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Superconducting ground state study of the valence-skipped compound AgSnSe2
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Valence-skipped superconductors are natural candidates for unconventional superconductivity because they
can exhibit a negative effective, attractive interaction for electron pairing. This work reports comprehensive
x-ray diffraction, magnetization, specific heat, and muon spin rotation and relaxation measurements (μSR)
on the valence-skipped compound AgSnSe2. The temperature dependences of the electronic specific heat
[Cel(T )] and the upper critical field [Hc2(T )] provide evidence of two-gap superconductivity, which is also
confirmed by our transverse-field μSR measurements. Zero-field μSR measurements reveal at most a slight
increase [∼0.002(1) μs−1] in relaxation in the superconducting state, much less than reported in a range of
superconductors with broken time-reversal symmetry. Further measurements with greatly improved statistics
will be required to make a definitive determination of the possible presence of broken time-reversal symmetry.

DOI: 10.1103/PhysRevB.107.174517

I. INTRODUCTION

Understanding the microscopic pairing mechanism of un-
conventional superconductors is one of the most challenging
problems in condensed matter physics. It has recently at-
tracted much interest due to its possible applications in
quantum technologies. In unconventional superconductors,
the electron-pair formation is not mediated by phonons but by
different mechanisms, including charge, spin, and magnetic
fluctuations [1–3].

Valence-skipped materials are an exciting class of mate-
rials which may become unconventional superconductors. In
these materials, due to valence skipping/valence fluctuations,
negative-U centers are formed, which causes an attractive
on-site interaction between the electrons [4–8] and promotes
superconductivity with a relatively high Tc compared to con-
ventional superconductors [9–14]. This valence-skipped in-
duced negative-U superconductivity was previously proposed
in Tl-doped PbTe and K- and Na-doped BaBiO3 [15–17], with
a high Tc value. Valence-skipped materials exhibit intrigu-
ing unconventional properties and other quantum phenomena,
including charge density waves, pseudogaps, and the charge
Kondo effect [3,4,18]. However, these valence-skipped com-
pounds’ exact superconducting pairing mechanism is still
elusive. With the possibility of achieving a high value of Tc

in relatively low carrier density materials, a valance-skipped
superconducting pairing mechanism could be a novel route
to realize high-Tc materials, motivating detailed microscopic
studies which are not currently available for these materials.

The metal chalcogenide superconductor AgSnSe2, where
Ag partially substitutes Sn in SnSe, is a novel valence-skipped
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system [19,20]. The ab initio band structure calculations
indicate SnSe is a nontrivial crystalline topological insu-
lator [21,22]. X-ray absorption and x-ray photoemission
spectroscopy studies of AgSnSe2 suggested the presence of
valency states Sn2+ and Sn4+, which might create dynamic
negative-U centers and contribute to superconductivity [23].
Further, 119Sn Mössbauer spectroscopy suggests valence skip
behavior with excess Sn [24]. The coexisting superconduc-
tivity and nontrivial band topology in AgSnSe2 make it a
unique valence-skipped system and motivate further studies
of this compound. A thorough microscopic investigation re-
quires understanding the correlation between unconventional
superconductivity, valence fluctuations, and the effect of non-
trivial band topology on the superconducting ground state of
AgSnSe2 and valence-skipped compounds in general.

In this paper, we report the bulk and microscopic super-
conducting properties of AgSnSe2 via magnetization, specific
heat, and muon spin rotation and relaxation (μSR) mea-
surements. Our measurements confirm the superconducting
transition temperature Tc = 4.91(2) K. Transverse-field (TF)
μSR measurements, along with the temperature dependence
of the specific heat and the upper critical field, suggest a two
isotropic (s + s) superconducting gap structure. Furthermore,
zero-field (ZF) μSR measurements indicate that within our
resolution, a small increase in � is observed in the supercon-
ducting state of AgSnSe2.

