl |	a| for l = R, L. After the
transformation

� ′
a = e−iφl σ̂0 τ̂3/2�a (6)

we obtain

Ul =
∑
a∈l

∑
a′∈C

� ′ †
a

ˆ̄U l
a,a′�a′ , (7)
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where

ˆ̄U l
a,a′ = e−iφl σ̂0 τ̂3/2Û l

a,a′ . (8)

We can now drop the imaginary part of 	a from the Hamil-
tonian of Eq. (3) and consider 	a = |	a|. (Hereafter we omit
Pauli identity matrices.)

Following the procedure detailed in Appendix A, we arrive
at the following expression for the current emanating from the
left superconductor:

IL = 2e

h̄
Re

∑
a∈L

∑
a′∈C

∫
dε

2π
tr
[ ˆ̄U L

a,a′ τ̂3Ĝ<
a′,a(ε)

]
, (9)

where the trace runs over spin indices and Ĝ<
a,a′ (ε) is the lesser

(matrix) Green’s function in the energy representation. Notice
that the Green’s function crosses from the left superconductor
to the normal region. An analogous expression can be derived
for the current emanating from the right superconductor, LR.
Since, in the stationary regime, there is no charge accumula-
tion in the central region, IL = −IR.

In the literature, Eq. (9) is the basis for numerical com-
putations of the Josephson current. Here we use it instead
as a starting point for the derivation of an alternative ex-
pression that is more practical and suitable for large-scale
atomistic modeling. Details of this derivation are provided in
Appendix B. The resulting expression is

IL = e

2h̄

∑
a,a′∈L

∑
a′′,a′′′∈C

∫
dε

2π
tr
{ ˆ̄U L

a,a′′
[
τ̂3Ĝ<

a′′,a′′′ (ε) − Ĝ<
a′′,a′′′ (ε)τ̂3

]( ˆ̄U L
a′′′,a′

)†[
ĝa

a′,a(ε) + ĝr
a′,a(ε)

]}
, (10)

where ĝr,a are the retarded and advanced surface (matrix)
Green’s functions defined at the outer, rightmost layer of the
semi-infinite left superconductor lead in isolation (i.e., decou-
pled from the normal region). The IR current has an analogous
expression.

A remarkable property of Eq. (10) is that each factor within
the square brackets is local and can be computed separately in
two stages: first, the retarded and advanced surface Green’s
functions of the decoupled superconductors, which can be
computed using decimation techniques [34], as shown in
Appendix C; second, the full Green’s function of the nor-
mal region computed at the leftmost surface only. The latter
depends implicitly on the coupling to the superconductors
and their surface Green’s functions, which can be efficiently
computed using recursive techniques [35]. It also depends
implicitly on the superconductor phases φL and φR, although
it is only practical to extract an explicit functional depen-
dence in simple situations, such as for one-dimensional chain
systems.

We employ Eq. (10) in all numerical calculations of the dc
Josephson current presented in this paper.

B. Tight-binding model

The geometrical structure of the SC–TMD–SC system un-
der study is described in Fig. 2. A supercell was constructed
by aligning the zigzag directions of the MoS2 and Pb(111)
surfaces. A 2 × 2 supercell of MoS2 was set to match a√

3 × √
3 supercell of a Pb(111) electrode. Periodic boundary

conditions were applied in the transverse direction (xy plane),
while the supercurrent flows in the z direction piercing the
two semi-infinite superconducting leads. The superconducting
leads are constructed using ABC stacking for an fcc struc-
ture, hence the basic building block of the lead has three
layers. The method to model semi-infinity is described in
Appendix C. In Fig. 2, we show only the single monolayer
configuration of MoS2, but we have also studied double-,
triple-, and quadruple-layer cases, where the even numbered
cases have inversion symmetry while the odd numbered cases
have mirror symmetry Mz. The stacking of Pb electrodes with
fcc(111) orientation follows the symmetry of the MoS2 layer.

Hence, for the mirror-symmetric case, the stacking of the
top (bottom) electrode follows ABC (CBA) order; for the
inversion symmetric case, the top electrode is an image of the
bottom one inverted with respect to the inversion point of the
MoS2 double layer.

Since the system is periodic in the transverse directions
but nonperiodic in the longitudinal direction, the calculations
are performed using a momentum representation instead of
spatial coordinates in the transverse direction. Depending on
which quantity is being analyzed, either sums over the hori-
zontal Brillouin zone (or parts of it) are used or quantities in
momentum space are Fourier transformed into the simulation
cell and projected to an appropriate real-space wave-function

FIG. 2. Geometry of the single-layer Pb-MoS2-Pb junction from
two sides: (a) perpendicular to the yz plane and (b) perpendicu-
lar to the xz plane. (c) Interface between the top layer of MoS2

and the bottom layer of the Pb electrode. The supercell is indicated
by the parallelogram with white boundaries. Notice that there are
three Pb atoms and four S atoms in the supercell. Locally, the three
Pb atoms are chirally displaced with respect to the three nearest S
atoms, while the fourth S atom links to the neighboring supercells.
(d) The smallest hexagon is the Brillouin zone (BZ) of the compu-
tational 4 × 4 supercell, while the largest hexagon shows the BZ
of the MoS2 primitive cell. The hexagon with blue dashed lines
corresponds to the BZ of the Pb primitive cell, showing the 30◦

rotation.
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TABLE I. The interorbital matrix elements L · σ of d orbitals
of Mo for HSOC according to Ref. [40]. In addition to these terms,
there is a common amplitude λ chosen to give the correct spin-orbit
splitting for bulk MoS2.

Orbital dz2 dxz dyz dxy dx2−y2

dz2 0 −i
√

3σy i
√

3σx 0 0
dxz i

√
3σy 0 −iσz iσx −iσy

dyz −i
√

3σx iσz 0 −iσy −iσx

dxy 0 −iσx iσy 0 2iσz

dx2−y2 0 iσy iσx −2iσz 0

basis. We note that reciprocal-space lattice vectors of the
2 × 2 supercell have half the length of the lattice vectors for
the 1 × 1 primitive cell of MoS2. This is significant especially
in attributing spin-resolved behavior of Andreev bound states
to the high-symmetry points of the Brillouin zone (BZ).

