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Transformer spin-triplet superconductivity at the onset of isospin order in bilayer graphene
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We consider the origin of superconductivity found recently in Bernal bilayer graphene at the onset of
isospin-polarized order, trying to infer the pairing mechanism and superconducting order from the measurements
available to date. The superconductivity is induced by a parallel magnetic field and persists well above the
Pauli limit, indicating an unconventional scenario of quantum-critical pairing, where soft fluctuations of isospin
give rise to spin-triplet superconductivity. We consider the scenario in which the pairing interaction is entirely
repulsive, which stands in contrast to the typical quantum-critical pairing mechanisms. Superconductivity
emerges through a “transformer” mechanism where, in the presence of an in-plane magnetic field, the incipient
valley polarization converts a frequency-independent repulsion into one with a strong nonmonotonic frequency
dependence. Such an interaction enables a nonzero solution for the pairing gap function that changes sign as a
function of frequency. The same mechanism holds at zero field in the presence of spin-orbit coupling, providing
a likely explanation for the recently observed superconductivity in bilayer graphene on the WSe2 monolayer.
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I. INTRODUCTION

The quest for unconventional superconductivity (SC) gov-
erned by Coulomb repulsion rather than phonon attraction
gained new momentum with the advent of graphene-based
SC. In the SC phases found initially in moiré graphene [1–7],
a flat-band system hosting strongly interacting electrons [8],
delineating these mechanisms has proven to be a challeng-
ing task [9]. In some experiments, the SC appears to be
clearly associated with correlated orders [6,7,10], suggesting
nonphononic pairing scenarios [11–14]. Yet, other experi-
ments report on SC that can be isolated (and thus decoupled)
from other ordered phases [4,15], supporting phonon mech-
anism [16–18]. So far, no consistent picture has emerged,
and presently, there is no clear verdict on the pairing mech-
anism. System complexity, such as the peculiar form of moiré
flatband electron wave function [8,19] and multiple kinds of
moiré-related disorder, in particular the twist-angle disorder,
strain, and buckling, make this debate difficult to settle.

Fortunately, recent research has uncovered two non-
moiré systems that exhibit intertwined superconducting orders
and correlated electronic orders—the field-biased Bernal bi-
layer graphene [20,21] (BBG) and rhombohedral trilayer
graphene [22,23] (RTG). These systems present distinct ben-
efits for studying strongly-correlated physics owing to the
simplicity of their band structure and exceptional cleanness
due to the absence of strain. It is noteworthy that supercon-
ducting phases are observed in both BBG and RTG systems
in close proximity to interfaces between phases with different
isospin polarization. The superconducting phases track these
interfaces when the system parameters are being varied, see
Fig. 1.

Given these findings, it is almost inevitable to conclude
that this behavior indicates presence of a pairing glue that
is being mediated by a soft mode directly associated with
isospin ordering. Interestingly, as discussed below, this pairing

mechanism yields a superconducting phase near the onset of
isospin polarization and general properties that closely match
the observations. In particular, superconductivity appears at
a finite in-plane magnetic field B‖ and survives well beyond
the Pauli limit, in agreement with the experiment. The super-
conductivity is spin-triplet, induced by a B‖ that creates spin
imbalance as shown in Fig. 1(b) insets. Another interesting
property that follows from this analysis is that, perhaps some-
what unexpectedly, the minority-spin carriers (spin-down in
Fig. 1) dominate pairing, whereas the contribution of the
majority-spin carriers, despite a higher density, is negligible.

We stress that this pairing scenario is distinct from
the existing mechanisms of pairing mediated by critical
modes [24–31]. In previously studied instances of pairing near
a quantum-critical point, soft quantum-critical modes associ-
ated primarily with spin fluctuations [32] generated an effec-
tive e-e attraction by exchange-type scattering of Cooper pairs
either between different Fermi surfaces [33,34] or between
different hotspots on a single Fermi surface [35]. In graphene,
to the contrary, the exchange component of (antisymmetrized)
Coulomb interaction arising due to intervalley e-e scattering
is weakened because the Fermi surface size in each valley is
much smaller than the momentum transfer K − K ′ for such
e-e scattering processes. This renders pair scattering approxi-
mately valley-conserving, weakening the attractive exchange-
type pairing interaction [36]. Likewise, the pair hopping
interaction, known to be relevant for pairing in Fe-based ma-
terials, is absent in our case because in BBG the low-energy
fermions are located near Dirac points K and K ′, but 2(K −
K ′) is not a reciprocal lattice vector. As a result, the soft-mode-
mediated pairing interaction, while being strong, is repulsive
rather than attractive. Therefore understanding this unusual
superconductivity requires a mechanism that converts a strong
repulsion mediated by the soft modes into an attraction.

Another clue comes from the observed unique dependence
of Tc on a magnetic field B‖: unlike textbook SC which is
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FIG. 1. (a) Phase diagram schematic for isospin orders in BBG
following Ref. [20]. In phases PIP1 and PIP2 only one and two
isospin-polarized subbands are populated, respectively. Labels indi-
cate isospin polarization in each phase at B‖ = 0. (b) Predicted phase
diagram for superconductivity governed by critical mode at the phase
boundary between isospin-valley-polarized and unpolarized phases.
Here ↑ and ↓ label spin-up (majority) and spin-down (minority) sub-
bands, respectively. (c) The measured phase diagram [20] strongly
resembles the phase diagram predicted in (b) [see text].

suppressed by a magnetic field, here SC is induced by B‖
field. A finite threshold in B‖ above which SC is observed
[see Fig. 1(c)] suggests a pairing mechanism different from
those studied in moiré [11–14] and RTG systems [22,37,38].
Since B‖ only couples to spin when applied in-plane, the
B‖-induced SC indicates that spin imbalance is essential for
pairing. Moreover, SC is found to persist in a high field,
surviving well above the Pauli limit. The resilience of SC in
a B‖ field unambiguously points to a spin-triplet pairing and
thus an unconventional pairing mechanism.

Here we demonstrate that superconducting pairing can
be achieved through an attraction-from-repulsion scenario
that ties together these key factors: a soft mode, repulsive
Coulomb coupling, broken spin degeneracy, and pairing in
the spin-triplet channel. The predictions of this scenario are
in agreement with the observations [20]. In essence, at a finite
B‖, the pairing interaction, while remaining repulsive at all
bosonic frequencies ν, becomes strongly retarded, thereby
helping an effective attraction to emerge from bare repul-
sion. Namely, the pairing interaction acquires a nonmonotonic
frequency dependence for minority-spin carriers due to field-
induced suppression of the pairing interaction at small ν.
We show that this suppression is “universal,” meaning it is
not affected by the band structure, and enables the emer-
gence of a superconducting state with a dispersive gap that
changes sign as a function of frequency. The superconduct-
ing order parameter is of a spin-triplet and valley-singlet
character, featuring an s-wave momentum dependence. The

predicted critical temperature sharply peaks near the isospin
polarization threshold. Similar scenarios for conventional
s-wave pairing in the presence of strong repulsive Coulomb
repulsion have been discussed repeatedly in the literature both
early on [39–42] and recently [43–45].

