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Disorder-induced trapping and antitrapping of vortices in type-II superconductors
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We study the features of the superconductivity nucleation and vortex configurations in superconductors with
modulated disorder. Using the Ginzburg-Landau–type theory with spatially varying diffusion coefficient, we
uncover and explain the switching between the vortex-defect attraction to the repulsion upon the increase in
the external magnetic field. It is shown that for rather weak applied magnetic fields, a superconducting nucleus
localized near the region with the suppressed diffusion coefficient possesses a nonzero vorticity whereas the
increase in the magnetic field can lead to a transition into the state with zero winding number. We demonstrate
the manifestations of this switching phenomenon in superconductors with a large number of defects by per-
forming numerical simulations of the vortex structures in superconductors with periodic spatial profiles of the
diffusion coefficient. The obtained results clarify the physics of the vortex arrangement in several classes of
the superconducting materials including one-dimensional superlattices and nanopatterned superconductors with
regular arrays of the defects characterized by the increased concentration of nonmagnetic impurities. Based on
analytical estimates within the framework of the Ginzburg-Landau theory, we show that the predicted switching
in the pinning mechanism can manifest itself in the change of the slope of the critical current as a function of the
external magnetic field.
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I. INTRODUCTION

The physics of the vortex pinning mechanisms in type-
II superconductors is known to be a fundamental problem,
which is also of particular importance for a variety of applica-
tions of superconducting materials [1,2]. Therefore, for more
than half a century the effects of vortex pinning have been in
the focus of both theoretical and experimental works studying
the vortex interaction with various types of inhomogeneities
including columnar defects [3–12], blind holes [13,14], and
nonsuperconducting inclusions [15–17] (see also Ref. [18]
for a review). General mechanisms of the vortex-defect in-
teraction are associated either with the defect-induced change
of the energy of supercurrents flowing around the vortex
axis [19] or with the changes of the vortex core energy
[1,2]. The development of technology provided a number
of experimental methods widely used to improve the vortex
pinning characteristics including thickness modulation [20],
substrate engineering [21], surface decoration with magnetic
nanoparticles [22,23], engineering of the pinning centers in
in situ epitaxial growth of superconducting films [24], and
ion irradiation technique [25–31]. It is interesting to note
that the pinning centers can appear even without strong local
change in the material properties resulting in variations of the
superconducting critical temperature Tc or creation of insu-
lating inclusions. The vortex core energy can be effectively
changed due to spatial modulation of quasiparticle scattering
characteristics [32]. Indeed, for superconductors in the dirty
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limit the size of the vortex core rc is given by the super-
conducting coherence length ξ0 ∝ √

D/Tc, where D = vF �/3
is the diffusion coefficient, vF is the Fermi velocity, and �

is the mean-free path for impurity scattering. The increase in
the local impurity concentration leads to the suppression of
the mean-free path � and the size of the vortex core, which,
in turn, determines the energy per unit length of the vortex
line ε = εcr2

c , where εc is the superconducting condensation
energy density. Thus, according to general belief, the regions
with the increased disorder attract Abrikosov vortices.

The main goal of this paper is to show that the validity
range of the above arguments is restricted to the case of weak
magnetic fields and to predict the phenomenon of switching
from the vortex-defect attraction to the repulsion at suffi-
ciently strong magnetic fields. The appearance of such drastic
change in the flux pinning mechanism can occur when the
magnetic length LH = √

�0/2πH becomes comparable to a
typical size of the regions with increased disorder. Here �0 =
π h̄c/|e| is the magnetic flux quantum and H is the applied
magnetic field. In order to clarify this statement, let us, first,
recall the basic features of the superconductivity nucleation
at an isolated defect characterized by the diffusion constant
Dm, which is embedded into the superconductor with larger
diffusion coefficient D0 > Dm. For definiteness, we consider
a cylindrical defect with the cross-section radius R ∼ ξ0 ∝√

D0/Tc, and the system is subjected to the external magnetic
field aligned with the cylinder axis. It is well established that
mesoscopic regions with enhanced quasiparticle scattering re-
veal themselves in a change of the shape of superconducting
phase transition curve magnetic field H and temperature T
for superconducting nucleus localized at the defect [33–36]
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FIG. 1. Schematic superconducting phase diagram magnetic
field H and temperature T for disordered superconductor with the
diffusion coefficient D0 containing a mesoscopic region with sup-
pressed diffusion coefficient Dm < D0. Solid (dotted) line shows
typical Tc(H ) curve for a superconducting nucleus localized at
the defect (far away from it). Dashed-dotted line shows Tc(H )
curve for the bulk superconductor with the diffusion constant Dm.
Within the region I (II) of the phase diagram the defect attracts
(repels) Abrikosov vortices. Here �0 = π h̄c/|e| is the magnetic flux
quantum.

(see the solid line in Fig. 1). The resulting enhancement of
the superconducting critical temperature occurs at sufficiently
strong magnetic fields H � �0/2πR2, for which the size of
the superconducting nucleus is determined by the local value
of the diffusion coefficient Dm. Thus, the superconducting
H-T phase diagram can be divided into two regions (schemat-
ically shown as regions I and II in Fig. 1) characterized by
different spatial distribution of the Cooper-pair density (su-
perconducting condensation energy density). For rather weak
magnetic fields (region I), the above-mentioned core pinning
argument is correct, so that the regions with the increased dis-
order trap vortices. The situation can be qualitatively different
in the opposite case of strong magnetic fields (region II), for
which the Cooper-pair density and, correspondingly, the local
density of the superconducting condensation energy εc(r) can
be highly inhomogeneous throughout the sample. Indeed, in
this case the superconductivity is mainly developed at the de-
fect and exponentially suppressed outside. In other words, the
region with the increased disorder can be viewed as a meso-
scopic superconductor, and the maximum number of vortices,
which can be trapped by the defect, is mainly determined by
the relation between R and ξm(T ) ∝ √

Dm/(Tc0 − T ) [37–50].
For R � ξm(T ), the vortices should reside on the defect. One
can naturally expect that in this regime, which corresponds
to large defect sizes R � LH , the switching in the pinning
mechanism should be impossible. However, for rather small
defects R � ξm(T ) the vortices do not fit into the defect and
can escape from the region with the suppressed diffusion
coefficient. In other words, despite the fact that the vortex core
size can be larger outside the defect, it can be energetically
more favorable for vortices to escape from the defect and to
be pinned by the regions with significantly suppressed order
parameter and, thus, reduced superconducting condensation
energy density εc. Note also that the above arguments regard-

ing the switching in the pinning mechanism for an isolated
region with the increased disorder are also valid for the super-
conductors with embedded defect arrays.