The computational basis set consists of s, px, py, and pz

orbitals for the Pb and S atoms and s, dz2 , dxz, dyz, dxy,
and dx2−y2 orbitals for the Mo atoms. The hopping integrals
follow Slater-Koster form [36,37] with fitted amplitudes (see
Appendix D for details). The electron, hole, and spin degrees
of freedom are incorporated into the full Hamiltonian as fol-
lows:

H =
∑
a,b,σ

(εac†
aσ caσ + Vabc†

aσ cbσ ) + HSOC + HSC. (11)

Here, a, b are composite indices that encode both site coor-
dinates and orbital indices within the simulation cell, and the
Hamiltonian is Fourier transformed into momentum space in
the x and y directions. We use the same parametrization of
the tight-binding Hamiltonian as in Refs. [15,38] (see also
Appendix D). As in Ref. [39], we use a fitted spin-orbit term
following Ref. [40],

HSOC =
∑

a,σ,b,σ ′
〈aσ |λL · σ|bσ ′〉c†

aσ cbσ ′ , (12)

which is applied only to the d orbitals of Mo atoms
in the present calculations. Table I shows explicitly the
on-site matrix elements between the d orbitals of Mo
that go into Eq. (12) as derived in Ref. [40]. We
choose the value λ = 0.048 eV for the spin-orbit coupling
amplitude.

Following Ref. [15], superconductivity is modeled using
the Hamiltonian

HSC =
∑
a,b,σ

(	a,σ ;b,σ̄ c†
aσ c†

bσ̄ + 	
†
b,σ̄ ;a,σ

cbσ̄ caσ ), (13)

where 	a,σ ;b,σ̄ is the superconductor order parameter. The
orbital indices a and b refer to orbitals of Pb atoms; σ̄ denotes
σ flipped. For simplicity, b = a, and in order to model singlet
superconductivity, we choose 	a,↑;a,↓ = −	a,↓;a,↑. The value
	a,↑;a,↓ = 1.4 meV is chosen for calculations according to the
experimentally observed gap in Pb [41].

C. Green’s function calculations and visualization of results

The Hamiltonian of Eq. (11) is employed to write
Bogoliubov–de Gennes equations and Nambu-Gorkov

Green’s functions consisting of spin-up and spin-down
electron and hole blocks [42],

Ĝα,β (E , k) =
(

Ge
α,β (E , k) Fα,β (E , k)

F †
α,β (E , k) Gh

α,β (E , k)

)
,

where we use the combined orbital-spin indices α = a, σ

and β = b, σ ′. In the first stage, the Nambu-Gorkov Green’s
function is calculated in spin and orbital basis as a function
of energy and momentum. The resulting function can then be
projected in various ways, such as to spin states, to a path in
the momentum space, to a section of the BZ, or partially to
the real space.

As noted in Sec. II A, we do not need to determine the
Green’s function of the entire system to compute proper-
ties of the junction. Rather, for the ABS and supercurrent
calculations and the analysis of the proximity effect, the non-
interacting surface Green’s function for the superconducting
leads and the full Green’s function of the scattering region
suffice. In our numerical calculations, the following procedure
was employed: first, the noninteracting Green’s functions of
the leads and the scattering region are calculated separately;
second, the recursive method of Appendix C is used to obtain
the surface Green’s function of the semi-infinite lead; third,
self-energies are constructed using

�̂l
a = ˆ̄U l

a,a′gl
a′ ˆ̄U l

a′,a (14)

and used to assemble the full (interacting) Green’s function of
the scattering region through the solution of Dyson’s equation,

Ĝ = ĝ + ĝ(�̂L ⊕ �̂R)Ĝ, (15)

where ĝ is the noninteracting Green’s function and Ĝ is the
resulting full Green’s function of the MoS2 part. This interact-
ing Green’s function for the scattering region together with the
noninteracting surface Green’s function of the leads can then
be used to calculate the supercurrent in the form of Eq. (10).

In addition to supercurrent calculations, the interacting
Green’s function of the MoS2 region is used for further anal-
ysis of ABSs and the proximity effect. For ABS calculations,
the local density of states (LDOS) is obtained from the density
matrix

ρ̂α,β (E , k) = − 1

2π i
[Ĝα,β (E , k) − Ĝ†

α,β (E , k)]. (16)

The density matrix can be projected to chosen sites or orbitals
and, specifically, it is used to visualize the LDOS of the
superconducting leads and the dependence of the ABSs on
the phase difference between the leads. Furthermore, the spin
polarization of ABSs and their k dependence can be analyzed
using the density matrix.

The proximity effect and the pairing amplitude within the
normal region is studied by taking a real-space projection
of the anomalous Green’s function component Fα,β (E , k).
Since the spin-orbit coupling tends to mix up and down spins
within the normal region and there is a mismatch in spin align-
ment between the MoS2 layer and the Pb lead, a triplet form
of pairing tends to occur in addition to singlet pairing. To il-
lustrate this effect, we arrange the anomalous matrix elements
according to the total spin S = 0, 1 and mS = −S, . . . , S as
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follows:

F 0,0
αβ (E , k) = F↑↓(E , k) − F↓↑(E , k),

F 1,0
αβ (E , k) = F↑↓(E , k) + F↓↑(E , k), (17)

F 1,1
αβ (E , k) = F↑↑(E , k),

F 1,−1
αβ (E , k) = F↓↓(E , k).

We then make a Fourier transformation into site space,

F S,mS
α,β (E , k) → F S,mS

α,β (E , Rα,β ). (18)

Finally, a real-space projection is performed with Slater-type
orbitals,

F S,mS (E , r) =
∑
α,β

φ∗
α (r − Rα )F S,mS

α,β (E , Rα,β )φβ (r − Rβ ),

(19)

where Rα is the site coordinate of the atom with orbital α

and Rα,β = Rα − Rβ . Furthermore, this can be projected onto
cross-sectional planes to allow for the visualization of the
real-space distribution of superconductivity pairing within the
scattering region and to observe the proportion of induced
singlet and triplet superconductivity.

As for the choice of k points for calculating the super-
current using Eq. (10), we take the sum over the whole BZ
using 1024 points. The same number of k points are used
in calculating the real-space projections of the anomalous
Green’s function, Eq. (19). The spin-resolved ABSs are calcu-
lated using Eq. (16) by summing over 1024 k points of each
quadrant of the BZ.

III. RESULTS

In the following, we mainly focus on the dependence of
the supercurrent I and the ABSs on the phase difference ϕ

of the SC order parameter across the MoS2 scattering region
under different symmetry conditions and layer thicknesses.
Two important factors affect the behavior of I (ϕ) and ABSs at
different thicknesses of the MoS2 layers. First, the relatively
strong spin-orbit coupling (SOC) may lead to spin-polarized
states and facilitate triplet superconductivity. Second, the ex-
istence of two nonequivalent valleys at the valence band edge
(VBE) of MoS2 combined with time-reversal symmetry leads
to a spin flip between the valleys. In the case of an even
number of MoS2 layers, no spin-orbit splitting occurs at VBE,
whereas for an odd number of layers, the inversion symmetry
is broken, which leads to spin-valley coupling [43,44]. Thus,
different behavior of spin polarization of ABSs is expected
for monolayer and bilayer MoS2. Moreover, the coupling to
Pb leads complicates spin-polarization effects, since the mis-
alignment between the fcc(111)-oriented Pb and the MoS2

surface reduces the symmetry further. Beyond I (ϕ) and ABSs,
we consider the proximity effect and the emergence of triplet
superconductivity for the MoS2 monolayer and bilayer.

