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Signatures of the order parameter of a superconducting adatom layer in magnetic field dependent
quasiparticle interference
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Experiments have observed superconductivity in atomically thin metallic layers deposited on semiconducting
substrates. As in any superconductor, it is important to determine the structure of the superconducting pairing
function in order to reveal the mechanism responsible for superconductivity. To that end, we study the possible
superconducting states of two-dimensional triangular lattices. We calculate the quasiparticle interference (QPI)
patterns which would result from various nearest-neighbor pairing order parameters, and show how the QPI can
be used to distinguish between those order parameters. The QPI patterns are the momentum-space representa-
tions of real-space local density-of-states fluctuations: the QPI signal at momentum q reveals the strength of
scattering processes at that momentum transfer. We show how characteristic differences between scattering from
charge disorder (i.e., impurities) and from order-parameter disorder (i.e., vortices) can be used to identify the
angular momentum of the superconducting pairs.
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I. INTRODUCTION

Recent advances in the preparation of ultraclean surfaces
have made new two-dimensional materials possible, which are
difficult or impossible to create in freestanding form. In par-
ticular, by depositing a controlled amount of a chosen adatom
onto an otherwise-pristine surface, and annealing from high
temperatures to facilitate lattice relaxation, high-quality su-
perlattices can be formed.

An interesting example of such a system is obtained by
depositing tin atoms onto a (111) surface of silicon, in a ratio
of one tin atom per three silicon unit cells. The resulting sur-
face hosts a single partially filled electronic band, which exists
inside the silicon band gap. At half filling (one unpaired elec-
tron per tin site), the surface has been observed to show Mott
insulating behavior [1]. When mobile holes are introduced
into the Mott insulator (by boron doping the silicon substrate),
superconductivity has been observed [2,3]. This behavior re-
sembles that of the high-Tc superconductors, whose enigmatic
superconducting states also emerge upon doping Mott insula-
tors [4]. The proximity of the superconductor to a magnetic
insulating phase suggests that the superconductivity in the
adatom system could likewise be unconventional.

Unfortunately, when nature presents us with a super-
conductor, it does not come with a simple label indicat-
ing the underlying pairing mechanism. Therefore, when-
ever a new superconductor is discovered, the question of
whether it is conventional (BCS-like, mediated by phonons
[5]) or unconventional (mediated by electronic correla-
tions [6]) arises immediately. It is commonly believed that
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electron-phonon interactions result in s-wave superconduc-
tivity, while electron-electron (Coulomb) interactions yield
pairing with higher orbital angular momentum (�). Determin-
ing the symmetry of the order parameter is therefore a critical
step in identifying the pairing mechanism. As well, order
parameters with even � correspond to spin-singlet Cooper
pairs, while those with odd � correspond to spin-triplet pairs.
Because spin-triplet pairing is a necessary (but not sufficient)
condition for topological superconductivity when spin-orbit
coupling is absent or weak, identifying the order parameter
symmetry is also necessary for applications which rest on
topological superconductivity, such as quantum information
processing based on Majorana modes [7–9].

In this work, we propose an experiment to reveal the or-
der parameter symmetry in the tin-on-silicon adatom system,
and related materials, through quasiparticle interference (QPI)
patterns [10]. One obtains these patterns as the Fourier trans-
form of local density-of-states (LDOS) modulations which
result from scattering due to disorder, measured through
scanning-tunneling spectroscopy (STS). We consider two
types of scatterer in an otherwise-clean superconductor: a
charge impurity and a vortex. A charge impurity is modeled
as a pointlike perturbation in the chemical potential, while a
vortex is modeled as a local suppression of the pairing func-
tion. We consider various superconducting pairing functions
which are defined on nearest-neighbor links of our hexagonal
lattice model, and demonstrate that the QPI resulting from the
two types of perturbations can help distinguish between the
different possible gap functions. In particular, we highlight
how, depending on the order parameter symmetry, certain
transitions are suppressed in the vortex scattering QPI—
those involving a sign change in the superconducting gap
function—and the signals corresponding to those transitions
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FIG. 1. (a) The bare dispersion εk and (b) its warped hexago-
nal Fermi surface, within the first hexagonal Brillouin zone (dotted
lines).

will therefore not increase with magnetic field. Therefore, the
magnetic field dependence of the QPI is sensitive to the phase
winding of the order parameter.