To provide a quantitative consideration of the above
switching in the pinning mechanism, we study the features
of the superconductivity nucleation and the vortex phases
in superconductors with modulated disorder. Based on the
Ginzburg-Landau (GL) theory with spatially varying diffusion
coefficient, we show that a superconducting nucleus localized
near the region with the suppressed diffusion coefficient can
possess a nonzero vorticity. Corresponding analysis mainly
relies on the calculations of the H-T phase-transition lines
for several types of isolated inhomogeneities, which include
a cylindrically shaped region in the bulk material or a disk
in a thin superconducting film as well as a layer of a finite
thickness. We find a sudden change in the spatial structure
of the emerging superconducting order parameter at a cer-
tain point at the phase-transition line (H+, T +). For H < H+
(T > T +) a superconducting nucleus possesses a nonzero
winding number while the superconducting state with zero
vorticity appears for H > H+ (T < T +). Such peculiarities
of individual vortex trapping and anti-trapping at a single
defect area should reveal themselves in rearrangements of
the vortex arrays in macroscopic samples. To avoid a rather
complicated analysis of the vortex matter in samples with
random distributions of defect regions [51,52], we restrict
ourselves to the illustration of the switching phenomena with
regular spatial distributions of the impurity concentration. For
this purpose, we perform direct numerical simulations of the
vortex phases in several types of superconducting superstruc-
tures by solving the nonlinear GL equation. The effects of
the modulated disorder on the vortex arrangement have been
analyzed for two types of systems which include bulk su-
perconductors with an embedded square array of cylindrical
defects or thin superconducting films with a square array of
disks [see Fig. 2(a)] as well as the one-dimensional super-
conducting superlattices [see Fig. 2(b)]. It is remarkable that
the resulting vortex arrangements in these two geometrically
different types of superstructures possess some similarities. It
is shown that for sufficiently weak external magnetic fields,
all the vortices are pinned by the regions with the suppressed
diffusion coefficient. The opposite is true in the case of rather
strong magnetic fields, namely, the vortices are located only
between inhomogeneities. Within the intermediate field range,
the vortex structure consists of two types of vortices with
different core sizes located near the regions with the increased
impurity concentration and in-between them. As a next step,
we analyze the magnetic-field behavior of the critical current
near the switching transition in the limit d � LH . For this
purpose, we calculate the Josephson current between two
overlapping superconducting droplets with the same winding
numbers. It is demonstrated that the jumpwise change in
the winding number of the superconducting droplets at the
switching transition can lead to the change in the Josephson
coupling, and, correspondingly, to the change in the slope of
the critical current as a function of the external magnetic field.

It is important to note that the validity of our re-
sults is restricted to the case of weak disorder, so that
the superconducting critical temperature at zero magnetic
field is homogeneous throughout the sample [53,54]. This
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FIG. 2. Schematic of spatially periodic profiles of the diffusion
coefficient D(r) considered in this work. In the white (gray shaded)
regions D(r) = D0 (Dm) and D0/Dm > 1. (a) Shows a regular array
of the defects with a circular cross section defined by the defect ra-
dius R and the interdefect distance d . (b) Shows the one-dimensional
superlattice characterized by the layer thickness �c and the interlayer
distance d . For both types of systems we choose the external mag-
netic field H to be directed along the z axis.

regime can take place in a variety of systems including
superconductors irradiated with sufficiently low doses of ions
and hybrid systems composed of superconducting materials
with nearly the same critical temperatures and different dis-
order characteristics [55–64]. Note also that calculations of
the vortex arrangement performed in our work rely neither on
the assumption of a weak spatial modulation of the diffusion
coefficient [65] nor on specific assumptions about the struc-
ture of the vortex lattice [65,66]. Direct numerical solution of
the nonlinear GL equation allows to capture possible transi-
tions between different vortex configurations and to confirm
our qualitative arguments regarding the switching between
disorder-induced trapping and anti-trapping of vortices upon
the increase in the applied magnetic field.

This paper is organized as follows. In Sec. II we present
the model and briefly describe the methods. In Sec. III we
carry out the detailed analysis of the phase-transition lines
magnetic field and temperature for several types of isolated in-
homogeneities. In Sec. IV we present the results of numerical
simulations of the vortex phases in superconductors with spa-

tially periodic distribution of the impurity concentration. In
Sec. V we analyze the magnetic-field behavior of the critical
current in the vicinity of the transition into the anti-trapping
regime. Finally, the results are summarized in Sec. VI.

II. MODEL AND METHODS

Hereafter, we consider conventional superconductors with
spatially varying concentration of nonmagnetic impurities
described by an inhomogeneous diffusion coefficient. Our
theoretical approach involves two basic assumptions. First,
we assume that the disorder is too weak to affect the local
density of states and the BCS coupling constant, so that the
conditions of the Anderson theorem [53,54] are fulfilled. Sec-
ond, we consider the case when the magnetic field penetration
length greatly exceeds the spatial scale of the superconducting
correlations, which allows us to neglect the effects of the
Meissner screening. Our approach is based on the GL-type
theory. While GL theory is strictly valid near the transition
temperature, here we use it in the entire H-T phase diagram
as this simple and compact description is known to provide
qualitatively accurate results. Corresponding GL free energy
F = ∫

f (r)d3r reads as

f (r) = a|�|2 + γ (r)|�̂�|2 + b

2
|�|4. (1)

Here �(r) = |�(r)| exp[iχ (r)] is the superconducting order
parameter, a = −α(Tc0 − T ), b, and γ (r) are the GL coeffi-
cients, �̂ = (i∇ − 2πA/�0), and A is the vector potential.
Minimization of F with respect to �∗ gives the GL-type
equation

�̂ζ 2(r)�̂� − � + |�|2� = 0, (2)

where �(r) = �(r)/�∞, �∞ = √|a|/b, and ζ (r) is the su-
perconducting coherence length

ζ (r) =
√

γ (r)

|a| =
√

π h̄D(r)

8(Tc0 − T )
. (3)

In the following section we analyze the features of the su-
perconductivity nucleation at single isolated inhomogeneities
described by the following D(r) profiles:

D(ρ) = D0 + δD�(R − ρ), (4a)

D(x) = D0 + δD[�(x + �c/2) − �(x − �c/2)]. (4b)

Here ρ is the radial coordinate in a plane perpendicular to
the direction of the applied magnetic field, δD = −(D0 −
Dm), D0/Dm � 1, and �(x) is the Heaviside function. Cor-
responding analysis mainly relies on calculations of the
superconducting phase-transition lines magnetic field and
temperature which are determined from the lowest eigenvalue
of the problem

�ξ 2(r)�� = E0�, (5)

where E0(H ) = 1 − Tc(H )/Tc0, Tc is the superconducting
critical temperature, and ξ (r) is the zero-temperature super-
conducting coherence length defined by Eq. (3) for T = 0.
Note that the nucleation problem (5) under consideration
coincides with the problem of finding the lowest-energy
eigenvalue E0 for a spinless particle with charge 2e and in-
homogeneous mass m(r) ∝ 1/D(r) in the external magnetic
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field. The solution of this problem in the case of the homo-
geneous mass is given in the standard textbooks on quantum
mechanics (see, e.g., Ref. [67]). Numerical solution of the
eigenvalue problem (5) has been carried out by matching the
exact solutions of the linearized GL equation in the regions
with a constant diffusion coefficient (see Appendix A for the
details).