We start by considering ABSs and supercurrents in one-
monolayer (one-ML) junctions with Mz mirror symmetry
(Fig. 3). Effects of breaking the mirror symmetry by scaling
the hopping integrals connecting the orbitals of the MoS2

slab and the upper Pb lead only are also discussed. For this

purpose, we follow the parametrization of Ref. [38] and apply
the scaling factors 1.00 (full), 0.75 (intermediate), and 0.50
(weak) to the Slater-Koster hopping integrals to the Hamilto-
nian matrix elements.

The computed supercurrent through the MoS2 monolayer
as a function of the phase difference between the Pb leads
follows very faithfully a sinusoidal form, which is in agree-
ment with the generic model of a Josephson junction [45–47],
where the maximum amplitude occurs at ϕ = π/2 and ϕ =
3π/2 [Fig. 3(a)]. As expected, weakening the interaction
from the scaling factor of 1.0 to 0.75 and 0.50 lowers the
critical current IC [Fig. 3(b)]. Surprisingly, features of the
critical currents for the full and intermediate interactions
are seen not to differ significantly. This behavior can be
understood by looking at the evolution of the ABSs as a
function of phase difference where the in-gap subbands are
flatter in the weak-coupling case. In the generic models of
superconductor–normal metal–superconductor junctions [47],
the supercurrent is related to the dispersion of ABSs as I (ϕ) ∝
∂E/∂ϕ; hence, the flatter the ABS bands, the lower the su-
percurrent. In this sense, the behavior of I (ϕ) at different
coupling values is consistent with the dispersion of in-gap
subbands, indicating that both the principal ABS bands and
the in-gap subbands have nontrivial effects on the current.

To set a reference energy window for analyzing the prin-
cipal and in-gap ABSs within the MoS2 layer, the density of
states of the noninteracting superconducting leads is shown
in Fig. 3(d). One can see the sharp coherence peaks and
the absence of states within the gap as is typical of s-wave
superconductivity. In Figs. 3(e)–3(g) we show the phase de-
pendence of the ABSs at different interaction strengths; here,
positions of the coherence peaks are marked with black hori-
zontal lines.

It is useful to consider the phase dependence of ABSs in
terms of their predicted dispersions from a generic weak-link
model,

Egen(ϕ) = ±
√

1 − τ sin2 (ϕ/2), (20)

where τ is an effective coupling parameter [47–49]. At full
Pb-MoS2 interaction strength, the principal ABSs follow the
generic behavior closely, nearly crossing at ϕ = π [Fig. 3(e)],
suggesting an effective coupling parameter τ ≈ 1. Weakening
of the SC-MoS2 interaction at the upper interface creates a
gap between the two Andreev bands at ϕ = π [Figs. 3(f)
and 3(g)], which is consistent with the prediction for a weak
link, i.e., when 0 � τ � 1. Hence, the calculated supercur-
rent and phase dependence of ABSs both follow very closely
the qualitative results of the generic model. However, the
detailed structure of ABSs is more complicated than what
the expression in Eq. (20) predicts. In the case of a full
Pb-MoS2 interaction, a bundle of in-gap states emerges to
complicate the overall picture. There appears a split between
the upper and lower branches of the nearly flat in-gap bands,
which merge when approaching ϕ = π from either side. This
bundle of in-gap bands is still seen, albeit much weaker and
somewhat shifted in energy, in the intermediate interaction
case [see inset of Fig. 3(f)]. A possible explanation for the
small difference between the I (ϕ) curves between the full and
intermediate coupling might be the effective gap separating
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FIG. 3. (a) Supercurrent as a function of the phase difference ϕ between the Pb leads for a one-ML-thick MoS2 barrier layer using
various interaction strengths between one of the Pb leads and the MoS2 layer. Effects of scaling the Pb-MoS2 overlap integrals are shown.
(b) Supercurrent versus phase difference for a bilayer MoS2 (maximum Pb-MoS2 interaction strength used). (c) Dependence of the critical
current IC on the number of MoS2 layers (blue circles) in comparison to experimental results from Ref. [14] (red stars), where MoRe
superconducting leads are employed. (d) Density of states of isolated superconducting leads. Evolution of ABSs as a function of the phase
difference for (e) full, (f) intermediate, and (g) weak interactions between the upper Pb lead and the MoS2 layer. The inset in (f) highlights the
in-gap ABSs.

the main ABS bands due to anticrossings with the in-gap
bands around ϕ = π .

While the phase dependence of supercurrent and the cor-
responding ABS bands provide an overall comparison to the
generic models, similar calculations for thicker MoS2 layers
allow comparison to results on realistic JJs. Increasing the
thickness of the MoS2 region leads to an exponential decrease
in the critical current, as seen in Fig. 3(c). As a comparison
to experiments, we have inserted scaled experimental results
for the dependence of the critical current vs the number of
MoS2 layers for a JJ with superconducting MoRe electrodes
[14]. We calculated just the critical current for the three-ML
and four-ML cases, but for a bilayer (two-ML) system, we
repeated the same calculations as for the monolayer case. The
bilayer system shows an order of magnitude decrease in the
critical current but the current versus phase curve follows
the same shape as the one-ML case [Fig. 3(b)]. A wide gap
in the relatively flat ABS bands of the bilayer case [Fig. 5(a)]
consistently correlates a low supercurrent with flat bands re-
sulting from a small value of τ in the generic models. In
addition to low current, the in-gap states are essentially absent
apart from a narrow splitting of the principal ABS bands. This
point is discussed in connection with the spin polarization of
ABSs below.

Next, we discuss the effect of SOC on the k-dependent
spin polarization of the ABSs. Polarization effects related

to the coupling between the electron’s spin and momen-
tum may emerge in the case of broken symmetries. A
relevant phenomenon for TMDs is spin-valley coupling re-
sulting from SOC and broken inversion symmetry [43,44,50].
Momentum-dependent effects may be enhanced if the trans-
lational symmetry is also broken, which is the case at edges,
surfaces, and interfaces. In a generic form, the SOC interac-
tion term can be expressed as [51]

USOC ∝ σ × p · ∇V = σ · p × ∇V,

where V is the space-dependent potential energy. The
parametrized Hamiltonian matrix element of Eq. (12) does not
include the gradient of V explicitly, but it captures SOC effects
by including directional asymmetry between the interfaces
of the junction. Since the system is nonmagnetic and time-
reversal symmetry is not broken, summing over the entire BZ
hides possible spin dependencies. Therefore, to capture con-
tributions from nonequivalent K and K ′ valleys, we consider
various sections of the BZ as shown in Fig. 4(b).