We also investigate an alternative, yet closely associated,
pairing mechanism, which involves majority-spin electrons
subject to a finite B‖. In this scenario, the pairing interaction
between majority-spin electrons, governed by the soft mode,
acquires a dependence on the soft-mode momentum arising
due to the 2kF singularity in polarization function. Under a
parallel magnetic field the 2kF values for the spin-up and
spin-down Fermi seas become unequal and, as a result, the
pairing interaction for the majority-spin Fermi sea is modu-
lated by the strength of the B‖ field. This interaction induces
an attraction in non-s-wave channels via the Kohn-Luttinger
(KL) mechanism [46]. As a result, we obtain pairing in a spin-
and valley-triplet, p-wave channel.

Pairing in either the minority-spin or majority-spin channel
accounts for all the salient features observed in the experimen-
tally determined phase diagram in BBG [see Fig. 1(c)]: First,
superconductivity occurring at a phase boundary is natural for
a scenario that relies on critical isospin modes. Second, the
predicted superconductivity has a threshold in B‖ field as a
finite B‖ is required to overcome bare repulsion. At a lower
B‖, we predict a strong repulsive interaction. This interaction
is expected to produce a correlated insulator state, in line with
the observations [Fig. 1(c)].

Further support for this mechanism comes from a recent
experiment [21] that reports the observation of superconduc-
tivity in a BBG placed on top of a monolayer of WSe2. In
this system, superconductivity arises even when the magnetic
field strength B‖ is zero, and persists even when B‖ values
exceed the Pauli limit. This behavior can be explained within
the same framework as described above by considering the
influence of interfacial spin-orbit coupling (SOC) induced in
graphene due to the presence of WSe2. Such SOC effectively
induces a valley-odd Zeeman field, which acts for SC in the
same way as the magnetic field B‖. Naturally, at a finite B‖
the actual and effective B fields combine to induce SC above
the Pauli limit. Further details of this scenario are discussed in
Sec. VIII.

We want to stress that the scenario we focus on below is
just one of the possible mechanisms for superconductivity in
BBG. Our analysis is based on two key assumptions inferred
from measurements [20]. One is that the isospin order is of
a valley imbalance type. The other is that superconductivity
is driven by fluctuations of the τ3 valley-imbalance order pa-
rameter. Valley polarization is inferred by measuring quantum
oscillation frequency and observing Fermi surface doubling in
the ordered state. The absence of spin polarization is inferred
from the dependence of the phase boundary on the in-plane
magnetic field. As discussed in Sec. IX, this picture is in good
agreement with our scenario. As for the second assumption,
inferring the pairing mechanism from measurements is a dif-
ficult task. In the absence of a direct experimental input, one is
led to proceed by trial and error by relying on circumstantial
evidence.

There are several possible pairing mechanisms that could
be viable candidates for superconductivity in BBG. One such
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mechanism is related to superconductivity recently explored
in RTG, namely pairing mediated by inter-valley-coherence
(IVC) soft modes [47,48]. Even if, following the first as-
sumption, the PIP2 phase is identified with valley-imbalanced
order, there are still several types of soft modes that can drive
pairing. In particular, the collective mode in IVC channel can
produce a significant pairing interaction, given that the BBG
system has an approximate SU(4) spin-valley symmetry. This
makes IVC soft mode a credible candidate for the pairing glue.
This scenario is supported by recent work that links certain
unique features in the measured SC phase diagrams to the IVC
picture [48].

These alternative possibilities notwithstanding, here we
will focus on the pairing induced by the valley-imbalance
soft mode as the most straightforward and logical mecha-
nism. Interestingly, besides predicting the spin-triplet pairing
suggested by measurements, this mechanism can account for
the unusual magnetic field dependence of the observed super-
conductivity that emerges when the magnetic field surpasses
a certain threshold. This peculiar behavior cannot be easily
explained by other mechanisms, but it finds a natural and com-
pelling explanation within the framework proposed below.

II. PAIRING NEAR THE ONSET
OF VALLEY POLARIZATION

Motivated by the observed relation between valley polar-
ization instability and the emergence of superconductivity,
here we employ a minimal model for the former and discuss
its implications for the latter. We consider susceptibilities for
the valley and spin imbalances, the quantities that diverge
near the onset of valley or spin polarization. These quantities
can be linked to the free-fermion density-density response
function in a standard manner. With this framework estab-
lished, we are able to investigate the “transformer” pairing
glue that emerges at the onset of instability, and analyze its
distinctive characteristics and the properties of the resulting
superconducting state.

First, we describe the hierarchy of energy scales in our
problem. In the regime where superconductivity occurs, the
bandgap created by the displacement field is approximately
100 meV [20]. Band-structure calculations [49,50] predict a
Fermi energy of roughly 10 meV at the carrier density and
D field values where superconductivity occurs. This Fermi
energy is much smaller than the bandgap of D. The electron-
electron interaction energy is expected to be comparable to
the Fermi energy, as the system is close to an isospin Stoner
instability. The experiment reports a relatively small super-
conducting transition temperature (Tc) of 30 mK, which is
comparable to the minimal Zeeman energy ≈1 × 10−2 meV
required to create superconductivity upon increasing B‖ [20].
Since this value is much smaller than the interaction and
kinetic energies, we will ignore the Zeeman energy at first and
account for it perturbatively later.

We model the interacting electrons in BBG using a short-
range interaction

H =
∑

i

εi(p)ψ†
ipψip +

∑
ii′

V0

2
ψ

†
ip+qψ

†
i′ p′−qψi′ p′ψip, (1)

where i, i′ = K↑, K↓, K ′↑, K ′↓ are isospin indices. A single-
band model εi(p) will be used as a proxy for a more realistic
Dirac band. This single-band model Eq. (1) is obtained by
projecting the two-band model of BBG [49,50] on the con-
duction band, which in the regime of D � EF is well isolated
from the valence band. This band projection in general yields
wavefunction formfactors 〈up|up+q〉, where |up〉 is the cell-
periodic part of the Bloch function. In Eq. (1), we take the
form factors to be unity, as appropriate for the case D �
EF [51]. Indeed, for the states obtained from a simple two-
band Hamiltonian [49,50] the form factors at small energies
EF 
 D are close to unity, with the deviation being as small as
EF /D. Therefore Eq. (1) provides a reasonable approximation
so long as D � EF , regardless of the band-structure details
such as the trigonal warping [49,50].