The analysis of the vortex configurations in superconduct-
ing superstructures in Sec. IV is based on numerical solutions
of the nonlinear GL equation (2). For this purpose we employ
the relaxation method with an addition of the time deriva-
tive ∂�/∂t into the right-hand side of Eq. (2) and look for
the solution �(x, y), which does not depend on time. We
use the implicit Crank-Nicolson integration scheme with a
linearization of the nonlinear |�|2� term for the time inte-
gration [68]. The link variable approach [69] is used for the
spatial discretization of the GL equation on a square simu-
lation area x, y ∈ [0, L], where L is an integer multiple of the
superstructure period. In numerical simulations we choose the
gauge A = H (x − Lx/2)ŷ, and the magnitude of the external
magnetic field H is parametrized by an integer number nq of
the magnetic flux quanta �0 piercing through the simulation
area HL2 = nq�0. The periodic boundary conditions for the
Cooper-pair wave function, which simulate the periodicity
of the spatial profiles of the diffusion coefficient, have the
following form [7]:

�(L, y) = exp (−2π iηx )�(0, y), (6a)

�(x, L) = exp
(−2π iηy

)
�(x, 0). (6b)

Here ηx(y) = HLy/�0 + Cx, ηy = Cy, and Cx,y are real con-
stants, which can be determined from the condition that the
superfluid velocity vs ∝ [A + (�0/2π )∇χ ] averaged over the
simulation area is zero. For our choice of the gauge and
the simulation region this condition fixes Cx = −nq/2 and
Cy = 0. For the calculations of the upper critical magnetic
field Hc2(T ) in superconductors with regular defect arrays we
determine the lowest eigenvalue of the problem (5) via nu-
merical diagonalization of the spatially discretized differential
operator �ξ 2(r)� with the boundary conditions (6).

III. PHASE-TRANSITION LINES FOR ISOLATED
SUPERCONDUCTING DROPLETS

In this section we demonstrate the possibility of switching
in the pinning mechanism for isolated regions with increased
disorder. In particular, we consider the phase-transition lines
and the spatial structure of the emerging superconducting
order parameter for the two- and one-dimensional profiles of
the diffusion coefficients (4a) and (4b).

We start our study from the two-dimensional case and take
an exemplary D(r) profile (4a). Choosing the radial gauge
A = Hρϕ0/2, one finds the solution of Eq. (5) as �(r) =
ψn,kz (ρ) exp(inϕ + ikzz), and the minimal eigenvalue of the
problem (5) corresponds to kz = 0. The radial part of the
superconducting order parameter ψn,kz=0(ρ) can be expressed
via the generalized Laguerre polynomial (see Appendix A).
Note that in the case δD = 0, the states with winding numbers
n � 0 are degenerate [67]. The states with n < 0 describe the
standard vortices, that hold a flux parallel to the field. This
follows from the fact that the contribution to the supercurrent

FIG. 3. Phase-transition lines Tc(H ) for the superconducting
droplets with vorticities n = 0, −1, −2, −3 for the two-dimensional
D(r) profile (4a). (a), (b) Correspond to R = 2ξ0 and ξ0, respectively,
and ξ0 = √

π h̄D0/8Tc0. We take D0/Dm = 3 to produce the plots.
Lines show the numerical results whereas filled circles and squares
correspond to the results of the perturbation theory (7).

due to the phase gradient of the order parameter is δ jϕ ∝ en.
In our case e = −|e|, H is directed along the z axis, from
which we get δ jϕ > 0 for n < 0. Below we show that the
above-mentioned degeneracy of the Landau levels can be
lifted due to the spatial modulation of the diffusion coeffi-
cient. Indeed, treating the spatial modulation of the diffusion
coefficient within the first-order perturbation theory, we obtain
the phase-transition lines Tc(H ) for superconducting droplets
with vorticities n = 0 and −1:

T n=0
c (H )

Tc0
≈ 1 − ξ 2

0

L2
H

[
1 + 1

8

δD

D0

(
R

LH

)4
]
, (7a)

T n=−1
c (H )

Tc0
≈ 1 − ξ 2

0

L2
H

[
1 + 1

2

δD

D0

(
R

LH

)2
]
. (7b)

Here ξ0 = √
π h̄D0/8Tc0 and LH = √

�0/2πH is the mag-
netic length. Note that the validity of Eqs. (7a) and (7b) is
also restricted to the limit R/LH 
 1. The above expressions
indicate that for rather weak magnetic fields, superconduc-
tivity nucleates in the form of a vortex pinned by the region
with increased impurity concentration. The results of numer-
ical calculations of Tc(H ) curves for droplets with vorticities
n = 0, −1, −2, and −3 are shown in Fig. 3. We observe in our
numerical simulations that the states with positive winding
numbers have higher energies (lower critical temperatures)
and are irrelevant for the calculations of the phase-transition
lines. Figures 3(a) and 3(b) correspond to R = 2ξ0 and ξ0,
respectively. We take D0/Dm = 3 to produce the plots. One
can see that the results in Fig. 3(a) reveal a sudden change
in the spatial structure of the emerging superconducting or-
der parameter at a certain point at the phase-transition line
(H+, T +). For the two-dimensional D(r) profile (4a) the
switching field H+ is defined from the equation

T n=0
c (H+) = T n=−1

c (H+). (8)

Correspondingly, for H < H+ (T > T +) the superconducting
nucleus has the form of a singly quantized vortex pinned by
the region with the suppressed diffusion coefficient whereas
the localized superconducting state with zero vorticity appears
for H > H+ (T < T +). Thus, at rather strong magnetic fields
the vortex escapes from the defect region. Comparing the
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FIG. 4. Typical plots of H+ versus R for the two-dimensional
D(r) profile (4a) and D0/Dm = 3, 6, 9, 12. Here the switching
field H+ is defined by the condition T n=0

c (H+) = T n=−1
c (H+). Filled

symbols are the results of the numerical calculations. Solid lines
show the results of the fitting of H+(R) dependencies with the
function a/(R/ξ0 )2, where a = 1.297, 0.829, 0.5895, and 0.4457 for
D0/Dm = 3, 6, 9, and 12, respectively.

results in Figs. 3(a) and 3(b), one can see that the position
of the intersection point (H+, T +) depends on the size of a
region with the suppressed diffusion coefficient. Analytical
estimates for H+ and T + can be obtained by substituting
Eqs. (7) into Eq. (8), which gives

H+ = �0/[2π (R/2)2], (9a)

T + = Tc0[1 − (2ξ0/R)2]. (9b)

These relations imply that the switching in the pinning mech-
anism can occur when the size of the region with the increased
disorder becomes comparable with the size of the super-
conducting nucleus. Indeed, the first and second relations in
Eqs. (9) can be rewritten as LH = R/2 and ξ0/

√
1 − T/Tc0 =

R/2, respectively. For rather small R values, the supercon-
ducting nucleus should possess a nonzero vorticity within
the full temperature and magnetic field range, which is in
agreement with the results shown in Fig. 3(b). Note that the
values H+, T + do not depend on the ratio D0/Dm only within
the perturbation theory [see the above expressions (9)]. This
dependence on the ratio of the diffusion coefficients clearly
reveals itself in our numerical calculations as it is shown in
Fig. 4.