While a set of in-gap bands emerges in the mirror-
symmetric one-ML case where contributions from the entire
BZ for the two spin orientations are added together [Fig. 4(a)],
a complicated behavior is seen around ϕ = π when states
are spin resolved in various BZ quadrants. In panels (c)–(f)
of Fig. 4, the spin polarization of the local density of states
(LDOS), ρ↑ − ρ↓, is plotted for different quadrants of the
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FIG. 4. (a) Local density of states (LDOS) showing ABSs for
a single monolayer Pb-MoS2-Pb Josephson junction as a function
of the phase difference. (b) The primitive cell of reciprocal space
where quadrants are indicated for spin-resolved calculations. Also,
the two-dimensional BZ of the system is depicted showing the two
nonequivalent valley points K and K ′, as well as the M point. The
inner hexagon is the BZ of the computational supercell (BZs), and
the outer one is the BZ of a MoS2 primitive cell (BZp). The dashed
arrows indicate the folding of K and K ′ points of BZp to the K ′ and K
points of BZs. (c)–(f) Spin polarization of the LDOS over a quadrant
of the primitive cell: (c) quadrant Q1 (blue); (d) quadrant Q2 (red);
(e) quadrant Q3 (magenta); and (f) quadrant Q4 (yellow).

reciprocal primitive cell [see Fig. 4(b) for the definition of
the quadrants]. For the k points in quadrants Q1 and Q2, the
in-gap ABSs are strongly spin polarized, but they exhibit a
more complicated structure than in Fig. 4(a). Careful inspec-
tion shows that in addition to the flat in-gap bands, there
are two branches that seem extended outside the gap with
band crossings near the SC gap edges of the Pb leads. A
dramatically different pattern is seen in quadrants Q3 and Q4.
Here, the overall dispersion resembles the generic model with
a narrow gap at ϕ = π with practically no contribution from
the in-gap ABSs. Although the upper branches of the principal
ABS bands show a notable degree of spin polarization, the
overall spin polarization of the in-gap states in quadrants Q3
and Q4 is generally weaker than that in quadrants Q1 and Q2.

Differences in the spin patterns in various quadrants are
driven by the spin-valley coupling effects in the TMDs
[43,44,50]. In honeycomb structures, the K and K ′ are not
equivalent and in the presence of spin-orbit coupling, we
obtain spin-polarized states, which are spin flipped in time-
reversal symmetric systems. This effect is seen in TMDs with
an odd number of layers with broken inversion symmetry,
where the band character is strongly dxy and dx2−y2 at the
VBE. Table I shows that the matrix elements between the

FIG. 5. Similar to Fig. 4 but for a bilayer Pb-MoS2-Pb Josephson
junction. The inset in panel (a) highlights the in-gap ABSs close to
the gap edges.

dxy and dx2−y2 orbitals have a σz-type coupling that favors
spin polarization of the related eigenstates. Furthermore, the
geometrical structure of the Pb surface possesses a different
symmetry and orientation compared to the horizontal geome-
try of the MoS2 slabs.

To understand the connection between spin-valley cou-
pling and the spin polarization of the ABSs in various
quadrants, note that the K and K ′ points lie in the middle
of quadrants Q1 and Q2, respectively, while the two points
corresponding to the MoS2 VBE lie well outside the quadrants
Q3 and Q4 [52]. Since a free-hanging MoS2 layer hosts a wide
gap between the valence and conduction bands, the Fermi
level and thus the superconducting gap lies far from the VBE.
Due to the coupling between the orbitals contributing to the
VBE and the surface states of the SC leads, however, the
proximity-induced states become spin polarized.

Although we find the most significant spin polarization in
the direction of G1 − G2 and equivalent directions, this effect
may not be observable experimentally in systems that are
periodic in the transverse direction since the corresponding k
vectors are perpendicular to the direction of the supercurrent.
However, if the lattice is distorted in the horizontal plane,
spin-polarized supercurrents may become observable. This
would be the case for nanoribbons or components with a finite
width.

In contrast to the one-ML case, the two-ML case shows
a simpler structure of ABSs. Two factors are responsible for
this difference: a thicker barrier for Cooper pairs to tunnel
across the scattering region, and the presence of the inversion
symmetry instead of the mirror symmetry. Figure 5(a) shows
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FIG. 6. (a) Atomic arrangement in the xz plane (perpendicular
to the junction interfaces) for a monolayer Pb-MoS2-Pb junction.
(b)–(d) Real-space projection of the singlet terms of the anomalous
matrix elements of the Nambu-Gorkov Green’s function F 0,0(E =
EF , r) for (b) ϕ = π/2, (c) ϕ = 0, and (d) ϕ = π . The projection
corresponds to integration over the y coordinates. The red rectangle
in the the ball-and-stick graph in (a) indicates the area shown in
the projection pictures. Notice the mirror symmetry of the system.
The real part of the matrix elements is shown on the left, while the
imaginary part is on the right.

behavior consistent with Eq. (20) with less pronounced fea-
tures: The inset in Fig. 5(a) shows only a few weak in-gap
bands close to the gap edges. The spin-polarized dispersions
in the four quadrants of the BZ reveal the spin-valley coupling
effects in the vicinity of K or K ′ outside the gap. The faint
branches within the gap regions in panels (b)–(e) of Fig. 5,
however, show only small spin polarization. The branches
are otherwise symmetric, but the spin polarization is approxi-
mately inverted for ϕ = π . It is plausible that the 30◦ rotation
of the Pb BZ with respect to the MoS2 BZ and the horizontal
displacement of the interfacial Pb atoms with respect to S
atoms would affect the anomalously small spin polarization
here.