In Eq. (1), the momentum-independent electron-electron
interaction V0 represents a repulsion short-ranged as compared
to Fermi wavelength. This interaction mimics Coulomb 1/r
interaction screened out at momentum transfers smaller than
2kF , taken here as an estimate for the screening parameter
in the Thomas-Fermi model. Equation (1) only accounts for
the intravalley scattering processes. The intervalley carrier
scattering processes mediated by the 1/r interaction can be
ignored because the 1/r interaction form factor drops rapidly
for momentum transfers 2kF < q < qmax ∼ |K − K ′|, where
the ratio qmax/2kF can be as large as a 100 for BBG.

In the graphene bilayer, an isospin polarization in the valley
(τ ) and spin (σ ) subspaces can conceivably occur through
various routes, with the main scenarios being the following.

(1) A q = 0 instability towards valley-only polarization
(M = τ3, σ0).

(2) A q = 0 instability towards intravalley ferromag-
netism (FM) (M = τ0 ± τ3, σ n).

(3) An instability with momenta K − K ′ in either charge
channel (τ±, σ0) or spin channel (M = τ±, σn) (see, e.g.,
Refs. [52,53]).

Matrices M in spin/valley space describe the orders
through a spontaneously generated fictitious field term in the
Hamiltonian,

δH =
∑

pi

ψ
†
ipMii′ψi′ p, (2)

where i, i′ label spin and valley degrees of freedom. Here τm

and σn (m, n = 0, 1, 2, 3) are valley and spin Pauli matrices,
and σ0 is the identity 2 × 2 spin matrix. In our simpli-
fied model, we find that these instabilities are degenerate.
However, in a more realistic scenario involving a generic
interaction, one of the instabilities will typically dominate and
lift the degeneracy, as discussed below.

Needless to say, presently our understanding of the system
is far from complete. Experiments identified the ordered phase
PIP2 as a valley-polarized phase [20]. The method used relied
on measuring quantum oscillations in an out-of-plane field,
combined with the measurements of the phase diagram in an
in-plane field. Ref. [20] concludes that the ordered state is
valley-polarized and spin unpolarized, yet the existing data do
not allow to distinguish between different valley polarization
orders such as valley imbalance and inter-valley coherence.
Acknowledging that the specific type of polarization remains
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FIG. 2. Ladder diagrams describing the valley-polarization insta-
bility in a mean-field approximation. Here v and s are valley and
spin indices K, K ′ and ↑, ↓ The lines with arrows represent Green’s
functions, the wavy line is the electron-electron interaction, vertices
represent the τ3 Pauli matrix in valley subspace. No summation over
v and s is assumed.

unknown, here we proceed with the scenario in which this
phase features a valley imbalance order.

An instability towards valley polarization, described by
the M = τ3 matrix, can be represented diagrammatically, as
shown in Fig. 2, where arrows represent the electron Green’s
functions Gs(ω, p) = 1/(iω − εs(p)) and the wave lines rep-
resent the interaction. Summing up ladder diagrams in the
τ3 channel yields a standard Stoner-like condition for the
instability threshold (see, e.g., Ref. [52]):

V0	3,s = −1, 	3,s = 1

2

∑
ω,p

tr(τ3Gs(ω, p)τ3Gs(ω, p)).

(3)

where the quantity 	3,s denotes the polarization in the valley
channel. Here s = ↑,↓ denotes electron spin, tr is a valley
trace involving summation over valley indices, with the spin
indices not being summed over. The quantities Gs(ω, p) are
Green’s functions of spin-s electrons, each being a 2 × 2
matrix in valley space:

Gs(ω, p) =
(

GKs(ω, p) 0

0 GK ′s(ω, p)

)
. (4)

In our notations, 	3,s is negative, so the instability devel-
ops at a positive V0. The corresponding valley-polarization
susceptibility is

χv,s = 	3,s

1 + V0	3,s
, (5)

where the subscript v stands for valley polarization. It follows
directly from Eq. (3) that the free-fermion polarization func-
tions obey

	3,s = 	K
s = 	K ′

s , (6)

where 	v
s = ∑

ω,p Gvs(ω, p)Gvs(ω, p), v = K, K ′ is the bare
polarization bubble (bare susceptibility) in valleys K and K ′.
The identity 	K

s = 	K ′
s follows from the mirror symmetry

that maps valleys K and K ′ on each other. Due to this sym-
metry, the free-fermion dispersion behaves as ε(K + p) =
ε(K ′ − p), and, therefore, 	K

s = 	K ′
s . Below we suppress the

valley index, i.e., replace 	K
s and 	K ′

s by just 	s. For free
electrons with parabolic dispersion and at a zero magnetic
field, 	s = −ν, where ν is the density of states at ε = εF for
one isospin species.

We emphasize that while the valley susceptibility diverges,
the ordinary charge susceptibility χc,s, obtained by the ladder

summation similar to that in Fig. 2, but with τ3 replaced with
an identity matrix and the interaction being a sum of the
Hartree and Fock contributions, shows no divergence. Explicit
calculation yields

χc,s = 	s

1 + V0	s − 2
∑

s′ V0	s′
. (7)

The factor of 2 before the summation over spin s′ is due to
the twofold valley degeneracy [see Eq. (6)]. At zero magnetic
field, where 	s = 	, this reduces to

χc,s = 	

1 − 3V0	
, (8)

where the factor 3 = 4 − 1 arises as a combination of the
Hartree and Fock terms in Eq. (7). The Hartree term is four
times greater than the Fock term and is of the opposite sign,
which suppresses the charge instability.

At a nonzero magnetic field, the values 	↑ and 	↓ are
different, and the analysis requires more care. Performing the
same computation as above and noting that, in the calcula-
tion, the ↑ and ↓ spin components decouple, and Eq. (5)
holds. Then valley instability for spin ↑ occurs at V0	↑ =
−1, whereas for spin ↓ it occurs at V0	↓ = −1. In experi-
ment [20], valley polarization is pushed to a lower density at
an increasing B‖ field [see Fig. 1(c)]. Comparing this to the
Stoner instability picture indicates that criticality in a finite
B‖ is linked to the majority-spin carriers. In our model, this
implies that |	↑| > |	↓|, and the leading instability occurs at
V0	↑ = −1.

With the valley polarization instability framework es-
tablished, we proceed to discuss how the attraction-from-
repulsion pairing mechanism arises at the onset of valley
polarization. It is instructive to outline the physics of this
mechanism before proceeding with calculations. In the pres-
ence of a magnetic field, valley polarization first emerges
for spin-up (majority-spin) carriers. This makes spin-up
valley-polarizing excitations gapless, whereas excitations in
spin-down (minority-spin) Fermi seas remain gapped. Soft-
ening of valley-polarizing modes leads to a vanishing of
1 + V0	↑, while 1 + V0	↓ remains finite. These two combi-
nations appear in equal-spin pairing vertices �s,s as �↑,↑ ∝
1/(1 + V0	↑) and �↓,↓ ∝ (1 + V0	↑)/(1 + V0	↓)2.