Let us proceed with the analysis of the one-dimensional
D(r) profile (4b). Choosing the Landau gauge A = (0, Hx, 0),
the solution of Eq. (5) can be presented in the form �(r) =
ψky,kz (x) exp[i(kyy + kzz)], and the minimal eigenvalue of the
problem (5) corresponds to kz = 0. The function ψky,kz=0(x)
can be expressed via the parabolic cylinder functions (see
Appendix A). In the case δD = 0 the Landau levels do not
depend on ky or, in other words, the Landau levels are degen-
erate with respect to the center of the orbit. This degeneracy is
lifted in the presence of the spatial modulation of the diffusion
coefficient. Indeed, within the first-order perturbation theory
over the spatial modulation of the diffusion coefficient and in
the limit �c/LH 
 1, the dispersion of the lowest Landau level

FIG. 5. (a) Minimal eigenvalue E0 of the problem (5) for the one-
dimensional D(r) profile (4b) versus ky for H/(�0/2πξ 2

0 ) = 0.6, 0.8,
1, 1.2. (b) Shows the resulting phase-transition curve Tc(H ) (blue
solid line), ky = q values maximizing the critical temperature (red
dashed-dotted line), and the temperature dependence of the ratio
C+/C− corresponding to the minimum of the Abrikosov parameter
(13) for a trial function (12). Only the branch with positive q is
shown. We take D0/Dm = 10 and �c = 1.4ξ0 to produce the plots.

is determined by the function

E0(ky) ≈ ξ 2
0

L2
H

− 2
(
ξ 2

0 − ξ 2
m

)
√

πL2
H

�c

LH
(kyLH )2e−(kyLH )2

, (10)

which possesses two degenerate minima at ky = ±1/LH . Here
ξm = √

π h̄Dm/8Tc0. Correspondingly, the spatial modulation
of the diffusion coefficient stabilizes superconducting nuclei,
which are centered at x = ∓LH . This picture changes qualita-
tively upon the increase in the external magnetic field. To go
beyond the validity range of Eq. (10), we carry out numerical
calculations of the phase-transition lines

Tc/Tc0 = 1 − min
ky

[E0(ky)]. (11)

We find the lowest eigenvalue E0(ky) of the problem (5) and
also extract the corresponding ky = q values, which minimize
E0 (maximize the critical temperature Tc). Typical E0(ky)
curves for H/(�0/2πξ 2

0 ) = 0.6, 0.8, 1, and 1.2 are presented
in Fig. 5(a). We take D0/Dm = 10 and �c = 1.4ξ0 to produce
the plots. One can see that the increase in the applied mag-
netic field leads to a qualitative change in the nature of the
minimization for E0 with respect to ky. At a certain value of
the magnetic field H0, the positions of the minima on E0(ky)
curves exhibit a jumpwise change from finite values to zero,
which corresponds to a jumpwise change in the position of
the superconducting nucleus. For H < H0 (H > H0) the su-
perconducting nucleus is centered at x ≈ ±LH (x = 0). Note
that rough estimates for H0 and T0 are given by Eqs. (9)
with the replacement R → �c. The resulting phase-transition
curve Tc(H ) along with the corresponding q(Tc) dependence
are shown in Fig. 5(b). The obtained results indicate that
a jumpwise change on q(Tc) curve reveals itself through a
change in the slope on the Tc(H ) curve.

Let us now specify the relation between the droplets and
vorticity. For the one-dimensional D(r) profile the solution of
the linearized Ginzburg-Landau problem gives us the droplet
described by the superconducting order parameter of the
form �(r) = ψky (x) exp[ikyy]. The function ψky (x) is local-
ized within a strip of the thickness ∼LH , which is centered
at x = x0 = −kyL2

H . This droplet is vortex free and, thus, we
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can find the positions of vortices only taking the superposition
of several one-dimensional droplets. In the vicinity of the
phase-transition line, one can obtain the spatial structure of
the superconducting order parameter by minimizing the GL
free energy (1) for a trial function [70]

�(r) = C+ψky (x)eikyy + C−ψky (−x)e−ikyy, (12)

where the constants C± can be chosen to be real numbers. This
procedure is equivalent to the minimization of the Abrikosov
parameter

βA =
∫ |�(r)|4d3r

(
∫ |�(r)|2d3r)2

. (13)

As a next step, we substitute ky = q(Tc) and ψky (x) = ψq(x)
from numerical calculations into the above equation and per-
form the minimization of βA with respect to the ratio C+/C−
(or equivalently C−/C+). The results of such procedure are
shown in Fig. 5(b), in which we plot C+/C− values corre-
sponding to the minimum free energy in the vicinity of the
superconducting phase transition. Thus, the spatial distribu-
tion of the Cooper-pair wave function can be characterized
as follows. For H < H+ (T > T +) we get C+ = C−. In this
regime, the layer with the suppressed diffusion coefficient
hosts a chain of Abrikosov vortices centered at x = 0. In the
opposite case H > H+ (T < T +) the vortices escape from
the regions with increased disorder. Indeed, within the in-
termediate magnetic field and temperature range H0 < H <

H+ (T0 < T < T +) one gets a doubly degenerate state char-
acterized by the following sets of coefficients in Eq. (12):
C+ = 0, C− = 0 and C+ = 0, C− = 0. In other words, the
superconducting dropet is shifted either to the left or to the
right from the center of the layer with the suppressed diffu-
sion coefficient. Finally, in the strong-field (low-temperature)
regime H > H0 (T < T0), the maximum modulus of the su-
perconducting order parameter is at the center of the layer
with the increased impurity concentration. Note that the rel-
ative positions of the points (H+, T +) and (H0, T0) at the
phase-transition line are governed by the ratio of the diffusion
constants D0/Dm and the thickness of the layer with the sup-
pressed diffusion coefficient �c. In numerical simulations we
observe that for rather large D0/Dm ratios and small �c values
H+ < H0 (T + > T0) whereas in the opposite case these points
coincide H+ = H0 (T + = T0). This fact is illustrated in Fig. 6,
in which we show the behavior of the characteristic magnetic
fields H0(�c) and H+(�c) for several ratios of the diffusion
constants D0/Dm = 3, 6, 9, and 12.

Note that that the main results of this section are not
specific for the chosen stepwise profiles of the diffusion co-
efficient. We have checked that corresponding results are also
valid for smoothened D(r) distributions with a finite spatial
scale.

IV. VORTEX PHASE TRANSITIONS
IN SUPERCONDUCTING SUPERSTRUCTURES

A. Square array of cylindrical defects

We proceed with a discussion of the results of numeri-
cal simulations of the vortex states. Here we consider the
bulk superconductors containing containing square array of

FIG. 6. Typical plots of H+ and H0 versus �c for the one-
dimensional D(r) profile (4b) and D0/Dm = 3, 6, 9, and 12. Here H0

denotes the magnetic field, at which Tc(q) = Tc(0). The switching
field H+ is the highest magnetic field, at which the minimization
of the Abrikosov parameter (13) for a trial function (12) yields
C+ = C−.

cylindrical defects with the suppressed diffusion constant
[see Fig. 2(a)]. The obtained results are also relevant for
thin superconducting films with an embedded array of disks
provided that the film thickness is much smaller than the
superconducting coherence length and the magnetic field pen-
etration depth. Note that the numerical results presented in this
subsection were obtained for the case R ∼ d . The additional
numerical data showing typical vortex configurations for the
increased d/R ratio are provided in Appendix B.

Let us, first, discuss the regime of rather weak external
magnetic fields |H | � H∗, where H∗ is defined from the
condition that the total magnetic flux piercing through the
simulation area is equal to the number of defects (the so-called
first matching field)

H∗ = �0/(2R + d )2. (14)

The resulting color plots of the absolute value of the Cooper-
pair wave function |�(x, y)| for several numbers of the
magnetic flux quanta in the computational cell nq = 8, 12, and
16 are shown in Fig. 7. One can see that for nq = 8 [Fig. 7(a)],
the vortices form a square lattice with twice the periodicity of
the diffusion coefficient distribution. Upon the increase in the
magnetic flux, the vortices are still located near the regions
with the suppressed diffusion coefficient whereas their cores
are slightly shifted away from the axes of the cylinders due to
the intervortex interaction [Fig. 7(b)]. Right at the first match-
ing field H = H∗ the resulting vortex lattice perfectly matches
the D(r) distribution [Fig. 7(c)]. In the considered weak-field
regime the vortex-occupation number for a particular defect
no (the number of vortices sitting on a defect) can take the
following values: no = 0, 1.