Next, we consider the proximity effect within the scattering
region by visualizing the anomalous Green’s function matrix
elements. Panel (a) in Fig. 6 shows a side view of the one-ML
junction, and panels (b)–(d) show the real (left) and imagi-
nary (right) parts of the anomalous singlet Green’s function
F 0,0(E = EF , r) projected into real space and integrated over
the y coordinate. For phase difference ϕ = 0, the pairing am-
plitude is predominantly real and follows the horizontal mirror
symmetry of the scattering region. A nonzero phase difference
between the Pb leads modifies this pattern. For ϕ = π/2,
the real and imaginary parts are equally strong. A phase dif-
ference of ϕ = π leads to almost real pairing amplitude, but

FIG. 7. (a)–(f) Real-space projections of the triplet [(S, ms ) =
(1, −1), (1, 0), (1, 1)] terms of the anomalous matrix elements of
the Nambu-Gorkov Green’s function F S,mS (E = EF , r). Plots (a)–
(c) correspond to the phase difference ϕ = 0 between the leads.
(d)–(f) correspond to the phase difference ϕ = π/2. The real part
of the matrix element is given in the left-hand side figure in each
panel, while the imaginary part is given in the right-hand side figures.
The atomic arrangement is the same as in Fig. 6(a), where the red
rectangle indicates the area shown in the projection pictures.

there is a change of sign between the lower and upper layers.
As a result, the Mo layer becomes a nodal plane of the singlet
pairing amplitude.

We also consider the impact of SOC on the proximity
effect and the emergence of triplet pairing. For this purpose,
in Figs. 6–8 we show the real space projection of the singlet
and triplet forms of the anomalous Green’s function F S,mS for
the one-ML and two-ML cases. While the Fermi energy in
our calculations is in the middle of the MoS2 band gap set by
the Pb leads, the effect of spin-valley coupling at VBE is not
expected to be strong. Nevertheless, due to the mixing of spin-
up and spin-down states and hybridization of the MoS2 and Pb
surface states, the emergence of triplet pairing is expected to
take place.

Figures 6(b), 6(c) and 7 show that, due to the relatively
weak effect of SOC, singlet pairing is stronger compared to
triplet pairing by roughly two to three orders of magnitude
in the one-ML case. For phase difference ϕ = 0 between the
superconducting leads [see Figs. 6(c) and 7(a)–7(c)], both the
singlet and the triplet cases with ms = 0 follow approximately
the mirror symmetry of the system, but there are some notable
differences between the patterns. While the singlet projection
is essentially real valued, the triplet case is mainly imaginary.
No spatial phase separation between the top and bottom S
atomic layers is seen in the ms = 0 case, but a clear p-wave
type change of phase occurs in the triplet ms = ±1 case with
a phase difference of π between the top and the bottom of the
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FIG. 8. Similar to Fig. 7, but for a bilayer Pb-MoS2-Pb junction. Only the ϕ = 0 case is shown. Notice the inversion symmetry which is
indicated by the dashed lines in panels (a) and (b). The amplitudes are projected on a cross-sectional constant-y plane containing the inversion
point.

scattering region. In addition, the spin flip between ms = 1
and ms = −1 is accompanied with a phase inversion of the
dominant imaginary part of F S,mS .

The left-hand side figures in panels (d)–(f) of Fig. 7 show
the real-space projections of the triplet pairing amplitudes
for ϕ = π/2. For both the singlet [Fig. 6(b)] and the triplet
case with ms = 0, the real and imaginary parts are of the
same order of magnitude. The patterns are essentially mirror
symmetric, with the exception of the real part of the triplet
case, where there is phase inversion between the top and
bottom layers. The main difference with respect to the ϕ = 0
case is in the real and imaginary parts of the patterns, as all
the singlet as well as triplet projections are now of the same
order of magnitude. For spin-up and spin-down patterns, the
dominant real parts are quite mirror symmetric with phase
inversion between the top and bottom layers combined with
a spin flip. For the imaginary parts, the mirror symmetry is
preserved only if we combine spin-flip and phase inversion.

In Fig. 8, we do not present the projections integrated into
the y direction, but the projections in a cross-sectional plane
where y is held constant coinciding with a point of inversion
symmetry. In the right panel of Fig. 8(a), as an example
we show how the S atoms of the upper and lower mono-
layers transform under the inversion [see Fig. 8(b)], where
the real part of the singlet amplitude is seen to be dominant
and inversion symmetric. Again, the relatively weak effect
of SOC leads to a dominant singlet pairing by roughly two
decades. For all three triplet projections, the imaginary part is
dominant, and the inversion symmetry holds for the spin-up
and spin-down amplitudes. For the triplet ms = 0 case, there
seems to be slightly more complicated mixing of phases of
real and imaginary parts under inversion. A common feature

in all cases is that the proximity-induced SC pairing is still
relatively strong up to the inner layers of sulfur atoms.

IV. SUMMARY AND OUTLOOK

We have presented a formalism along with an associated
illustrative computational study of Josephson junctions con-
sisting of Pb superconducting leads and layers of MoS2. Using
an atomistic tight-binding model to describe Pb and MoS2,
we computed superconducting currents, the local density of
states, and anomalous components of Green’s functions to
reveal the composition of resonant (Andreev bound) states
in the junction region that contribute to the supercurrent. We
have also identified the k-dependent spin polarization of these
states and their dependence on the Pb-MoS2 coupling strength
and the number of atomic MoS2 layers. We also reveal the
presence of induced triplet superconductivity in the MoS2

layers.
As expected, the relatively strong spin-orbit coupling in

MoS2 induces k-dependent spin polarization in the bound
states located in the junction region. However, the dispersion
and spin texture of these states are rather complex. We break
down the contributions to the spin polarization coming from
the different areas of the Brillouin zone and show the dom-
inance of states near the K and K ′ symmetry points, where
spin splitting of the valence band of MoS2 is the strongest.
We clearly demonstrate the key roles of lattice symmetry
and spin-orbit coupling effects in controlling the degree of
spin polarization of states: the mirror-symmetric monolayer
systems show stronger polarization and a richer structure of
in-gap states compared to the inversion-symmetric bilayer
systems. This effect also appears in the strength of the in-
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duced triplet superconductivity on MoS2, which is markedly
stronger in the monolayer systems.

Our study suggests a number of pathways for future
studies. One possibility is to engineer spin polarization in
Josephson currents by suitably reshaping the contributions
from states in different regions of the Brillouin zone. This
could be achieved by employing nanoribbons rather than bulk
MoS2 layers or using a different junction geometry in order to
break the horizontal translation symmetry. Another direction
is to employ different materials in the leads to enhance the
interplay between lattice symmetry and spin-orbit coupling.
Finally, it would be interesting to consider systems where
MoS2 is replaced by other topological materials.

The methodology presented in this paper will allow
realistic, material-specific modeling and exploration of su-
percurrents and resonant bound states in more general
Josephson-junction-based systems.