These quantities, which describe superconductivity in the
spin-up and spin-down channels, have a very different behav-
ior at the valley polarization instability. The pairing vertex
for spin-up carriers, �↑,↑, diverges at the transition. However,
it is of a repulsive sign and monotonically decreases with
frequency. For such a vertex, the superconductivity selfconsis-
tency equation has no nonzero solution for the gap function.
However, the quantity �↓,↓ shows a different behavior because
of the factor 1 + V0	↑ that vanishes near the instability. This
gives a negative feedback effect on �↓,↓ and, as a result,
this quantity is substantially reduced at small frequencies.
The frequency dependence of �↓,↓ then becomes nonmono-
tonic, dropping from more repulsive at high frequencies to
less repulsive at low frequencies. This frequency dependence,
despite the positive sign of �↓,↓, allows spin-down electrons
to form spin-triplet Cooper pairs with a sign-changing gap
function �(ω).
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(a)

(b)

= + +...+

Ks

Ks

K ′s

K ′s

V0 V0 V0

FIG. 3. (a) Diagrams describing the effective pairing interaction
between electrons in valleys K and K ′ mediated by quantum-critical
modes, Eq. (11). These processes give an enhancement to forward
scattering divergent near the valley-polarization instability (see text).
(b)The diagrammatic representation of the irreducible part of the
charge susceptibility χc,s (the shaded ellipse), summed over s = ↑, ↓.

Below we first discuss the pairing interaction at a zero mag-
netic field B‖ = 0, where 	s=↑ = 	s=↓ = 	 (see Sec. III),
and then extend the results to finite B‖, where 	s=↑ = 	s=↓
and the frequency dependence of the pairing interaction
becomes nonmonotonic, leading to superconductivity (see
Sec. IV).

III. REPULSION AT B‖ = 0

It is instructive to begin with B‖ = 0. In this case, the
pairing interaction is repulsive and has a monotonic frequency
dependence. This behavior, which is incompatible with pair-
ing, will be contrasted in Sec. IV with that arising at a finite
B‖, where the interaction remains repulsive but acquires a
nonmonotonic frequency dependence that leads to pairing.

We start by noting that the pairing interaction with zero
total momentum occurs between fermions in different valleys,
K and K ′. At the lowest order, the pairing interaction is just
V0, however near the onset of the valley polarization order
dressing the interaction with soft modes becomes essential.
We argue below that the relevant dressing is the one illustrated
in Fig. 3. The property of this dressing that will be important
for us is that it enhances the pairing interaction by a large
factor 1/(1 + V0	). We proceed by analyzing how these di-
agrammatic series shown in Fig. 3 emerge in order-by-order
expansion in V0.

To describe the pairing, we consider the irreducible vertex
function in the pairing channel, �ss′ , where s and s′ denote spin
components. By general rules, �ss′ is a fully dressed antisym-
metrized interaction describing scattering between fermion
pair states (k,−k) → (p,−p). The specifics of our case are
that (i) pairing involves one fermion near K and one near
K ′, and (ii) the scattering between K and K ′ is weak in
graphene and can be neglected. In this situation, the contri-
butions to �ss from antisymmetrization vanish, �s,s′ becomes
spin-independent �s,s′ = � and we only need to analyze how
the direct pairing interaction V0 is being dressed.

To second order in V0, we have three topologically distinct
diagrams shown in Fig. 4. The first two diagrams [see panels

K + k K k

K + p
K − p

(a) (b)

K + k
K − k

K + p
K − p

K + k K − k

K + p K − p

(c)

FIG. 4. Three types of second-order diagrams: (a) bubble dia-
gram; (b) “wine glass” diagram; and (c) “exchange” diagram.

(a) and (b)] are known as bubble and “wine glass” diagrams.
Since the two intermediate electron lines in each of these
two diagrams are from the same valley, their contributions
are the same as from irreducible processes in Fig. 2—the
ones which give rise to valley polarization. In comparison,
the last diagram, known as the “exchange” diagram, contains
two intermediate electron lines in which one is from valley K,
whereas the other is from valley K ′ [see panel (c)]. Its contri-
bution is not directly related to the processes leading to valley
polarization. Because our goal is to analyze how the pairing
interaction evolves near the onset of valley polarization, we
focus on the diagrams with a leading-order divergence. We,
therefore, neglect the “exchange” diagrams at each order of
expansion in V0 and include only the bubble and “wine glass”
diagrams (see Ref. [54] for similar consideration). Some ex-
amples of the leading-order diagrams at a three-loop order are
shown in Fig. 5(a). These are diagrams with zero, one, and two
bubbles. In comparison, several typical subleading diagrams
at a 3-loop order are shown in Fig. 5(b).

The sum of the bubble and wine glass diagrams can be
rewritten as illustrated in Fig. 3. Below, we work out the
analytical expression. First, diagrams without bubbles sum up
into V0γ

2, where

γ = 1

1 + V0	
. (9)

We next account for the polarization bubbles. Insertion of
one bare bubble contributes the factor −4V0	, where −1 is

(a)

K + k K − k

K + p K − p

K + k K − k

K + p K − p

K + k
K − k

K + p
K − p

(b)

K + k
K − k

K + p
K − p

K − k

K + p

K + k

K − p

K − p
K + p

K + k
K − k

FIG. 5. Diagrams at three-loop order: (a) diagrams with 3 bub-
bles that are maximally divergent near the Stoner instability and
(b) diagrams with 0, 1, and 2 bubbles, which are subleading at the
Stoner instability.
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due to a fermionic loop and the factor of 4 arises due to spin
and valley degeneracy. An insertion of ladder series of inter-
actions into each bubble further converts 	 into fully dressed
irreducible 	γ . The resulting effective interaction described
by these diagrams can thus be written as

� = γ 2 V0

1 − 4V0	γ
(10)

= V0

(1 + V0	)(1 − 3V0	)
. (11)

This vertex function contains the factor 1/(1 + V0	) and
hence it gets enhanced near the onset of valley polarization.
Near V0	 = −1, it can be approximated as

� ≈ V0

4

1

1 + V0	
. (12)

Still, the interaction remains positive-valued, i.e., repulsive.
This behavior is distinct from that found for pairing mediated
by a critical q = 0 mode in other systems, such as a nematic
QCP [24–26]. Indeed, in these systems electrons with k and
−k live on the same Fermi surface and interact through ex-
change processes. In our case, such a process is forbidden as
it requires a fermion to scatter from one valley to the other.