Typical spatial profiles of the superconducting order pa-
rameter in the opposite case |H | > H∗ are presented in Fig. 8.
Figures 8(a)–8(d) show the color plots of the absolute value
of the pair wave function for nq = 24, 32, 48, and 64, respec-
tively. Note that in Fig. 8(d) we have introduced the upper
cutoff at |�| = 0.08 for better visualization of the interstitial
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FIG. 7. Color plots of the absolute value of the Cooper-pair
wave function |�| for periodic D(r) profile shown in Fig. 2(a). (a)–
(c) Correspond to nq = 8, 12, and 16, respectively, where nq is the
number of the magnetic flux quanta in the computational cell. Black
dashed-dotted lines highlight the boundaries between the regions
with different diffusion coefficient. The parameters are T = 0.8Tc0,
D0/Dm = 3, R = 1.5ξ0, and d = 2ξ0. In comparison with Hc2(T ) the
results in (a), (b), and (c) refer to H/Hc2(T ) = 0.35, 0.53, and 0.74,
respectively, and H∗/Hc2(T ) = 0.74. In the temperature-dependent
length units R/ξ0(T ) = 0.67, d/ξ0(T ) = 0.89, R/ξm(T ) = 1.16, and
d/ξm(T ) = 1.54.

vortices. For clarity, we also reveal the color plots of the phase
of the Cooper-pair wave function χ (x, y)/π in Figs. 8(e)–8(h).
In the case when the vortices are located in the regions with
significantly suppressed Cooper-pair density, their arrange-
ment can be clearly seen on the spatial profiles of the phase
χ (x, y). The obtained results show the way the vortex struc-
ture is modified upon further increase in the external magnetic
field. In particular, for nq = 24 [Figs. 8(a) and 8(e)], we see

that the half of the defects now host two Abrikosov vortices
while the vortex-occupation number for the rest of the defects
no = 1. Right at the second matching field nq = 32 [Figs. 8(b)
and 8(f)] each region with the suppressed diffusion coefficient
hosts a two-vortex molecule. One can see that for nq = 48
[Figs. 8(c) and 8(g)] there also appear singly quantized inter-
stitial vortices which have the arrangement of a square lattice
with the same lattice constant as for the D(r) distribution. In a
qualitative agreement with our previous results regarding the
nucleation of superconductivity at isolated inhomogeneities
(see Fig. 3), we observe that at sufficiently strong magnetic
fields the vortex-occupation number for all of the defects
becomes zero. Correspondingly, all of the vortices are located
only between the defect regions. Typical spatial distribution
of the superconducting order parameter for this case is shown
in Figs. 8(d) and 8(h). One can clearly see that the interstitial
vortices form a square lattice with four vortices per unit cell.

Our main findings in this subsection are summarized in
Fig. 9, where we plot the resulting phase diagram magnetic
field H and temperature T for the considered set of the struc-
ture parameters D0/Dm = 3, R = 1.5ξ0, and d = 2ξ0. Solid
line shows the temperature behavior of the upper critical mag-
netic field Hc2. Dotted line shows the first matching field H∗.
As a result, we find that the Hc2(T ) line possesses two features
one of which is at the first matching field (H∗, T ∗) and the
other one is in the strong-field regime (H+, T +). Based on
the results of numerical simulations, we identify two regions
on the phase diagram with qualitatively different vortex ar-
rangement (denoted as the regions I and II in Fig. 9). Within
the region I the defects attract Abrikosov vortices. Indeed,
for rather weak magnetic fields |H | < H∗ all the vortices are
pinned by the regions with the suppressed diffusion coeffi-
cient. In the opposite case |H | > H∗ (region I) the vortices
are located at the defects and in-between them. The switching
between the vortex-defect attraction to the repulsion occurs
at rather strong magnetic fields (region II). In this case all
the vortices are located only between inhomogeneities (the
vortices are pinned by the regions with larger diffusion co-
efficient). Note also that for the considered set of parameters,
the values H+ and T + for a superstructure deviate from the
results for an isolated defect due to a rather small interde-
fect distance d . In particular, we get H+/(�0/2πξ 2

0 ) ≈ 0.89
and T +/Tc0 ≈ 0.42 for a superstructure (see Fig. 9) whereas
the solution of the problem (5) with D(r) profile (4a) and
D0/Dm = 3, R = 1.5ξ0 gives H+ ≈ 0.58 and T +/Tc0 ≈ 0.54.

B. One-dimensional superconducting superlattice

We continue with analyzing the vortex phases in one-
dimensional superconducting superlattice subjected to the
in-plane magnetic field [see Fig. 2(b)]. The results of nu-
merical simulations presented in this subsection have been
obtained for a square computational cell covering three struc-
ture periods and the parameter set D0/Dm = 3, �c = 2ξ0, and
d = 4ξ0.

Typical spatial profiles of the superconducting order pa-
rameter for several values of the external magnetic fields are
shown in Fig. 10. In particular, Figs. 10(a)–10(d) reveal the
color plots of the absolute values of the Cooper-pair wave
function |�(x, y)| for nq = 12, 30, 40, and 52, respectively.
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FIG. 8. Typical spatial profiles of the pair wave function for periodic D(r) distribution shown in Fig. 2(a). (a)–(d) Color plots of |�(x, y)|.
(e)–(h) Color plots of the phase of the Cooper-pair wave function χ (x, y)/π . Panels (a) and (e), (b) and (f), (c) and (g), and (d) and (h)
correspond to nq = 24, 32, 48, and 64, respectively. In (d) we have introduced the upper cutoff at |�| = 0.08 for better visualization of the
interstitial vortices. The parameters are T = 0.35Tc0, D0/Dm = 3, R = 1.5ξ0, and d = 2ξ0. In comparison with Hc2(T ) the results in (a) and
(e), (b) and (f), (c) and (g), and (d) and (h) refer to H/Hc2(T ) = 0.34, 0.45, 0.68, and 0.91, respectively, and H∗/Hc2(T ) = 0.23. In the
temperature-dependent length units R/ξ0(T ) = 1.21, d/ξ0(T ) = 1.61, R/ξm(T ) = 2.1, and d/ξm(T ) = 2.79.

Note that in Fig. 10(d) we have introduced the upper cutoff
at � = 0.01 for better visualization of the interstitial vortices.
Corresponding color plots of the phase of the superconducting
order parameter χ (x, y)/π are shown in Figs. 10(e)–10(h).
For rather weak applied magnetic fields nq = 12 [Figs. 10(a)
and 10(e)], we find that the vortices are pinned by the regions

FIG. 9. Typical magnetic field and temperature phase diagram
for superconductors with periodic D(r) profile shown in Fig. 2(a).
Solid line shows the temperature behavior of the upper critical mag-
netic field Hc2. Dotted line shows the first matching field H∗. The
parameters are D0/Dm = 3, R = 1.5ξ0, and d = 2ξ0. Filled circles
represent the results of numerical simulations. In the region I (II)
the regions with the suppressed diffusion coefficient attract (repel)
vortices.

with the suppressed diffusion coefficient. The increase in H
leads to the rearrangement of the resulting vortex structure.
One can see from Figs. 10(b) and 10(f) [see also Figs. 10(c)
and 10(g)] that within the intermediate field range the vortex
structure consists of two types of vortices with different core
sizes located both in the regions with the suppressed diffu-
sion constant and in-between them. In a qualitative agreement
with our previous results regarding the superconductivity nu-
cleation at isolated defects [see Fig. 5(b)], we get that for
rather strong magnetic fields the maximum pair density is
reached in the layers with the increased impurity concentra-
tion whereas the layers with higher diffusion constant host
chains of Abrikosov vortices [Figs. 10(d) and 10(h)].