ACKNOWLEDGMENTS

This work was supported by the US Department of
Energy (DOE), Office of Science, Basic Energy Sciences
Grant No. DE-SC0019275 and it benefited from Northeast-
ern University’s Advanced Scientific Computation Center and
the National Energy Research Scientific Computing Cen-
ter through DOE Grant No. DE-AC02-05CH11231, and the
resources of the Tampere Center for Scientific Computing
(TCSC). The work at Northeastern also benefited from the
Massachusetts Technology Collaborative through Award No.
22032.

APPENDIX A: DERIVATION OF EQ. (9)

Consider a general electronic Hamiltonian containing both
single-particle and mean-field superconductor terms in the
form of a tight-binding model,

H =
∑
aσ

∑
a′σ ′

haσ,a′σ ′c†
aσ ca′σ ′

+
∑

a

(	ac†
a↑c†

a↓ + 	∗
aca↓ca↑), (A1)

where haσ,a′σ ′ = h∗
a′σ ′,aσ includes both hopping and on-site

energy amplitudes and 	a is a local s-wave superconductor
order parameter. The fermionic operators caσ and c†

aσ annihi-
late and create electrons on site a with spin σ , respectively.
The current emanating from a site a with spin orientation σ

can be computed from the expectation value of the rate of
change of the electron number on that site, namely,

Iaσ = −e

〈
dNaσ

dt

〉
= − ie

h̄
〈[H,Naσ ]〉, (A2)

where Naσ = c†
aσ caσ and assuming all operators in the

Heisenberg picture (for briefness, unless essential, the time
dependence is omitted from the operators). The expectation

value of the commutator can be readily computed:

〈[H,Naσ ]〉 = −
∑
a′σ ′

(haσ,a′σ ′ 〈c†
aσ ca′σ ′ 〉 − ha′σ ′,aσ 〈c†

a′σ ′caσ 〉)

− 2
∑

a

(	a〈c†
a↑c†

a↓〉 − 	∗
a〈ca↓ca↑〉). (A3)

The second contribution on the right-hand side of Eq. (A3) is
due to the breaking of particle number conservation. However,
when self-consistency is satisfied,

	∗
a = −�〈c†

a↑c†
a↓〉, (A4)

and the second contribution vanishes [53–55]. Here � is an
attractive electron-electron interaction coupling constant [56].
In this case, we can write the current as

Iaσ = ie

h̄

∑
a′σ ′

(haσ,a′σ ′ 〈c†
aσ ca′σ ′ 〉 − ha′σ ′,aσ 〈c†

a′σ ′caσ 〉). (A5)

An implicit assumption in the derivation of Eq. (A5) is
that the breaking of translation invariance near the junction
does not modify the self-consistency condition. As shown
in Refs. [57,58], such a modification may occur, leading to
corrections to the critical current and the current-phase rela-
tionship. However, Ref. [57] also argues that these corrections
are relatively small for the current-phase relation, which is the
main focus of our study. Accordingly, we have neglected these
corrections here.

Equation (A5) can be recast in terms of nonequilibrium
Green’s functions: consider the lesser Green’s function

G<
aσ,a′σ ′ (t, t ′) ≡ i〈c†

a′σ ′ (t ′)caσ (t )〉, (A6)

where we make explicit the time dependencies of the opera-
tors. Using Eq. (A6), we can rewrite the current as

Iaσ (t ) = e

h̄

∑
a′σ ′

[haσ,a′σ ′G<
a′σ ′,aσ (t, t ) − ha′σ ′,aσ G<

aσ,a′σ ′ (t, t )].

(A7)

Since G<
m,n(t, t ′) = −[G<

n,m(t ′, t )]∗, we obtain

Iaσ (t ) = 2e

h̄
Re

∑
a′σ ′

[haσ,a′σ ′G<
a′σ ′,aσ (t, t )], (A8)

where Re stands for the real part. Equation (A8) is the basis
for the next step.

Once we split the system into three regions as shown in
Fig. 1, we can use Eq. (A8) to express the charge current flow-
ing from the left-hand side superconductor into the normal
region as

IL(t ) = 2e

h̄
Re

∑
a∈L

∑
a′∈C

∑
σ,σ ′

tr
[ ˆ̄U l

a,a′ τ̂3Ĝ<
a′,a(t, t )

]
, (A9)

where we have reverted to the four-spinor representation of
the coupling matrices and Green’s function, namely,

[Ĝ<
a′,a(t ′, t )] j′, j ≡ i〈[�†

a′ (t ′)] j′[�a(t )] j〉. (A10)

It is straightforward to derive an expression similar to
Eq. (A9) for the current emanating from the right-hand side
superconductor. Since we are focused on the zero-bias dc
current, which is stationary and thus time independent, we can
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switch to an energy or frequency representation, in which case
the expression for the left current can be written as

IL = 2e

h̄
Re

∑
a∈L

∑
a′∈C

∑
σ,σ ′

∫
dε

2π
tr
[ ˆ̄U L

a,a′ τ̂3Ĝ<
a′,a(ε)

]
, (A11)

where

Ĝ<(t, t ′) = Ĝ<(t − t ′) =
∫

dε

2π
e−iε(t−t ′ )/h̄ ˆ̃G<(ε). (A12)

(Hereafter we drop the tilde from the Green’s function in the
energy representation.) It is possible to write the current en-
tirely in terms of equilibrium Green’s functions by employing
the fluctuation-dissipation theorem [59], which in this context
reads

Ĝ<(ε) = f (ε)[Ĝa(ε) − Ĝr(ε)], (A13)

where f (ε) is the Fermi-Dirac distribution and Ĝr(a)(ε) is the
retarded (advanced) Green’s function.

APPENDIX B: DERIVATION OF EQ. (10)

Let us introduce the time-ordered Green’s function[
Ĝ

t
a,a′ (t − t ′)

]
j, j′ = −i〈T {[�a(t )] j[�

†
a′ (t ′)] j′ }〉, (B1)

where T denotes time ordering over the Keldysh contour. We
assume a ∈ C and a′ ∈ L. To make the notation more com-
pact, we lump indices into a single one, namely, a, j → α and
a′, j′ → α′. Notice that the domain of α (L, R, or C) can often
be inferred from the Green’s functions and the interaction
factors surrounding them (e.g., UL, UR, HC , etc.).

The equation of motion for the time-ordered Green’s func-
tion is

−ih̄
∂

∂t ′ G
t
α,α′ (t − t ′) = −1

h̄

〈
T

{
�α (t )

d

dt ′ �
†
α′ (t ′)

}〉

= −i〈T {�α (t )[H, �
†
α′ (t ′)]}〉

= −i〈T {�α (t )[HL, �
†
α′ (t ′)]}〉

− i〈T {�α (t )[UL, ψ
†
α′ (t ′)]}. (B2)

We can readily compute the two commutators (α′ ∈ L):

[HL, �
†
α′ (t ′)] =

∑
α∈L

�†
α (t ′)HL

α,α′ (B3)

and

[UL, �
†
α′ (t ′)] =

∑
α′′∈C

�
†
α′′ (t ′)Ū L

α′′,α′ .