II. EXPERIMENTAL DETAILS

The polycrystalline sample was synthesized using the
solid-state reaction method. The required elemental powders
of Ag (99.999%), Sn (99.99%), and Se (99.999%) were mixed
in a stoichiometric ratio. The mixture was then palletized and
heated at 800 ◦C for 48 h in a vacuum-sealed tube, followed
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FIG. 1. Refined room temperature powder XRD pattern of
AgSnSe2; the inset shows the NaCl crystal structure with equal
probability of occupying an edge state by Ag and Sn atoms.

by water quenching. At room temperature, the powder x-ray
diffraction (XRD) pattern was collected using a PANalytical
diffractometer equipped with Cu Kα radiation (λ = 1.5406 Å).
Magnetic measurements were performed using a Quantum
Design MPMS XL superconducting quantum interference de-
vice magnetometer with a reciprocating sample option (RSO)
insert, and for measurements down to 0.5 K, an IQuantum
He3 insert was used. A physical property measurement sys-
tem (Quantum Design) was used to measure the specific heat
of the sample. Zero-field and transverse-field μSR measure-
ments were performed at TRIUMF, Center for Molecular and
Materials Science, Vancouver, Canada [25]. The applied mag-
netic field was perpendicular to the initial muon spin direction
in the TF geometry. The μSR data were analyzed using the
MUSRFIT software [26].

III. RESULTS AND DISCUSSION

The crystal structure of AgSnSe2 is shown in the inset of
Fig. 1, which depicts the partial substitution of Ag at the Sn

site in SnSe. The Rietveld refined powder XRD pattern of
AgSnSe2 is shown in Fig. 1, confirming the crystallization
in a cubic NaCl structure with the Fm-3m space group. The
obtained lattice parameters from the refinement, a = b = c =
5.6865(2) Å, are in good agreement with previously reported
values [27].

A. Magnetization

The temperature-dependent magnetic measurements are
performed in zero-field-cooled warming (ZFCW) and field-
cooled cooling (FCC) modes under 1 mT magnetic field, as
shown in Fig. 2(a). The observed superconducting transition
temperature of AgSnSe2, Tc = 4.91(2) K, is close to previ-
ously reported values [19,20]. The separation between ZFCW
and FCC curves indicates the presence of strong flux pinning.
The magnetization variation under a high magnetic field at a
temperature of 1.8 K [inset of Fig. 2(a)] also suggests strong
pinning with a complex vortex nature as a small area under the
magnetization loop with the fishtail effect is observed [28].
An irreversible magnetic field is observed at Hirr = 0.41(1) T,
above which vortices start to unpin.

The field-dependent magnetization measurements at dif-
ferent temperatures below Tc estimate the lower critical field
value. We performed the magnetization measurements on a
spherical sample piece, allowing accurate demagnetizing field
determination. We calculate the internal field of the sample by
using Hinternal = Happlied − NM, where N = 1/3 is the demag-
netizing factor of a sphere and M is the magnetization [29].
The inset in Fig. 2(b) shows the variation of M versus Hinternal,
and the point of linear deviation in the low-field region is con-
sidered to be Hc1 for the respective isotherm. The temperature
dependence of the lower critical field Hc1 is well described
using the Ginzburg-Landau (GL) equation,

Hc1(T ) = Hc1(0)

[
1 −

(
T

Tc

)2
]
, (1)

where the lower critical field is estimated to be Hc1(0) =
5.76(6) mT [Fig. 2(b)].

From the magnetization measurement, the shift in Tc to a
lower value with an increasing magnetic field is noted to ex-

FIG. 2. (a) The magnetic measurements under ZFCW and FCC modes, with the magnetic hysteresis loop at 1.8 K in the inset. (b) The
temperature variation of the lower critical field; the inset shows the M dependence on the internal magnetic field. (c) The upper critical field
temperature variation fitted by the GL equation and the two-gap model are represented by dashed and solid lines, respectively. The inset shows
the temperature-dependent magnetization at the different applied fields.
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tract the upper critical field [inset in Fig. 2(c)]. We attempted
to fit the Hc2 versus T curve using the GL equation,

Hc2(T ) = Hc2(0)

[
(1 − t2)

(1 + t2)