Our main results of this subsection are presented in Fig. 11
where we plot a typical superconducting phase diagram
magnetic field and temperature for the one-dimensional su-
perlattice [see Fig. 2(b)]. Solid line shows the temperature
behavior of the parallel upper critical magnetic field Hc2‖(T )
whereas the dotted line shows the characteristic magnetic
field, below which the vortices are located only in the regions
with increased disorder. It is interesting to note that the result-
ing phase diagrams of one-dimensional superlattice possess
some similarities with previously considered case of regular
arrays of cylindrical defects or disks. Indeed, the resulting
phase diagrams in Fig. 11 can be divided into two regions
with qualitatively different vortex arrangement. Within the
region I the defects attract Abrikosov vortices. In particular,
for rather weak magnetic fields the vortices are located only
inside the regions with increased disorder. Within the inter-
mediate field range (region I) the vortex structure is formed
by two types of vortices with different core sizes located both
in the regions with the suppressed diffusion coefficient and
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FIG. 10. Typical spatial profile of the Cooper-pair wave function for periodic D(r) distribution shown in Fig. 2(b). (a)–(d) Color plots of
|�(x, y)|. (e)–(h) Color plots of the phase of the order parameter χ (x, y)/π . (a) and (e), (b) and (f), (c) and (g), and (d) and (h) correspond to
nq = 12, 30, 40, and 52, respectively. In (d) we introduced the upper cutoff at |�| = 0.01 for better visualization of the interstitial vortices.
The parameters are T = 0.4Tc0, D0/Dm = 3, �c = 2ξ0, and d = 4ξ0. In comparison with Hc2(T ) the results in (a) and (e), (b) and (f), (c) and
(g), and (d) and (h) refer to H/Hc2(T ) = 0.2, 0.51, 0.69, and 0.9, respectively. In the temperature-dependent length units �c/ξ0(T ) = 1.55,
d/ξ0(T ) = 3.1, �c/ξm(T ) = 2.68, and d/ξm(T ) = 5.36.

in-between them. Finally, at rather strong magnetic fields (re-
gion II) vortices are pinned by the regions with larger diffusion
coefficient. Note also that for the chosen parameter set, the
values H+ and T + for the one-dimensional superlattice appear
to be rather close to the results for an isolated defect due
to a rather large interlayer distance d . In particular, we get
H+/(�0/2πξ 2

0 ) ≈ 0.89 and T +/Tc0 ≈ 0.42 for a superstruc-

FIG. 11. Typical magnetic field and temperature phase diagram
for the one-dimensional superconducting superlattice [see Fig. 2(b)].
Solid line shows the temperature behavior of the upper critical
magnetic field Hc2. Dotted line shows the characteristic magnetic
field, below which the vortices are located only in the regions with
increased disorder. The parameters are D0/Dm = 3, �c = 2ξ0, and
d = 4ξ0. Filled circles represent the results of numerical simulations.
In the region I (II) the defects attract (repel) Abrikosov vortices.

ture (see Fig. 11) whereas the solution of the problem (5)
with the D(r) profile (4b) and D0/Dm = 3, �c = 2ξ0 gives
H+/(�0/2πξ 2

0 ) ≈ 0.84 and T +/Tc0 ≈ 0.48.
Experimentally, the phenomenon of switching from the

vortex-defect attraction to the repulsion described in our
work and the corresponding rearrangement of the vortex lat-
tice can be probed by common vortex imaging techniques,
which include the Bitter decoration technique [13,71,72],
electron holography [73], scanning probe microscopy
[15,74–77], Lorentz microscopy [78], and magneto-optical
imaging [79]. Certainly, the use of these imaging techniques
for the observation of the vortex lattice structure can be ham-
pered in the high-field regime. In the next section we consider
an alternative way to observe the switching transition through
the measurements of the critical current density as a function
of the applied magnetic field Jc(H ). This kind of measure-
ments is widely used for detection of the pinning peculiar-
ities in different nanostructured superconductors (see, e.g.,
Refs. [5,7–10,12,16,80–82]).

V. CRITICAL JOSEPHSON CURRENT FOR A PAIR
OF SUPERCONDUCTING DROPLETS

In this section we analyze the behavior of the critical
current versus the magnetic field for superconductors with
modulated disorder in the vicinity of the switching transi-
tion. For simplicity, we consider the case d � LH , for which
the superconductivity, first, nucleates near the defect regions
(see, e.g., Fig. 3) and is exponentially suppressed outside.
In other words, in the vicinity of the phase-transition line
the superconducting state is a set of the superconducting
droplets, which are coupled by the Josephson interaction. The
Josephson current between the droplets exponentially decays
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FIG. 12. (a) Schematic picture of a pair of defects (labeled 1 and 2) with a circular cross section and the diffusion coefficient Dm embedded
into the superconductor with the diffusion constant D0 > Dm. Here |r0| = (2R + d ), where R is the defect radius and d is the interdefect
distance. (b) Typical phase transition curves magnetic field and temperature for superconducting nuclei with vorticities n = 0 and −1 localized
at a single defect. Black arrow highlights the magnetic field range, within which we plot Ic(H ) curves. (c) Corresponding magnetic field
behavior of the critical Josephson current Ic for two overlapping nuclei with vorticities n = 0 and −1. We take D0/Dm = 3 and R = 2.5ξ0 to
produce the plots (b) and (c). In (c) we also choose d = 3ξ0 and T = 0.65Tc0.

upon the increase in the applied magnetic field or the inter-
defect distance. One can expect that a jumpwise change in
the vorticity of the superconducting islands at the switching
transition can lead to the change in the Josephson coupling
and, correspondingly, to the change in the slope of the critical
Josephson current as a function of the external magnetic field.
To illustrate this idea, here we consider a rather simple case of
two cylindrical defects or disks [see Fig. 12(a)] and calculate
the Josephson current for a pair of overlapping superconduct-
ing nuclei with the same winding numbers

�(r) = C[ψn(r) + eiθ (r)ψn(r − r0)], (15a)

θ (r) = χ + 2π

�0

∫ 2

1
A dl. (15b)

Here C is the normalization constant, ψn(r) is a solution of
the linearized GL equation (5) for the gauge A = Hρϕ0/2
and a given vorticity n, χ is the superconducting phase dif-
ference, and the vector r0 with |r0| = (2R + d ) parametrizes
the position of the center of the second defect [see Fig. 12(a)].
The integration in Eq. (15b) is over a straight line from the
center of the first defect to the center of the second one. Some
analytical progress can be made by treating the modulation
of the diffusion coefficient within the first-order perturbation
theory. As a result, we get the following expressions for
the Josephson energy for two superconducting droplets with
vorticities n = 0 and −1 (see Appendix C for details of the
derivation):

En=0
J (χ ) = −α2T 2

c0

b
8πLz cos(χ )L2

H e−(2R+d )2/4L2
H τ 2

0 (H ),

(16a)