The paper is organized as follows. We introduce a tight-
binding model for the superconducting tin-on-silicon system
in Sec. II, describing the clean limit in Sec. II A and the
scatterers in Sec. II B. We then compute the QPI patterns in
Sec. III. We analyze the on-shell scattering contributions to
the QPI in Sec. III A, and show how they can be used to
distinguish between different order parameters in Sec. III B.
We then summarize our findings and conclude in Sec. IV.

II. THE MODEL

A. The clean limit

We describe the normal state of the metallic atomic mono-
layer using a tight-binding model on the triangular lattice,
including several beyond-nearest-neighbor hopping terms,
and neglecting magnetic ordering. The corresponding mo-
mentum dispersion εk is given explicitly in Appendix A,
Eq. (A1). For the parameters relevant to atomic Sn deposited
on a Si (111) surface, obtained ab initio by the authors of
Ref. [1], ε has a warped hexagonal Fermi surface near charge
neutrality, shown in Fig. 1(b).

Our goal is to point out an experimental probe which
could identify the superconducting order parameter. There-
fore, we make no attempt to explicitly include the interactions

which give rise to superconductivity—other authors have
taken up that task [11]—and instead we simply write an
effective single-particle Hamiltonian including a static (non-
self-consistent) order parameter �k . We will then work out
the consequences of several choices of �k with respect to STS
experiments.

Using the standard Bogoliubov–de Gennes (BdG) formal-
ism [12], in the clean limit, the Hamiltonian is

H0 =
∑

k

�
†
k hk�k. (1)

�k is a two-component pseudospinor in particle-hole space,

�k =
(

ck,↑
c†
−k,↓

)
, (2)

when considering spin-singlet order parameters, and

�k =
(

ck,↑
c†
−k,↑

)
(3)

for spin-triplet order parameters.1 ckσ annihilates an elec-
tron with momentum k and spin σ . hk is the 2 × 2 BdG
Hamiltonian,

hk =
(

εk �k

�∗
k −εk

)
. (4)

Diagonalizing hk yields the quasiparticle bands, with energies

±Ek = ±
√

ε2
k + |�k|2. (5)

Note that throughout this paper, we work in units where h̄ =
lattice spacing = 1.

For the metal-on-semiconductor layers under considera-
tion, the superconducting state is observed upon doping a
Mott insulator [3]. It was suggested that the Mott physics may
prevent on-site s-wave pairing and give rise to unconventional
superconductivity [3,11,13]. We therefore consider the first
four angular momentum channels of nearest-neighbor pairing,
labeled by � = 0, . . . , 3 (respectively, extended s, chiral p,
chiral d , and f wave). Recent theory suggests that each of
� = 1, 2, 3 may occur in some region of the phase diagram
as a function of doping and nearest-neighbor repulsion [11].
Because fermions anticommute (c1c2 = −c2c1), pairing with
even � (odd �) must occur in the spin-singlet (spin-triplet)
channel. � labels how many times the phase of the order
parameter winds under a 2π rotation. Since each site of the
triangular lattice has six nearest-neighbor bonds (separated by
an angle of 2π/6), the pairing terms on bonds related by a
2π/6 rotation have a relative phase of 2π�/6, as depicted in
Fig. 2. In that figure, arrows point from a site r to its neighbors

1The most general triplet pairing is
∑

kαβ c†
kα ( ��k · �S)αβc†

−kβ + H.c.

Taking ��k to point along the spin quantization axis yields �kSz,
meaning that spin-↑ and spin-↓ electrons experience order param-
eters with equal magnitude and opposite sign. This sign is not
observable in spin-insensitive measurements, so we can safely an-
alyze only one component, which we take to be spin-↑. Absent
spin-orbit coupling, this choice can be made without loss of gen-
erality.
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FIG. 2. For pairing with angular momentum �, the pairing phase
winds by 2π� under a full rotation, corresponding to φ = 2π�/6.

r + δ, indicating pairing terms �δc†
r+δ,↑c†

r,↓ + �∗
δcr,↓cr+δ,↑ in

the spin-singlet cases (even �, �δ = �−δ), and �δc†
r+δ,↑c†

r,↑ +
�∗

δcr,↑cr+δ,↑ in the spin-triplet cases (odd �, �δ = −�−δ).
The explicit form of each order parameter in momentum
space is given in Appendix A, Eqs. (A2a)–(A2d). In general,
the order parameter can take a more complicated form (e.g.,
involving pairing between next-nearest neighbors). However,
pairing between nearest neighbors is likely dominant, and
our analysis should remain valid with the addition of further
pairing terms of the same angular momentum.