]
, (2)

where t = T/Tc is the reduced temperature. Figure 2(c) shows
the relatively poor fitting of the Hc2 curve from the single-
band GL model providing HGL

c2 (0) = 2.13(3) T. Therefore, a
two-band model was used to analyze the Hc2 variation. The
two-band equation for the upper critical field is written in the
parametric form as [30–34]

ln t = − 1

2

[
U (s) + U (ηs) + λ0

w

]

+
(

1

4

[
U (s) − U (ηs) − λ−

w

]2

+ λ12λ21

w2

)1/2

, (3)

where

U (s) = ψ

(
s + 1

2

)
− ψ

(
1

2

)
, (4)

Hc2 = 2�0T s
D1

, η = D2
D1

, and the parameter s changes from 0 to
1 as T varies from Tc to 0. The variables λ11, λ22, λ12, and
λ21 are the matrix elements of the BCS coupling constants;
λ− = λ11 − λ12, λ0 = (λ2

− + 4λ12λ21)1/2, and w = λ11λ22 −
λ21λ12. D1 and D2 are the diffusivities of the two bands,
while �0 is the magnetic flux quantum and ψ is the digamma
function. The fit of the Hc2 curve using the two-band theory
yields H2G

c2 (0) = 2.18(7) T. The values of the upper criti-
cal field obtained from the two theories are much smaller
than the Pauli paramagnetic limit, expressed as HP

c2(0) =
1.86Tc = 9.13(3) T [35,36]. Further, Ren et al. [20] reported
the anomalous broadening of the magnetic-field-induced re-
sistive transition and an increase in the upper critical field
value in the low-temperature region in AgSnSe2 which might
be associated with the presence of multiple superconducting
gaps, as suggested by our upper critical field results and also
observed in MgB2 [37].

We can evaluate various superconducting parameters us-
ing our Hc2 and Hc1 values. The superconducting coherence
length ξGL(0) is calculated using GL theory as [29] Hc2(0) =
( �0

2πξGL (0)2 ), providing ξGL(0) = 12.2(4) nm. The London pen-
etration depth λGL is obtained from the lower critical field
Hc1(0) using the expression [38]

Hc1(0) = �0

4πλ2
GL(0)

(
ln

λGL(0)

ξGL(0)
+ 0.12

)
, (5)

which gives λGL(0) = 309(13) nm for Hc1(0) = 2.07(1) mT
and ξGL(0) = 12.2(4) nm. The GL parameter, κGL =
λGL(0)/ξGL(0) = 25(2), indicates the strong type-II supercon-
ducting nature of AgSnSe2. Using these parameters and the
relation Hc1Hc2 = H2

c lnκGL [38], the thermodynamic critical
field value Hc(0) = 62(7) mT is also estimated.

B. Specific heat

The temperature-dependent specific heat of AgSnSe2 un-
der zero magnetic field is shown in Fig. 3(a). The significant
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FIG. 3. (a) Specific heat fitting in the normal region. (b) Fit-
ted data for normalized electronic specific heat Cel/γnT using the
isotropic and anisotropic s-wave models, indicated by the dotted yel-
low and solid blue lines, respectively, and the two-gap (s + s)-wave
model, indicated by the solid green line.

jump in the specific heat around temperature Tc,mid =
4.74(8) K further confirms the bulk nature of superconduc-
tivity in the sample. The normal-state specific heat above Tc

was fit by the Debye relation,

C = γnT + β3T 3 + β5T 5, (6)

where γnT is the electronic contribution, β3T 3 is the phononic
contribution, and β5T 5 is the anharmonic contribution in
the specific heat. The best fit to the data yields Sommer-
feld coefficient γn = 4.6(1) mJ mol−1 K−2, Debye constant
β3 = 0.68(1) mJ mol−1 K−4, and β5 = 7.5(1) μJ mol−1 K−5.