En=−1
J (χ ) = −α2T 2

c0

b
16πLz cos(χ )L2

H e−(2R+d )2/4L2
H

×
[

1 − (2R + d )2

2L2
H

]
τ 2
−1(H ), (16b)

where Lz denotes the thickness of the superconducting film,
τn(H ) = 1 − T n

c (H )/Tc0 and T n
c (H ) is the critical temperature

of the superconducting nucleus with vorticity n localized at
a single isolated defect region. The perturbation theory de-
scribed in Sec. III yields

τ0(H ) = ξ 2
m

L2
H

+
(
ξ 2

0 − ξ 2
m

)
L2

H

(
1 + R2

2L2
H

)
e−R2/2L2

H , (17a)

τ−1(H ) = ξ 2
m

L2
H

+
(
ξ 2

0 − ξ 2
m

)
L2

H

(
1 + R4

4L4
H

)
e−R2/2L2

H . (17b)

Comparing the expressions (16a) and (16b), one can clearly
see that under the model assumption (d � LH ), the absolute
value of the Josephson energy for the droplets with unit vor-
ticity appears to be larger than in the case of nuclei with zero
vorticity. This result can be explained by the fact that the
maximum modulus of the superconducting order parameter
for a droplet with unit vorticity is shifted away from the center
of the defect at the distance ∼LH . Interestingly, Eqs. (16)
point out that for the case of nuclei with zero (unit) vorticity,
the equilibrium superconducting phase difference between
the superconducting droplets χ = 0 (χ = π ). In Fig. 12(c)
we present typical dependencies of the critical Josephson
current Ic ∝ |EJ (0)| versus the magnetic field obtained from
Eqs. (16). For clarity, we also show the corresponding super-
conducting phase-transition curves for superconducting nuclei
with vorticities n = 0 and −1 localized at a single isolated
defect region in Fig. 12(b). We take D0/Dm = 3 and R =
2.5ξ0 to produce Figs. 12(b) and 12(c). For Fig. 12(c) we also
choose d = 3ξ0 and T = 0.65Tc0. Black arrow in Fig. 12(b)
highlights the magnetic field range, within which we plot
Ic(H ) curves. The obtained results demonstrate that two Ic(H )
curves for the droplets with zero and unit vorticites necessarily
cross in the vicinity of the transition into the anti-trapping
regime. Therefore, the predicted switching from the vortex-
defect attraction to the repulsion can manifest itself through
the change in the slope of the critical current as a function of
the external magnetic field.

In the context of our results, it is interesting to note that
experimental measurements of the critical current density
versus the magnetic field in Nb/NbZr multilayers [61,62]
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identified two temperature-dependent lines HP(T ) and HL(T )
on the H-T phase diagram of such devices (see Fig. 1 in
Ref. [62]). In the regime when both the applied current and
the magnetic field lie in the plane of the layers and perpen-
dicular to each other, the resulting Ic(H ) dependence has a
peak at the HP(T ) line while a change in the slope of the
Ic(H ) dependence occurs at the HL(T ) line. Presumably, the
appearance of the peak on Ic(H ) curve at weak magnetic fields
can be related to the well-known commensurability effects
(see, e.g., Refs. [5–12,14,16,76–88]), which manifest them-
selves through the enhancement of the pinning properties of
the sample when the vortex lattice matches the defect array
(vortex density and the defect density are integer multiples of
each other). On the other hand, it is tempting to associate the
change in the slope of Ic(H ) curve at rather strong magnetic
fields with the switching from the vortex-defect attraction to
the repulsion.

VI. SUMMARY

To sum up, we have uncovered and explained the phe-
nomenon of switching between the vortex-defect attraction
to the repulsion in superconductors with modulated disorder.
It has been shown that a superconducting nucleus localized
near the region with the suppressed diffusion coefficient can
possess a nonzero vorticity whereas the increase in the ap-
plied magnetic field can result in the transition into the state
with zero winding number. We have demonstrated the appear-
ance of this switching phenomenon in superconductors with
several periodic spatial profiles of the diffusion coefficient.
Our results clarify the vortex arrangement in several classes
of the superconducting materials including one-dimensional
superlattices and nanopatterned superconductors with regular
arrays of the defects characterized by the increased concentra-
tion of nonmagnetic impurities. It is shown that the switching
into the anti-trapping regime can manifest itself through the
change in the slope of the critical current as a function of the
applied magnetic field.

ACKNOWLEDGMENTS

We thank V. L. Vadimov, A. A. Bespalov, I. M. Khay-
movich, A. V. Samokhvalov, and I. A. Shereshevskii for
stimulating discussions. This work involving the analysis of
the phase diagrams in superconductors with modulated disor-
der was supported by the Russian Science Foundation (Grant
No. 21-12-00409). The work involving the analysis of the
magnetic field behavior of the critical current was supported
by the State Contract of Ministry of Science and Higher
Education of Russian Federation Grant No. 075-03-2022-
106 (Project No. FSMG-2023-0011) of Moscow Institute of
Physics and Technology.

APPENDIX A: DETAILS OF NUMERICAL
CALCULATIONS OF THE PHASE-TRANSITION LINES

Here we provide the details of numerical calculations of the
phase-transition lines magnetic field and temperature for de-
terministic D(r) profiles (4). Considering the two-dimensional
profile (4a) and choosing the radial gauge A = Hρϕ0/2, we

seek the solution of Eq. (5) in the form

�(r) = ψn(ρ)einϕ. (A1)

Substitution of Eq. (A1) into Eq. (5) yields the following
equations for the radial part of the Cooper-pair wave function
in the regions with a constant diffusion coefficient:

Hn(ρ)ψn(ρ) = [E0/ξ
2(ρ)]ψn(ρ), (A2a)

Hn(ρ) =
[
− 1

ρ

d

dρ

(
ρ

d

dρ

)
+ 1

ρ2

(
n + ρ2

2L2
H

)2]
.

(A2b)

Here ξ (ρ) = ξ0 (ξm) for ρ > R (ρ < R), and ξ0,m =√
π h̄D0,m/8Tc0. The solutions of Eq. (A2) read as

ψ I
n = C1e−ρ2/4L2

H ρ|n|L|n|
am

(
ρ2

2L2
H

)
, (A3a)

ψ II
n = C2e−ρ2/4L2

H ρ|n|U
(

−a0, |n| + 1,
ρ2

2L2
H

)
, (A3b)

where the region I (II) is defined by ρ < R (ρ > R), La
n (x)

is the generalized Laguerre polynomial, U (a, b, x) is the
Tricomi’s confluent hypergeometric function (confluent hy-
pergeometric function of the second kind) [89], and

a0,m(n) = E0L2
H

2ξ 2
0,m

− 1 + n + |n|
2

. (A4)

Imposing the boundary conditions

ψ I
n(R) = ψ II

n (R), (A5a)

Dm
dψ I

n

dρ

∣∣∣∣
ρ=R

= D0
dψ II

n

dρ

∣∣∣∣
ρ=R

, (A5b)

on the solutions (A3), we get a homogeneous system of linear
equations for the coefficients C1 and C2. Putting the determi-
nant of the resulting system to be zero, we find the lowest
eigenvalue of the problem (5).