For a more accurate treatment, we should take into consid-
eration the fact that the valley polarization instability is the
one with zero momentum transfer (q = 0) and zero frequency
transfer (ν = 0). At a finite q and a finite ν, the polarization
	 becomes the function of both, 	 = 	(ν, q), and the vertex
� also becomes �(ν, q). The static polarization bubble is a
regular function of q2 and the dominant contribution to the
dynamical part comes from the Landau damping (see, e.g.,
Ref. [42]). Then

1 + V0	(ν, q) ≈ |ν|
vF q

+ Kq2 + δ, (13)

where δ = 1 + V0	(0, 0) characterizes a detuning from the
valley-polarization phase boundary. The stiffness parameter K
and the Fermi velocity vF are determined by band dispersion
ε(p). In writing the Landau damping term, we assumed that
|ν| 
 vF q. Plugging this 	(ν, q) into Eq. (12), we obtain the
vertex �(ν, q) at small q and ν in the form

�(ν, q) = V0

4

1
|ν|
vF q + Kq2 + δ

. (14)

This effective interaction with the dynamical Landau-
damping term is similar to the one studied in the context
of quantum-critical pairing in metals on the verge of an
Ising-nematic or Ising-ferromagnetic instability [28,30,55]
and for 2D fermions coupled to emerging gauge field in
a doped Mott insulator [56–60]. However, the sign of the
interaction in our case is repulsive, and it monotonically de-
creases with frequency. Such an interaction does not lead to
superconductivity.

IV. ATTRACTION FROM REPULSION AT B‖ �= 0

Here we consider how the pairing interaction, Eq. (14), is
altered at B‖ = 0. We show that, while it remains repulsive,
it becomes nonmonotonic in frequency for fermions with

spin direction opposite to the field. This leads to pairing for
minority-spin carriers, as we demonstrate.

At a finite B‖, the polarization bubble 	s does depend on
spin s = ↑,↓ and this has to be included in the calculation of
the pairing vertex �s,s′ . We will focus on equal-spin channel
s = s′. Repeating the same calculations as above, but keeping
the dependence on s in 	s, we obtain

�s,s = V0γ
2
s

1

1 − 2V0
∑

s′ 	s′γs′
, (15)

where γs = 1/(1 + V0	s). This can be re-expressed as

�s,s = (1 + V0	↑)(1 + V0	↓)V0

(1 + V0	s)2
[
1 − V0(	↑ + 	↓) − 3V 2

0 	↑	↓
] . (16)

As before, each polarization bubble is a function of ν and s,
such that

1 + V0	s(ν, q) ≈ |ν|
vF q

+ Kq2 + δs, (17)

Here and below, for simplicity, we take the Fermi velocities
and the stiffness parameters for both spin species to be equal,
vF,↑ = vF,↓ = vF , K↑ = K↓ = K . The quantities δs=↑,↓, which
define the detuning from the phase boundary, are equal in
the absence of B‖-induced Zeeman interaction but become
unequal when B‖ = 0. Comparing the two denominators in
Eq. (16), we find that the leading instability in a magnetic field
occurs at either V0	↑ = −1 or V0	↓ = −1. As discussed in
Sec. II, experiments indicate [20] that criticality at a finite
B‖ occurs first for majority-spin carriers. This translates into
δ↑ = 0 at the onset of valley polarization, whereas δ↓ remains
finite. As a result, V0	↑ ≈ −1, and in the right-hand side of
Eq. (16), 1 − V0(	↑ + 	↓) − 3V 2

0 	↑	↓ ≈ 2(1 + V0	↓). As
a result,

�↑,↑ ≈ V0

2

1

1 + V0	↑
= V0

2

1
|ν|
vF q + Kq2 + δ↑

(18)

and

�↓,↓ ≈ V0

2

1 + V0	↑
(1 + V0	↓)2

= V0

2

|ν|
vF q + Kq2 + δ↑( |ν|
vF q + Kq2 + δ↓

)2 . (19)

Both vertices remain positive (repulsive), but they now have
qualitatively different frequency dependence: �↑↑ is similar to
that found for B‖ = 0, and is monotonically decreasing with
ν. On the contrary, the pairing interaction for minority-spin
electrons �↓↓(ν, q) has a nonmonotonic frequency depen-
dence because at small momentum q 
 √

δ/K , it is strongly
suppressed at low frequencies ν < vF |q|δ↓ and not suppressed
at ν > vF |q|δ↓. Then �↓↓ increases at low frequencies and
decreases at higher frequencies.

The s-wave component of this vertex (by far the largest one
for small Fermi pockets, 2kF 
 |K − K ′|) is the average of
�↓↓(ν, q) over the momentum transfers on the Fermi surface

�↓↓(ν) = 2
∫ ∼kF

0
dq
2π

�↓↓(ν, q). This quantity can be cast into
a scaling form

�↓↓(ν) = V0kF

2πδ↓
S(x, x1), x = ν

ν0
, x1 = ν1

ν0
, (20)
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FIG. 6. Frequency-dependent pairing interaction S(ν̄), Eq. (23),
describing the universal contribution of a soft mode. The nonmono-
tonic frequency dependence, which is a generic property of S(ν̄ ) for
all values of the stiffness K , allows for a repulsive interaction to gen-
erate an attractive effective pairing interaction. The value at ν = 0 is
finite at K > 0 and zero at K = 0. In the latter case superconducting
Tc is nonzero for any δ↓, the detuning from the critical point for
spin-down fermions.

where ν0 = EF δ↓, ν1 = EF Kk2
F , and EF = vF kF . At ν1 
 ν0,

the function

S(x, 0) = x

(
log

1 + x

x
− 1

1 + x

)
(21)

is manifestly nonmonotonic: it increases with x at small x,
passes through a maximum at x ∼ 0.5, and drops at higher
x. We emphasize that the nonmonotonic behavior is fully
induced by B‖, which splits δ↑ and δ↓. The nonmonotonic
dependence holds if we increase the ratio ν1/ν0 as illustrated
in Fig. 6.

Below we solve the gap equation to demonstrate that a non-
monotonic frequency dependence of �↓↓(ν) leads to pairing
between spin-minority carriers at a nonzero Tc. The gap func-
tion is s-wave and changes sign as a function of frequency.
For majority-spin carriers, the interaction is monotonic in
frequency [see Eq. (18)] and does not give rise to pairing. As
a result, in some range of T < Tc, the system simultaneously
hosts both metallic carriers and superconducting pairs, unless
a magnetic scattering is introduced. The coexistence of two
types of carriers can be probed by searching for in-gap states
in tunneling spectroscopy due to metallic carriers.

We note the decoupling between fermions with opposite
spins no longer holds in a general setting. As we will see later
in Sec. VI, in a generalized model, pairing susceptibilities for
spin-up and spin-down fermions are coupled. In this case,
the development of a superconducting gap for minority-spin
carriers generates a smaller, but finite gap for majority-spin
carriers. Still, tunneling experiments should reveal states with
energies between smaller and larger gaps.