Inserting the above results into Eq. (B2), we get

−ih̄
∂

∂t ′ G
t
α,α′ (t − t ′) =

∑
α′′∈L

Gt
α,α′′ (t − t ′)HL

α′′,α′

+
∑
α′′′∈C

Gt
α,α′′′ (t − t ′)Ū L

α′′′,α′ ,

which can be written more concisely as[
Gt

α,α′ (gt )−1](t − t ′) =
∑
α′′′∈C

Gt
α,α′′′ (t − t ′)Ū L

α′′′,α′ , (B4)

where gt is the time-ordered Green’s function of the left su-
perconductor in isolation, namely, when Ū L = 0. Operating
on this equation with gt from the right, we obtain

Gt
α,α′ (t − t ′) =

∑
α′′∈L

∑
α′′′∈C

∫
dt1Gt

α,α′′′ (t − t1)Ū L
α′′′,α′

× gt
α′′,α′ (t1 − t ′), (B5)

or, more compactly,

Gt(t − t ′) =
∫

dt1Gt(t − t1)Ū Lgt(t1 − t ′), (B6)

where all matrix element summations have turned into matrix
multiplications. This equation is now in a form suitable for the
Langreth rule [33]

C =
∫

complex
contour

AB → C< =
∫

real
time

[ArB< + A<Ba],

which amounts to an analytical continuation into the real axis,
leading to

G<(t − t ′) =
∫

dt1[Gr(t − t1)Ū Lg<(t1 − t ′)

+ G<(t − t1)Ū Lga(t1 − t ′)]. (B7)

Switching to a frequency representation, we find

G<(ε) = [Gr(ε)Ū Lg<(ε) + G<(ω)Ū Lga(ε)]. (B8)

Finally, substituting this result into Eq. (9), we obtain the
following expression for the stationary current:

IL = 2e

h̄
Re

∫
dε

2π
Tr

{
Ū L τ̂3[Gr(ε)Ū Lg<(ε) +G<(ε)Ū Lga(ε)]

}
.

(B9)

The trace acts on the augmented site space. Notice that the
Green’s functions with capital letters correspond to the normal
region, while the ones in lowercase are for the left supercon-
ductor in isolation.

At this point, it is useful to represent the lead Green’s
function g in its energy eigenbasis,

[g(ε)]α′′,α =
∑

κ

(O−1)α′′,κ [gd(ε)]κOκ,α, (B10)

which leads to

IL = 2e

h̄
Re

∫
dε

2π
Tr

{
τ̂3

[
Gr(ε)Ū L

h g<
d (ε)Ū L

h

+ G<(ε)Ū L
h ga

d(ε)Ū L
h

]}
, (B11)

where we introduced the hybrid coupling matrices[
Ū L

h

]
κ;α′ =

∑
α∈L

Oκ,α[Ū L]α,α′ ,

[
Ū L

h

]
α′′′;κ =

∑
α′′∈L

[Ū L]α′′′,α′′ (O−1)α′′,κ

and added a subscript “d” to differentiate the lead’s Green’s
function in the eigenenergy basis representation (where
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it is diagonal) from the one in the site basis. In fact,
when expressed in the energy eigenbasis, the lead’s Green’s
function depends only on the energy eigenvalues {εκ},
namely,

[g<
d (ε)]κ = 2π i fL(ε)δ(ε − εκ ) (B12)

and [
ga

d(ε)
]
κ

= [ε − εκ − i0+]−1. (B13)

Using these expressions, we can make further progress. Con-
sider the first term within the curly brackets on the right-hand
side of Eq. (B11):

Tr
{
τ̂3

[
Gr(ε)Ū L

h g<
d (ε)Ū L

h

]} = i fL(ε)Tr[τ̂3Gr(ε)�L(ε)], (B14)

where we introduced the level width matrix

[�L(ε)]α′′′,α′ = 2π
∑

κ

δ(ε − εκ )
[
Ū L

h

]
α′′′;κ

[
Ū L

h

]
κ;α′ . (B15)

Moreover, notice that

R{i fL(ε)Tr[τ̂3Gr(ε)�L(ε)]} = i

2
fL(ε)Tr{�L(ε)[τ̂3Gr(ε) − Ga(ε)τ̂3]}, (B16)

We can also manipulate the second term on the right-hand side of Eq. (B11) to obtain a similarly compact form:

Re
{
Tr

[
τ̂3G<Ū L

h ga
dŪ

L
h

]} = 1
4

{
i Tr[(τ̂3G< + G<τ̂3)�L] + Tr

[
(τ̂3G< − G<τ̂3)Ū L

h

(
ga

d + gr
d

)
Ū L

h

]}
. (B17)

If we combine the first term inside the curly brackets on the right-hand side of Eq. (B17) with the expression in Eq. (B16), we
obtain the following contribution to the current:

I (1)
L = ie

h̄

∫
dε

2π
Tr

(
�L(ε)

{
1

2
[τ̂3G<(ε) + G<(ε)τ̂3]

}
+ fL(ε)[τ̂3Gr(ε) − Ga(ε)τ̂3]

)
. (B18)

An equivalent exercise for the right lead’s current yields

I (1)
R = ie

h̄

∫
dε

2π
Tr

(
�R(ε)

{
1

2
[τ̂3G<(ε) + G<(ε)τ̂3]

}
+ fR(ε)[τ̂3Gr(ε) − Ga(ε)τ̂3]

)
. (B19)

Since there is no charge accumulation in the system in the stationary regime, we expect IL = −IR ≡ I . We can symmetrize
the left-to-right current by writing I = (IL − IR)/2 and then combine it with Eqs. (B18) and (B19) to obtain

I (1) = ie

2h̄

∫
dε

2π
Tr

{
1

2
[�L(ε) − �R(ε)][τ̂3G<(ε) + G<(ε)τ̂3] + [ fL(ε)�L(ε) − fR(ε)�R(ε)][τ̂3Gr(ε) − Ga(ε)τ̂3]

}
. (B20)

At zero bias, assuming the same temperature in both superconductors, we can write fR(ε) = fL(ε) = f (ε). Moreover, in
equilibrium, G<(ε) = f (ε)[Ga − Gr], yielding

I (1) = ie

4h̄

∫
dε

2π
f (ε)Tr{[�L(ε) − �R(ε)][τ̂3, Ga(ε) + Grxs(ε)]}. (B21)

Clearly, when the superconductor leads are identical, this contribution to the current vanishes (it can be shown that the level
width matrices �R,L do not depend on the superconductor phases). When the leads are not identical, consider

Ga(ε) + Gr(ε) = τ̂0G1(ε) + τ̂1G1(ε) + τ̂2G2(ε) + τ̂3G3(ε). (B22)

Then,

[τ̂3, Ga(ε) + Gr(ε)] = −2iτ̂2G1(ε) + 2iτ̂1G2(ε), (B23)

which can only be nonzero if the �R,L matrices allow for particle-hole conversion. In the absence of such a conversion, the trace
vanishes in Eq. (B21) and I (1) = 0.