Further, γn is used to evaluate the density of states at the

Fermi level DC (EF) via the relation γn = ( π2k2
B

3 )DC (EF), where
kB = 1.38 × 10−23 J K−1. DC (EF) is calculated to be 1.97(6)
states eV−1 f.u.−1. The Debye temperature is obtained from
β3 using the expression θD = ( 12π4RN

5β3
)

1
3 = 255(3) K, where

R = 8.314 J mol−1 K−1 is the gas constant. The electron-
phonon coupling constant λe-ph can be calculated from the
inverted McMillan’s equation [39],

λe-ph = 1.04 + μ∗ln(θD/1.45Tc )

(1 − 0.62μ∗)ln(θD/1.45Tc ) − 1.04
, (7)

where μ∗ is the screened Coulomb repulsion and is taken to be
0.13. For θD = 255 K and Tc,mid = 4.74 K, λe-ph = 0.69(1). The
obtained value of λe-ph is in the range of moderately coupled
superconductors.

To evaluate the superconducting gap parameter, we ana-
lyzed the electronic specific heat below Tc. The electronic
contribution is extracted by subtracting the lattice contribution
from the total specific heat. The normalized superconducting
gap �(0)/kBTc is estimated by fitting the data to the BCS
expectation of electronic specific heat, which is expressed
as [40]

Cel

γnTc
= t

d

dt

[−6�(0)

π2kBTc

∫ ∞

0
[ f ln( f ) + (1 − f ) ln(1 − f )]dy

]
,

(8)

where t = T/Tc, f (ξ ) = {exp[E (ξ )/kBT ] + 1}−1 is the Fermi
function, and E (ξ ) =

√
ξ 2 + �2(t ), with E (ξ ) being the en-

ergy of the normal electrons measured relative to the Fermi
energy. y = ξ/�(0) and �(t ) = tanh(1.82{1.018[(1/t ) −
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1]})0.51 is the BCS approximation for the temperature de-
pendence of the energy gap. The normalized Cel(T ) fitting
deviates from a single s-wave model, as shown in the Fig. 3(b),
whereas an anisotropic s-wave model and a two-gap isotropic
s + s model fit the data better. The anisotropic s-wave model
described in Ref. [41] is used along with the two-gap model
used in other multigap superconductors such as MgB2 [42],
Lu2Fe3Si5 [43], and La7Ni3 [44]. In the two-gap model, the
two parameters �1(0)/kBTc and �2(0)/kBTc correspond to
the two different superconducting gaps, and the weighted
contribution x of the partial Sommerfeld coefficient is the
third fitting parameter involved. The best fit of the data from
the two-gap s + s model yields x = 0.17(6), �1(0)/kBTc =
0.80(8), and �2(0)/kBTc = 2.16(3), whereas the anisotropic
s-wave model gives �(0)/kBTc = 2.70(5) and a = 0.37(4)
[Fig. 3(b)]. In the two-gap model, a significant difference
in the two gap values and the gap ratio �2(0)

�1(0) � 2.7(3) is
observed with the smaller gap, with �1 making a relatively
weak contribution (0.17) to the superconducting state. The
larger gap value, �2(0)/kBTc = 2.16, is higher than the
BCS value in the weak coupling limit, suggesting strong
electron-phonon coupling in AgSnSe2. A previous report on
polycrystalline AgSnSe2 reported a single isotropic gap (also
somewhat larger than that expected in the weak coupling
limit of BCS theory); it is possible that the apparent absence
of a two-gap nature in that study might be due to sample
differences or could indicate that a multigap analysis was not
performed [20]. Furthermore, the two-gap s + s model and the
anisotropic s model both fit the data well [Fig. 3(b)]. They are
indistinguishable, as there is only a slight difference in the
estimated gap values. However, low-temperature specific heat
data are required to distinguish between the two models.