V. SOLVING THE GAP EQUATION

The superconducting gap equation for the pairing of spin-
down fermions, mediated by �↓↓(ν), is

�(ω) = − Tc

2vF

∑
ω′=πTc(2n+1)

�(ω′)�↓↓(ω − ω′)
|ω′| , (22)

The overall minus sign reflects that the interaction is repulsive.
The gap equation takes a universal form when expressed in
terms dimensionless T̄c = Tc/ν0 and ω̄ = ω/ν0:

�(ω̄) = −λπ T̄c

∑
ω̄′=π T̄c (2n+1)

�(ω̄′)
|ω̄′| S(ω̄ − ω̄′, 0), (23)

where λ = kFV0/(4π2vF δ↓). Because S(ω̄ − ω̄′, 0) is strongly
peaked at |ω̄ − ω̄′| = ν̄∗ ≈ 0.5, one can change the overall
sign in Eq. (23) by searching for gap functions which change
sign under ω̄ → ω̄ + ν̄∗. At small λ, analytical consideration
yields Tc ∝ ω0e−1/λ2

(Ref. [44]). At λ � 1, Tc ∼ ω0, but with
a numerically small prefactor. At larger λ, the prefactor in-
creases and at λ � 1 (i.e., at small δ↓), Tc ∼ λν0 ∼ EF .

For completeness, the analysis of the pairing problem at
large λ must also include fermionic self-energy. This is re-
quired because the pair-breaking effect due to self-energy
may suppress superconductivity. To gain insight, one can start
with the intravalley analog of the leading-order diagrams for
the pairing interaction �↓↓(ν, q) pictured in Fig. 3. Replac-
ing fermions in different valleys with fermions in identical
valleys yields a divergent contribution to the intravalley in-
teraction, which, in turn, produces a large contribution to
the self-energy. Does this imply that near Stoner instabil-
ity the self-energy diverges in the same way as the pairing
interaction and, through pair-breaking effects, can suppress
pairing?

This concern turns out to be unfounded because, for
an intravalley interaction, focusing solely on the intravalley
analogs of the diagram in Fig. 3 is not justified. One must also
consider other diagrams that are allowed for intravalley scat-
tering. The contributions of these diagrams tend to suppress
the divergence of the effective interaction at Stoner instability.
In particular, the “exchange” processes pictured in Fig. 4(c)
that were negligible for the intervalley pairing interaction
(see Sec. III), can contribute to the intravalley density-density
interaction and impact the self-energy. However, when these
diagrams are accounted for, every time we draw a bubble,
we must add to it an “exchange” contribution that looks like
Fig. 4(c). These “exchange” diagrams tend to cancel the con-
tributions from the bubbles since these two types of diagrams
differ by a sign arising from a fermionic loop. As a result,
the intravalley interaction that dominates the self-energy does
not diverge at the Stoner instability as strongly as the pairing
interaction �↓↓ does.

Furthermore, in Appendix A, we analyze the impact of the
self-energy on Tc in a different way. We obtain the self-energy
accounting only for the intravalley analog of the diagram in
Fig. 3. This method, as argued above, grossly overestimates
the self-energy. Nevertheless, we find Tc values that are still
acceptable. This observation further justifies ignoring self-
energy in our analysis.

174512-7



DONG, CHUBUKOV, AND LEVITOV PHYSICAL REVIEW B 107, 174512 (2023)

FIG. 7. Critical temperature Tc vs the detuning from criticality δ↓
for spin-down carriers, a parameter controlled by B‖. For K = 0, Tc

is finite for all δ. For K = 0, to the contrary, each curve starts at a
finite threshold value δ↓ > 0. As K grows, the threshold value first
grows and then decreases, reflecting the behavior of S(ν ) at small ν

shown in Fig. 6 (see text).

Critical temperature values Tc, obtained by numerical solu-
tion of Eq. (23), are shown in Fig. 7. We set kFV0/(2πvF ) = 1,
as required for a Stoner instability, and set EF = 10 meV. We
see that at ν1 = 0, Tc monotonically increases with decreasing
δ↓ and at small δ↓ saturates at roughly 1 K.

For a more realistic case of ν0 ∼ ν1, the momentum-
averaged �↓↓(ν) tends to a finite value at ν = 0, leading to
a smaller Tc and also setting a threshold on δ↓ as an s-wave
pairing by a frequency-dependent repulsion is a threshold
phenomenon [43–45], and at a small δ↓ the nonmonotonicity
of �↓↓(ν) is too weak to give rise to a pairing when the
self-energy is included. At larger δ↓, Tc also drops because
the coupling λ gets smaller. This gives rise to a domelike
dependence of Tc on δ↓ at a given Kk2

F value. For Kk2
F = 10−2,

we obtained at Tc ∼ 35 mK at optimal δ↓ = 7 × 10−3. This
value is in line with experimental Tc.

VI. ROBUSTNESS OF THE TRANSFORMER
PAIRING MECHANISM

To test the robustness of the attraction-from-repulsion pair-
ing mechanism, here we demonstrate that the nonmonotonic
frequency dependence of the pairing interaction, a property
central to our pairing mechanism, is a general behavior. To this
end, we analyze a generalized model where different types of
isospin instabilities are nondegenerate.

As a reminder, as stated in the Introduction, the mini-
mal model we studied above does not distinguish various
types of isospin instabilities. Namely, in the model with the
interactions with small momentum transfer all equal to V0,
the threshold for the valley polarization coincides with the
Stoner threshold for intravalley ferromagnetism and with the
threshold for a charge or spin order with momentum K − K′.
Indeed, performing the same calculations as we did in Sec. II,
for the other two instabilities, we find that all three occur at
V0	s = −1. This degeneracy, however, does not hold beyond

the model with a single V0 interaction. To see this, we extend
the model to two types of density-density interactions: V0 for
the density-density coupling in the same valley, and V ′

0 for the
density-density coupling between different valleys. Evaluat-
ing the instability criteria, we find that the valley-polarization
instability occurs at

(2V ′
0 − V0)	s = −1, (24)

while intravalley ferromagnetic (FM) instability occurs at

V0	s = −1, (25)

and charge/spin instability with momentum K − K′ occurs at

V ′
0	s = −1. (26)

As a result, valley polarization is the leading instability when
V ′

0 > V0. In the opposite case V0 > V ′
0 , the intravalley FM is

the leading instability.
The analysis at a finite field is a bit involved because

once V ′
0 > V0, valley polarization instabilities for spin-up and

spin-down fermions do not decouple, i.e., there is a single in-
stability, at which both χv,↑ and χv,↓ diverge simultaneously.
The instability condition is

1 + V ′
0 (	↑ + 	↓) + 	↑	↓V0(2V ′

0 − V0) = 0. (27)

Still, when |	↑| > |	↓|, χv,↑ > χv,↓, and the instability pre-
dominantly involves fermions with spin up.

Below, we calculate the pairing vertex in the V0-V ′
0 model.

The bare pairing vertex in this model is V ′
0 because k and k′

belong to different valleys. The fully dressed irreducible one
at B‖ = 0 is

� = V ′
0

(1 − V0	)2 − (2V ′
0	)2

. (28)

As expected, this vertex diverges at a valley polarization in-
stability, where (2V ′

0 − V0)	 = −1, but remains positive, i.e.,
repulsive.