Let us now consider the one-dimensional profile of the
diffusion coefficient (4b). Choosing the Landau gauge A =
(0, Hx, 0) and substituting the Cooper-pair wave function

�(r) = ψky (x)eikyy, (A6)

into Eq. (5), we get the following equations in the regions with
a constant diffusion coefficient:(

− d2

dx2
+ x̃2

L4
H

)
ψky (x) = E0

ξ 2(x)
ψky (x). (A7)

Here x̃ = x − x0, x0 = −kyL2
H , and ξ (x) = ξm (ξ0) for |x| <

�c/2 (|x| > �c/2). The solutions of the above equation can be
written as follows:

ψ I
ky

= C1U (−a0 − 1/2,−
√

2x̃/LH ), (A8a)

ψ II
ky

= C2U (−am − 1/2,
√

2x̃/LH )

+C3V (−am − 1/2,
√

2x̃/LH ), (A8b)

ψ III
ky

= C4U (−a0 − 1/2,
√

2x̃/LH ), (A8c)

where the regions I, II, and III correspond to x < −�c/2,
|x| < �c/2, and x > �c/2, respectively, U (a, x) and V (a, x)
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FIG. 13. Typical color plots of |�(x, y)| for periodic D(r) distribution shown in Fig. 2(a). (a)–(c) Correspond to nq = 100, 188, and 228,
respectively. The parameters are D0/Dm = 3, R = 1.5ξ0, and d = 8ξ0. We take T/Tc0 = 0.7, 0, 5, and 0.45 for (a), (b), and (c), respectively.
In comparison with Hc2(T ) the results in (a), (b), and (c) refer to H/Hc2(T ) = 0.86, 0.92, and 0.95, respectively. In the temperature-dependent
length units R/ξ0(T ) = 0.83, 1.07, 1.11 in (a), (b), and (c), respectively. In ξm(T ) units the results in (a), (b), and (c) correspond to R/ξm(T ) =
1.44, 1.85, and 1.92, respectively.

are the parabolic cylinder functions [89]. The quantities a0,m

in Eqs. (A8) are defined by Eq. (A4) for n = 0. Imposing the
boundary conditions

ψ I
ky

(−�c/2) = ψ II
ky

(−�c/2), (A9a)

ψ II
ky

(�c/2) = ψ III
ky

(�c/2), (A9b)

D0

dψ I
ky

dx

∣∣∣∣
x=−�c/2

= Dm

dψ II
ky

dx

∣∣∣∣
x=−�c/2

, (A9c)

Dm
dψ II

dx

∣∣∣∣
x=�c/2

= D0
dψ III

dx

∣∣∣∣
x=�c/2

, (A9d)

on the solutions (A8), we get a homogeneous system of linear
equations for the coefficients C1, C2, C3, and C4. Putting the
determinant of the resulting system to be zero, we determine
the lowest eigenvalue of the problem (5).

APPENDIX B: TYPICAL VORTEX CONFIGURATIONS
IN THE CASE OF LARGE INTERDEFECT DISTANCE

Numerical simulations of the vortex arrangements pre-
sented in the main text were performed with close R, �c, and
d values. In this section we present the additional numerical
data, which show typical vortex configurations in artificially
structured materials with the increased inter-defect distance
d . Here we restrict ourselves to the case of a square array
of cylindrical defects [see Fig. 2(a)]. Typical color plots of
the absolute value of the Cooper-pair wave function |�(x, y)|
are shown in Fig. 13. Figures 13(a)–13(c) correspond to
nq = 100, 188, and 228, respectively. The parameters are
D0/Dm = 3, R = 1.5ξ0, and d = 8ξ0. We take T/Tc0 = 0.7,
0,5, and 0.45 for the Figs. 13(a)–13(c), respectively. One can
see from Fig. 13(a) that for rather weak applied magnetic
fields the vortex structure consists of the interstitial vortices
and the vortices trapped by the defect regions. The increase
in the magnetic field can, in turn, affect the spatial distribu-
tion of the superconducting order parameter in the system as
well as the winding number of the superconducting droplets.
In particular, the results in Fig. 13(b) demonstrate that for

moderate magnetic fields the superconductivity is mainly
developed near the defect regions and is largely sup-
pressed outside. Each superconducting droplet hosts a singly
quantized vortex. Further increase in the magnetic field
[see Fig. 13(c)] leads to the switching in the winding number
for the superconducting droplets from unity to zero. Thus, for
rather strong magnetic fields the vortices rearrange away from
the regions with the increased disorder.

APPENDIX C: DERIVATION OF EQS. (16)
IN THE MAIN TEXT

Here we provide details of the derivation of Eqs. (16) in
the main text. Our starting point is the GL free energy (1).
Introducing the order parameter �(r) = �(r)

√
αTc0/b, we

get

F = α̃2

b

∫
d3r

[
−τ |�|2 + 1

2
|�|4 + ξ 2(r)|�̂�|2

]
, (C1)

where α̃ = αTc0, τ = 1 − T/Tc0, and we choose the radial
gauge A = Hρϕ0/2. The spatial profile of the diffusion co-
efficient D(r) ∝ ξ 2(r) is schematically shown in Fig. 12(a).
To estimate the critical Josephson current, we take a linear
superposition of the states localized near the first � (1)(r) and
the second � (2)(r) defect with a given superconducting phase
difference χ :

�(r) = C[� (1)(r) + eiχ� (2)(r)]. (C2)

Here C is the normalization constant. Substitution of Eq. (C2)
into Eq. (C1) yields the Josephson energy

EJ = α̃2

b
|C|2

∫
d3r{−τ [� (1)∗� (2)eiχ + c.c.]

+ ξ 2(r)[(�̂∗� (1)∗)(�̂� (2) )eiχ + c.c.]}.
(C3)

Some analytical progress can be made by treating the
modulation of the superconducting coherence length in
Eq. (C3) within the first-order perturbation theory. In this
case, both � (1) and � (2) are the solutions of the linearized
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Ginzburg-Landau equation with homogeneous coherence
length ξ0. Choosing the center of the first defect to coincide
with the origin, we obtain the following profiles for the states
with zero and unit vorticity n:

� (1)(r) = ψn(r), (C4a)

ψn=0(r) = (
√

2πLH )−1e−ρ2/4L2
H , (C4b)

ψn=−1(r) = (
2
√

πL2
H

)−1
e−iϕe−ρ2/4L2

H . (C4c)

The superconducting order parameter for the nucleus local-
ized near the second defect �2 has the following form:

� (2)(r) = � (1)(r − r0) exp

(
2π

�0

∫ 2

1
A dl

)
. (C5)

The integration in the above equation is over a straight line
from the center of the first defect to the center of the second

one [see Fig. 12(a)]. The gauge-fixing factor in Eq. (C5)
appears due to the fact that the function � (1)(r − r0) is the so-
lution of the GL equation for the gauge A(r − r0). Combining
Eqs. (C2), (C4), and (C5), we arrive at Eqs. (15) in the main
text. Assuming that the interdefect distance is large d � LH ,
we can neglect the overlap between the superconducting nu-
clei in calculations of the normalization constant C and use
the results for a single isolated defect region

|C|2 = τn

∫
d3r|ψn(r)|2

/ ∫
d3r|ψn(r)|4. (C6)

Here τn = 1 − T n
c (H )/Tc0 and T n

c (H ) is the critical tempera-
ture of the superconducting nucleus with vorticity n localized
at a single defect. Substituting Eqs. (C2), (C4), (C5), (C6) into
Eq. (C3) and performing the integration, we derive Eqs. (16)
in the main text.
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