C. Muon spin rotation and relaxation

To further understand the superconducting gap struc-
ture of the valence-skipped superconductor AgSnSe2 at the
microscopic level, we carried out transverse-field μSR mea-
surements. The measurements were performed using the
field-cooled protocol in a field of 0.1 T. Representative TF
asymmetry spectra above and below Tc are plotted in a rotating
reference frame of 0.095 T for clarity, as shown in Fig. 4(a),
where a clear difference between the two is observable. Be-
low Tc, the precession signal shows significant damping with
time due to the inhomogeneous field distribution from the
flux-line lattice in the mixed state. The time domain spectra
were fit to analyze the temperature dependence of supercon-
ducting parameters. The TF asymmetry spectra are described
by two sinusoidally oscillating functions, with the Gaussian
decaying component characterizing the sample signal and a
temperature-independent weakly decaying exponential com-
ponent characterizing the background signal,

ATF(T ) = A

[
Fexp

(−σ 2t2

2

)
cos(wt + φ)

+ (1 − F )exp(−σbg)cos(wbgt + φ)

]
, (9)

where φ is the initial phase of the muons entering the sample
and A is the total TF asymmetry. F is the fraction of the signal
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FIG. 4. (a) Transverse-field spectra recorded in an applied mag-
netic field of 0.1 T at temperatures 5.37 K (>Tc) and 0.02 K (<Tc)
plotted in a rotating reference frame of 0.095 T, where solid lines
are the fits using Eq. (9). (b) Temperature dependence of the total
relaxation rate σ . The dashed line represents the s-wave fitting;
the solid blue and brown lines represent the anisotropic s and two
isotropic (s + s)-wave models, respectively, and σn is the nuclear
relaxation rate in the normal state (above Tc).

coming from the sample, and w and wbg are the frequencies
of the oscillatory muon signal in the sample and background,
respectively. σ is the total Gaussian muon relaxation rate.
Above the transition temperature Tc, σ becomes temperature
independent, reflecting the nuclear contribution in the normal
state called σn [represented by a horizontal dot-dashed line in
Fig. 4(b)]. The total relaxation rate σ consists of contributions
from both the superconducting and nuclear parts and can be
written as

σ 2 = σ 2
sc + σ 2

n , (10)

where σsc is the relaxation in the vortex state.
The temperature dependence of the superconducting muon

depolarization rate σsc can be expressed in the semiclassical
approximation as

σsc(T,�0,i )

σsc(0,�0,i )
= λ−2

sc (T,�0,i )

λ−2
sc (0,�0,i )

= 1+ 1

π

∫ 2π

0

∫ ∞

�(T,φ)

(
δ f

δE

)
EdEdφ√

E2 − �i(T, φ)2
,

(11)

where f (E ) = [1 + exp(E/kBT )]−1 is the Fermi function
and �i(T, φ) = �0,iδ(T/Tc)g(φ). The temperature variation
δ(T/Tc) = tanh{1.82[1.018(Tc/T − 1)]0.51}, and g(φ) refers
to the angular dependence of the superconducting gap func-
tion with azimuthal angle φ. For an isotropic s-wave gap, g(φ)
becomes equal to 1, whereas for an anisotropic s-wave gap,
g(φ) = [1 + a cos(4φ)]/(1 + a), where a is the anisotropic
parameter [41]. Combining Eqs. (10) and (11), the σ variation
with temperature can be fitted with σn as a fitting parameter.
The σ versus T curve fitted with various models is shown in
Fig. 4(b). Both isotropic and anisotropic s-wave models with
gap values �0 = 0.68(5) and 1.12(4) meV [and a = 0.66(6)]
and χ2 = 1.43 and 1.37, respectively, do not properly fit the
temperature variation of σ . Hence, a function consisting of a
weighted linear combination of two distinct superconducting
gaps is considered and corresponds to the model used to fit the
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specific heat data [43,44],

σsc(T )

σsc(0)
= x

σsc(T,�0,1)

σsc(0,�0,1)
+ (1 − x)

σsc(T,�0,2)

σsc(0,�0,2)
, (12)

where �0,1 and �0,2 are the two gap values, respectively,
and x is the weighting factor, measuring the relative con-
tributions to superconducting parameters. The two-gap (s +
s)-wave model fits better than the single gap s-wave model for
x = 0.20(4), with respective gap values of �0,1(0) = 0.29(6)
meV [�0,1(0)/kBTc = 0.77(9)] and �0,2(0) = 0.80(5) meV
[�0,2(0)/kBTc = 2.12(5)] and χ2 = 1.25 [Fig. 4(b)]. The ratio
of superconducting gaps �0,2(0)

�0,1(0) � 2.7(5) is consistent with the
value estimated from the specific heat measurement. Further-
more, in the low-temperature region, a noticeable difference
is observed between the anisotropic s and two-gap s + s fits,
which is not apparent in the specific heat data. This confirms
the two-gap nature of our sample.