At a finite field, the analysis of the pairing vertex is again
more involved as the condition for the valley polarization
instability does not decouple between fermions with spin up
and down. Performing the calculations, we find that

�↑,↑ = V ′
0

(1 + V0	↓)2

Z
, �↓,↓ = V ′

0
(1 + V0	↑)2

Z
, (29)

where

Z = (
1 − V 2

0 	↓	↑
)2 − (V ′

0 )2(	↓ + 	↑ + 2V0	↓	↑)2.

(30)

Both �↑,↑ and �↓,↓ are repulsive and diverge at the valley
instability at a finite B‖, Eq. (27), as we can straightforwardly
verify. Still, for |	↑| > |	↓|, �↓,↓ is reduced at intermediate
frequencies because of the factor (1 + V0	↑)2 in the numer-
ator. It then still remains nonmonotonic, at least at small
V ′

0/V0 − 1, and allows a superconducting solution with a sign-
changing gap.

VII. VALLEY-TRIPLET p-WAVE PAIRING

The nominally repulsive valley-preserving interaction V0 in
Eq. (1) also gives rise to an attraction at a finite B in another
spin-triplet channel, this time valley triplet and spatially odd.
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The mechanism here is the field-induced KL effect in 2D – the
development of an attractive p-wave component of the static
pairing interaction due to screening by particle-hole polariza-
tion bubbles. This effect has been analyzed in Refs. [61,62].
Here we apply it to BBG.

To understand the field-induced KL effect, assume phe-
nomenologically that the static pairing interaction �ss(0, q)
remains proportional to valley polarization susceptibility χv,s

from Eq. (5) for all q < 2kF , relevant to superconductivity,
and compute the polarization 	0,s explicitly. Let’s do this first
for a parabolic εi(p) near K and K ′. The result is well known:
in 2D, 	s(0, q) = −(m/2π ) for q < 2kF,s and −(m/2π )(1 −√

4k2
F,s/q2) for q > 2kF,s. At B = 0, kF,s = kF is the same for

up- and down-spins. In this situation, 	s(0, q) = −m/(2π )
is q-independent for relevant q < 2KF , and the effective in-
teraction �ss(0, q) has only an s-wave repulsive component,
like the bare V0. This is commonly known as the absence
of KL effect in 2D for a parabolic dispersion [63]. The sit-
uation changes at a finite B. Now the effective interaction
between majority-spin fermions comes from the minority-spin
fermions and vice versa. Because the Fermi momentum kF,↑
is larger than kF,↓, there is a range 2kF,↓ < q < 2kF,↑, where
the interaction �↑↑(0, q) for spin-up fermions at momentum
transfer on their Fermi surface, q < 2kF,↑ acquires a momen-
tum dependence via the momentum dependence of 	↓(0, q).
There is no such effect for �↓↓(0, q) at q < 2kF,↓.

Once �↑↑(0, q) becomes momentum-dependent, one
can search for spatially-odd solutions �(θ ), subject to∫

dθ�(θ ) = 0 and �(θ + π ) = −�(θ ), where θ is an angle
along the Fermi surface measured from, e.g., the kx direc-
tion. These gap functions are necessarily valley triplets. The
analysis of the pairing instability is rather standard, and we
just present the result. We find that the q dependence of the
interaction gives rise to an attraction for spatially odd �(θ ).
At a small B‖ field, the gap equation is approximately local
in θ and the p-wave transition temperature is Tc ∼ EF e−1/λKL ,
where

λKL = mV0

8π2δ2

μBB

EF
. (31)

At small B, Tc increases exponentially with the field. At a
larger B, the prefactor gets smaller as the number of minority-
spin fermions decreases. As a result, Tc has a dome-like shape
as a function of B. We also note that Eq. (31) is valid when
λKL < 1. At larger λKL, the coupling gets renormalized by the
fermionic self-energy and eventually saturates. The analysis
can be straightforwardly extended to the physically relevant
case when the instability first develops for spin-up fermions,
i.e., when �↑↑(0, 0) ∝ 1/δ↑ is much larger than �↓↓(0, 0) ∝
1/δ↓. One can model this by nonequal DOS for up and down
spins. We found that Eq. (31) holds, but δ2 in Eq. (31) has to
be replaced by δ2

↓. One can also move away from parabolic
dispersion and include the q dependence of 	(0, q) at q <

2kF . This will (i) reduce Tc and (ii) set a finite threshold on
a B‖ field as a field-induced attraction has to compete with a
repulsive bare interaction in the valley-triplet channel which is
activated by the q dependence of 	(0, q). As a result, Tc as a
function of B‖ displays a dome-like behavior above a finite
threshold, much like for valley-singlet s-wave pairing. We

FIG. 8. Fermi seas in valleys K and K ′ split by (a) Zeeman
interaction with an external field B‖ and (b) by a spin-orbit coupling.
Red (blue) arrows represent spin polarization.

believe that both pairing mechanisms, the s-wave discussed
above and the p-wave discussed in this section, are possible
in BBG, though the s-wave superconductivity is more likely
to occur. This is because s-wave superconductivity does not
rely on the Fermi surface shape, while our p-wave mechanism
requires the Fermi surface to be nearly circular.

VIII. GENERALIZATION TO SYSTEMS
WITH SPIN-ORBIT INTERACTION

We argue below that the s-wave pairing mechanism also
holds in systems with spin-orbit coupling (SOC). Indeed, the
SOC interaction is similar in form to the Zeeman interaction
with an in-plane magnetic field. Therefore the pairing scenario
in the case of SOC is linked to the one described in previous
sections by interchanging the isospins. For definiteness, we
consider the valley-singlet s-wave pairing. We model SOC by
adding to Eq. (1) an Ising SOC:

Hso = −λso(ψ†
Kασz,αβψKβ − ψ

†
K ′ασz,αβψK ′β ). (32)

This term plays a role of a valley-dependent effective Zeeman
field Bso,τ , (τ = K, K ′) that is directed transversely to the
plane and has opposite signs for opposite valleys: Bso,K =
λso
μB

z, and Bso,K ′ = − λso
μB

z, where z is the unit vector per-
pendicular to the graphene plane. As a result, the four-fold
degeneracy of Fermi pockets is lifted to two sets of twofold
degenerate pockets larger ones K↑ and K ′↓ and smaller ones
K↓ and K ′↑, see Fig. 8.