Let us now return to the contribution to the current originating from the second term on the right-hand side of Eq. (B17).
Switching back to the site-only representation for the coupling matrices and to surface Green’s functions,

I (2)
L = e

2h̄

∫
dε

2π
Tr

{
[τ̂3, G<(ε)]Ū L

h

[
ga

d(ε) + gr
d(ε)

]
Ū L

h

}

= e

2h̄

∫
dε

2π
Tr{[τ̂3, G<(ε)]Ū L[ga(ε) + gr(ε)]Ū L}, (B24)

we obtain Eq. (10). The current coming from the right superconductor has an analogous expression.

174524-12



ATOMISTIC MODELING OF A … PHYSICAL REVIEW B 107, 174524 (2023)

FIG. 9. Description of the recursion method. (a) First, a two-slab decoupled Green’s function is created from the one-slab Green’s function,
then Dyson’s equation is applied to obtain the coupled two-slab Green’s function. The resulting two-slab Green’s functions are used to create
the decoupled four-slab Green’s function. Dyson’s equation is used to get the initial four-slab Green’s function. (b) In the insertion process, the
two middle slabs are removed to form new two-slab Green’s functions, which are combined to a new decoupled four-slab Green’s function.
After that, Dyson’s equation is applied to get the next four-slab Green’s function. In calculating Andreev bound states and supercurrents, only
the matrix elements of the slab closest to the normal region are necessary.

APPENDIX C: MODELING OF THE
SEMI-INFINITE LEADS

The Green’s function of the semi-infinite leads is modeled
by applying Dyson’s equation recursively. The method is il-
lustrated in Fig. 9. We start with a noninteracting slab with
a minimal set of layers in the z direction with ns orbitals. A
Green’s function ns × ns matrix G(1) of an isolated slab is
calculated and a coupling matrix t between the two consec-
utive slabs is formed. From these two, a two-slice decoupled
Green’s function

g(2) = G(1) ⊕ G(1) =
(

G(1) 0
0 G(1)

)
(C1)

and the corresponding interaction matrix

v(2) =
(

0 t
t 0

)
(C2)

are formed. After that, Dyson’s equation

G(2) = g(2) + g(2)v(2)G(2) (C3)

is applied to form the coupled two-slab Green’s function.
This stage gives us a starting point for a quickly converging
iteration, where we construct four-slab Green’s functions from
the two-slab Green’s functions.

In the first step of iteration, we create an initial four-slab
Green’s function

G(4)
0 = G(2) ⊕ G(2) =

(
G(2) 02×2

02×2 G(2)

)
(C4)

and the coupling matrix

v(4) =

⎛
⎜⎜⎝

0 0 0 0
0 0 t 0
0 t 0 0
0 0 0 0

⎞
⎟⎟⎠. (C5)

In the iteration steps we need only four blocks of the previous
four-slab Green’s functions, as follows:

g(4)
n =

⎛
⎜⎜⎜⎜⎜⎜⎝

G(1)
n−1(1, 1) G(1)

n−1(1, 4) 0 0

G(1)
n−1(4, 1) G(1)

n−1(1, 1) 0 0

0 0 G(1)
n−1(1, 1) G(1)

n−1(1, 4)

0 0 G(1)
n−1(4, 1) G(1)

n−1(1, 1)

⎞
⎟⎟⎟⎟⎟⎟⎠

, (C6)

where G(1)
n−1(i, j) is a block consisting of Green’s function

matrix elements of the (n − 1)th iteration between slabs i
and j. The next iterated Green’s function is obtained using
Dyson’s equation

G(4)
n = g(4)

n + g(4)
n v(4)G(4)

n . (C7)

Finally, we use the block G(4)
n (1, 1) as the surface Green’s

function.

The method converges very fast. If there are ns orbitals in
a slab, the size of the lead after n iterations is 2 × 2n = 2n+1.

APPENDIX D: TIGHT-BINDING MODEL PARAMETERS

The overlap integrals between the atomic orbitals of two
atoms can be split into two parts: an angular part that
depends on the orientation of the two orbitals, and an ampli-
tude part that depends on the type of bonding between the
orbitals (σ , π , or δ). We use the same parametrization as in
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TABLE II. On-site energies and the cutoff ranges for the tight-
binding Hamiltonian.

Amplitudes εs (Pb) εp (Pb) εs (S) εp (S) εs (Mo) εd (Mo)

ssσ −6.150 0.800 −10.472 −3.172 −21.472 −1.272
spσ 3.6878 3.6878 3.2481 3.2481 3.2481 3.2481

Refs. [15,38,39] (see Tables II and III). In Ref. [39], the pa-
rameter fitting for MoS2 was done to follow the ab initio band
structure with special emphasis on the top of the valence bands
(TVB) and on the bottom of the conduction bands. In addition,
the evolution of the TVB at the K point for film thicknesses
one ML to three ML is captured correctly. In Ref. [15], the
connection to a Pb substrate was constructed based on the ab
initio band structure of Pb and the band structure of one-ML
MoS2 on a Pb(111) slab. The ab initio band structure of Pb
near the Fermi energy is rather complicated, and the small
orbital basis used can only follow some of the most salient
band features. The interaction between the s and p orbitals of

TABLE III. Amplitudes of the Slater-Koster hopping parameters
used in the tight-binding Hamiltonian.

Amplitudes Pb-Pb Pb-S S-S S-Mo Mo-Mo

ssσ −0.90 −1.20 −1.60 −1.82 −2.08
spσ 0.94 0.71 0.53 1.10
ppσ 2.19 1.43 0.53
ppπ −0.81 −0.10 −0.01
sdσ −3.94 −3.01
pdσ −4.30
pdπ −2.40
ddσ −20.8
ddπ 12.0
ddδ −1.77

Pb and the adjacent S layer is based on Slater-Koster hopping
integrals. The amplitudes are fitted so that the metallicity-
inducing in-gap states are reproduced in reasonable agreement
with the corresponding ab initio calculations.
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