For an ideal vortex lattice, the relation between the
magnetic penetration depth λ and the superconducting de-
polarization rate σsc for the GL parameter κ � 5 is given
by [45,46]

σ 2
sc(T )

γ 2
μ

= 0.00371�2
0

λ4(T )
, (13)

where γμ/2π = 135.5 MHz/T is the muon gyromagnetic
ratio and �0 = 2.068 × 10−15 Wb is the magnetic flux
quantum. The estimated magnetic penetration depth at T =
0 K is λ(0) = 901(35) nm. The obtained value is significantly
different from the value estimated from magnetization; such
a large difference in λ has also been observed in some other
compounds [47,48] and is not well understood. It is possible
that the disagreement could represent a true difference in
determining the penetration depth from the lower critical field
(in the Meissner state) and from the superfluid density (in the
vortex state).

To further investigate the superconducting ground state
of AgSnSe2, ZF-μSR measurements were performed. The
ZF-μSR time domain spectra were measured at various tem-
peratures on either side of the superconducting transition
temperature. Figure 5 shows representative asymmetry spectra
above and below Tc. The ZF-μSR spectra were analyzed by
fitting the time-domain asymmetry variation using the damped
Gaussian Kubo-Toyabe function GKT [49],

A(t ) = A0[ f GKT(t ) + (1 − f )]exp(−�t ) + ABG, (14)

where

GKT(t ) = 1

3
+ 2

3
(1 − �2t2)exp

(−�2t2

2

)
(15)

and A0 and ABG are the initial asymmetries corresponding
to the sample and the background, respectively. The above
expression takes into account the relaxation effect on muons
due to two distinct environments: (1) muons located at sites
near atoms with nuclear moments, which follow a Gaussian
Kubo-Toyabe function with a fraction of f , and (2) muons
near atoms without nuclear moments, which exhibit a nonre-
laxing term (second term in parentheses). This fit is mandated
since most atoms have zero or very small nuclear magnetic
moments (7.6% of Se atoms have a nonzero nuclear magnetic
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FIG. 5. Zero-field asymmetry spectra collected below (T =
0.02 K) and above (T = 5.37 K) the transition temperature Tc, where
the solid lines represent the fit to the data using Eqs. (14) and (15).
The inset shows the temperature variation of the electronic relaxation
rate �.

moment 0.53μN , 16.3% of Sn atoms have a nonzero moment
of approximately 1.0μN , and Ag has an almost zero nuclear
moment of 0.1μN ). These terms are then multiplied by a
temperature-dependent exponential decay (exp −�t ), which
characterizes any relaxation due to potential time-reversal
symmetry-breaking magnetic fields. The Kubo-Toyabe �

characterizes the temperature-independent muon spin relax-
ation due to the randomly oriented, static nuclear moments.
The inset in Fig. 5 shows the temperature dependence of �.
A slight increase below Tc would indicate the presence of
time-reversal symmetry breaking. We can estimate the largest
such time-reversal-symmetry field that could be present by
fitting �(T ) to the order-parameter form �(T ) = �(T =
0) ∗ [1 − (T/Tc)2]. Such a fit gives a maximum time-reversal-
symmetry field relaxation rate �(0) = 0.002(1)μs−1, where
the 50% uncertainty in the relaxation rate represents the
statistic uncertainty. This relaxation rate is significantly lower
than those reported for any time-reversal symmetry-breaking
superconductors reported to date [50–52] and is statistically
almost consistent with zero; unknown systematic errors could
further increase this uncertainty, giving a possible relaxation
rate consistent with zero. Further investigations with much
higher statistics at additional temperatures will be necessary
to definitively clarify the presence of broken time-reversal
symmetry in the superconducting ground state.