Based on this observation, it is straightforward to map the
scenario, described in Sec. V, to the case of SOC—one only
needs to interchange K ′↑ and K ′↓. Like there, we find that the
electrons from smaller Fermi pockets K↓ and K ′↑, experience
the same nonmonotonic pairing interaction as in Eq. (14),
which gives rise to an s-wave valley-singlet/spin-triplet super-
conductivity. It is essential that the superconducting order is
still robust against an in-plane magnetic field B‖x and exceeds
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the Pauli limit [here x is a unit vector parallel to the graphene
plane]. This is so because the total effective Zeeman fields in
valleys K and K ′

BK = λso

μB
z + B‖x, BK ′ = −λso

μB
z + B‖x, (33)

have the same magnitudes in the presence of both B‖ and λso,
so the Fermi surface degeneracy holds. The fact that Beff,K and
Beff,K ′ are no longer parallel or anti-parallel does not matter as
there is no exchange interactions between the electrons near K
and K ′. Similarly, the analysis of valley-triplet p-wave pairing
in the presence of SOC is parallel to that in Sec. VII.

IX. RELATION TO EXPERIMENTS

We now discuss several points related to experiments. We
will use existing measurements to justify our underlying as-
sumptions and describe how our SC scenario can be tested
experimentally. First, in our analysis of valley-singlet SC we
assumed that isospin order sets in first for the majority-spin
fermions. To verify that this interpretation of the phase tran-
sition is correct, below we calculate the slope of the phase
boundary and compare it with the experiment. According
to our model, instability happens only in the majority spin.
Therefore, at the phase transition, the density of carriers in the
majority spin is a fixed value, while the density of carriers
in the minority spin depends on the B‖ field. Specifically,
we expect that the phase transition shifts towards lower total
carrier density under increasing B‖. The shift of carrier density
is linear in the B‖ field:

dn∗
dB

= 2μBν0, (34)

where n∗ is the total carrier density at the phase boundary, μB

is the Bohr magneton, ν0 is the density of states per isospin,
the factor of 2 arises from K/K ′ valley degeneracy. Plugging
in the value of the density of states obtained numerically in
Ref. [20], we find the slope is dn∗

dB = 5 × 10−4 nm−2 meV−1,
which matches the slope extracted from Fig. 1(c).

Second, as discussed above, the two scenarios for field-
induced SC both yield dome-shaped Tc as a function of carrier
density, with a threshold on B‖. The only difference between
the two scenarios is which spin components pair: valley-
singlet pairing involves minority spins, whereas valley-triplet
pairing involves majority spins. One way to test which spin
components are involved in SC is to measure the DC voltage
drop when injecting a spin-polarized current into the system.
For instance, we can inject electrons from a ferromagnetic
material that is polarized by the same in-plane magnetic field
as in the BBG, then our theory predicts that for valley-singlet
pairing, this spin-polarized current should give a finite DC
voltage drop even when the temperature is below Tc because
the SC only occurs in the Fermi sea of minority-spin electrons,
while for valley-triplet pairing a DC voltage drop should dis-
appear below Tc.

Third, valley-singlet pairing arises from small-momentum
(forward) scattering and thus should be sensitive to screening.
Accordingly, we expect this SC to become suppressed when a
proximal metal gate is introduced to screen the Coulomb inter-
action. On the contrary, for valley-triplet pairing, SC becomes

strengthened by a proximal gate since the small-momentum
scattering is harmful to this pairing channel and is strongly
screened, whereas the large-momentum (backward) scattering
that helps the pairing is not so strongly screened.

Fourth, we argued that SOC plays the same role as a
magnetic field and gives rise to valley-singlet s-wave or
valley-triplet p-wave pairing. A recent experiment [21] found
SC in a BBG on a monolayer of tungsten diselenide (WSe2),
a source of interfacial SOC in graphene. The observed SC
develops already at zero fields and exceeds the Pauli limit
in the presence of a parallel field. This fully agrees with our
theory.

Finally, one might ask whether the quantum-critical mode
will contribute to resistivity through carrier scattering by ther-
mal fluctuations. While this may seem plausible at first glance,
we note that the effective interaction mediated by a soft boson
is strong only for small momentum transfers q 
 kF . This
translates into near-forward scattering processes that do not
produce a current relaxation and thus do not contribute to
resistivity [64]. These expectations are in line with a recent
experiment [20] where resistivity T dependence shows no
sign of critical fluctuations near the phase transition.

We are therefore led to conclude that all the unique aspects
of the observed superconductivity are successfully explained
by the attraction-from-repulsion-based pairing scenario. Fur-
thermore, this mechanism is “natural” as it arises from the
strong electron-electron interactions that drive the adjacent
isospin-polarized electron orders. As such, it constitutes a
unique, verifiable instance of an exotic pairing. Supported
by experiments, it sheds light on the origin of spin-triplet
superconductivity in BBG and is applicable to a variety of
other systems of interest.
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APPENDIX: SELF-ENERGY
AND SUPERCONDUCTIVITY

In this section, we elaborate on the effect of self-energy
correction and show that it has a marginal impact on su-
perconductivity. Here, we focus on the case of ν1 = 0. The
self-energy for spin-down electrons is given by

�↓↓(ω) =
∫

dν

2π

∫
dq⊥
2π

�↓↓(ν, q)

i(ω + ν) − vF q⊥

= λ

2

∫
dν

2π
sgn(ν + ω)S(ν/ν0)

= λν0

∫ ω̄

0
dxS(x). (A1)
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To see the relevant scale of ω in the pairing problem, we look
at the gap equation without self-energy correction Eq. (23).
We rewrite it as follows:

�(n) = −λ

2

∑
n′

�(n′)
|2n′ + 1|S(2π T̄c(n − n′), 0), (A2)

where we have rewritten ω̄ = π (2n + 1)T̄c, ω̄′ = π (2n′ +
1)T̄c. As shown by numerics in the main text, the criti-
cal temperature is Tc ∼ 1

2λν0 × 10−2. For extremely large
value of λ � 102 (i.e., extremely small δ↓), the relevant
n, n′ ∼ O(1). Replacing S(x) with its asymptotic form 1

2x , we
find numerically that the wavefunction stop changing sign
at n = 4. The self-energy relevant for this pairing problem
should be evaluated at ω = 9πTc:

�↓↓(ω ∼ 9πTc) ∼ λν0 ln(λ), (A3)

where logarithm comes from integrating S(x) which scales as
1
2x at large x. Then, we find the effective coupling scales with
λ as

λ̃ = λ

1 + κ ln λ
, κ ∼ 100

9π
= 3.5. (A4)

The denominator is only marginally relevant at large λ, thus
does not suppress the Tc substantially.

For a not-so-large λ value (λ < 102), the relevant value of
n, n′ the equation above is n, n′ � ν0/Tc = 102/λ. The self-
energy relevant for this pairing problem should be evaluated
at ω � ν0:

�↓↓(ω ∼ ν0) ∼ 0.2λν0, (A5)

where the numerical factor comes from integrating S(x) below
the turning pint x ∼ 0.5. We find the effective coupling scales
with λ as

λ̃ = λ

1 + 0.2λ
. (A6)

In this case, carrying out the simulation as in the main text (see
Fig. 7 and accompanying discussion), we get Tc ∼ 10−4EF .
This value is much smaller than the ones in Fig. 7 but still of
an acceptable order of magnitude.
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