We can use Uemura’s classification scheme [53] to place
AgSnSe2 in the context of other superconductors based on
the ratio of Tc/TF. For unconventional superconductors, the
ratio generally falls to 0.01 � Tc/TF � 0.1; however, for
conventional superconductors, Tc/TF � 0.0003. The effective
Fermi temperature TF of AgSnSe2 is extracted by considering
the 3D Fermi surface expression [54]

kBTF = h̄2

2
(3π2)2/3 n2/3

m∗ , (16)
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FIG. 6. A plot between the superconducting transition tempera-
ture Tc and the effective Fermi temperature TF for AgSnSe2. The data
points in the shaded region represent the band of unconventional-
ity [60,61].

where n is the carrier density and m∗ is the effective mass. m∗
is calculated from the Sommerfeld coefficient via the relation
m∗ = (h̄kF)2γn/π

2nk2
B, where γn = 84.51 J m−3 K−2, kF is the

Fermi vector, and n is taken from Ref. [20]. The estimated
value TF = 16200(610) K places AgSnSe2 well outside the
unconventional superconductor band, close to conventional
superconductors, as shown in Fig. 6.

Doping with valency-skipped elements can enhance or in-
duce superconductivity in low carrier density systems such as
topological semimetals and semiconductors. This could be a
prototype for realizing a new quantum phase called topolog-
ical superconductivity (TSC), in which the topological phase
and superconductivity coexist [55]. An example is In-doped
SnTe, a possible topological superconductor, in which the
valence-skipped state of In induces superconductivity in the
topological crystalline insulator SnTe [56,57]. Moreover, Ag-
doped SnSe and other systems, including In-doped GeTe and
K-doped BaBiO3, exhibit nontrivial topological band struc-
tures [58,59]. Thus, the aforementioned material corresponds
to the category of possible topological superconductors and
presents AgSnSe2 as a candidate for TSC. However, detailed
studies and band structure calculations are required to inves-
tigate the origin of multigap superconductivity and to address
the effect of the nontrivial band topology with the possible
negative-U induced superconductivity in AgSnSe2.

IV. CONCLUSION

In conclusion, our study has confirmed the bulk super-
conductivity of AgSnSe2 with a transition temperature of
4.91(2) K through detailed magnetization and specific heat

TABLE I. Parameters in the superconducting and normal states
of AgSnSe2.

Parameter Units AgSnSe2

TC K 4.91(2)

Hc1(0) mT 5.76(6)

HGL
c2 (0) T 2.13(3)

H 2G
c2 (0) T 2.18(7)

HP
c2(0) T 9.13(3)

ξGL(0) nm 12.2(4)

λGL(0) (Magnetization) nm 309(13)

λ(0) (μSR) nm 907(35)

κGL(0) 25(2)

γn mJ mol−1 K−2 4.6(1)

θD K 255(3)

λe-ph 0.69(1)

�2/�
SH
1 2.7(3)

�2/�
μSR
1 2.7(5)

TF K 16200(610)

Tc/TF 0.0003(1)

m∗/me 1.88(2)

measurements (Table I). Our microscopic investigations us-
ing muon spin rotation and relaxation measurements have
revealed the presence of two isotropic s + s superconduct-
ing gaps, a finding supported by the temperature variation
of specific heat and upper critical field measurements. Zero-
field μSR measurements revealed at most a slight increase
[∼0.002(1) μs−1] in relaxation in the superconducting state,
much less than reported in a range of superconductors
with broken time-reversal symmetry. Further measurements
with greatly improved statistics will be required to make a
definitive determination of the possible presence of broken
time-reversal symmetry. In addition, more investigation is
necessary to determine whether the attractive interaction be-
tween electrons is mediated via negative U due to valence
skipping/valence fluctuations or some other non-BCS pairing
mechanism. Furthermore, the role of nontrivial topological
states in the superconducting ground state of the valence-
skipped compound requires further exploration.
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