B. Scatterers

Moving away from the clean limit, we consider two kinds
of elastic scatterer. The first is static charge disorder, corre-
sponding to a potential uc(r),

Hc =
∑

r

∑
σ

uc(r)c†
rσ crσ = 1√

N

∑
kq

uc,q�
†
k σ3�k−q, (6)

where σ3 = (
1 0
0 −1) is the third Pauli matrix in particle-hole

space, and uc,q = 1√
N

∑
r e−iq·ruc(r) is the Fourier transform

of uc(r) on a periodic lattice with N sites.
The second type of scatterer we consider is a static arrange-

ment of superconducting vortices. We treat a vortex in the
simplest possible way, which neglects its topological character
(i.e., phase winding), retaining only the fact that superconduc-
tivity is suppressed in the vortex core. To that end, we model a
vortex as a local perturbation where the magnitude of pairing
is modulated on all links δ connecting to a single site [14,15].
This approach has proven useful in interpreting the results of
QPI experiments under magnetic field in the cuprates [16] and
the iron pnictides [17]. Many vortices together are then built
out of such local perturbations weighted by a function uv (r)
with Fourier transform uv,q,

Hv =
∑

r

∑
δ

uv (r)χ (δ)(c†
r+δ,↑c†

r,↓ + c†
r,↑c†

r−δ,↓) + H.c.

= 1√
N

∑
kq

uv,q�
†
k V v

k,k−q�k−q, (7)

FIG. 3. The spin-triplet p- and f -wave order parameters �q, and
their QPI patterns. (a),(b) �q with amplitude and phase depicted
as brightness and hue, and with the CCEs at energy ω shown as
white lines. (c)–(f) QPI patterns for scattering from a (c),(d) charge
impurity and from a (e),(f) vortex.

in terms of the matrix

V v
k,k−q =

(
0 χk + χk−q

χ∗
k + χ∗

k−q 0

)
. (8)

χk is a dimensionless function giving the momentum de-
pendence (or link dependence in real space) of the order
parameter, �k = �0χk—see Fig. 2, and Eqs. (A2a)–(A2d).
For clarity of exposition, we will focus on the case of a single
pointlike scatterer, uμ,q = 1/

√
N (μ = c, v). For a spatially

extended scatterer, the QPI results we obtain below would
be multiplied by an envelope function, given by the Fourier
transform of the spatial profile of the scatterer.

III. QUASIPARTICLE INTERFERENCE

Assuming a spin-unpolarized tip, the signal in an STS
experiment (dI/dV ) is proportional to the local density of
single-electron states summed over both spins [14,15,18,19],

n(r; ω) = − 1

π
Im[G↑↑(r, r; ω) + G↓↓(r, r; ω)]. (9)

Gσσ (r, r′; ω) is the Fourier transform with respect to time t of
the retarded Green function,

Gσσ (r, r′; t ) = −i�(t )〈{crσ (t ), c†
r′σ (0)}〉. (10)
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For brevity, we analyze only the spin-↑ contribution—the
spin-↓ contribution is equivalent.2

Interference between scattered quasiparticle states causes
spatial modulations in n(r; ω); the q 
= 0 part of the Fourier-
transformed STS (FT-STS) signal is therefore often called
the quasiparticle interference (QPI) map. As shown in
Appendix B, in the first Born approximation, the QPI sig-
nal for scattering from a charge impurity (μ = c) or vortex
(μ = v) is

δnμ

↑,q[ω] = 1√
N

∑
r

e−iq·rδnμ

↑ (r; ω)

= − 1

π
Im

(
�μ

q [ω]
)

11
(11)

in terms of the 2 × 2 matrix

�μ
q [ω] = 1

N

∑
k

G0
k[ω]V μ

k,k−qG0
k−q[ω], (12)

where V c
k,k−q = σ3, V v

k,k−q is defined in Eq. (8) and

G0
k[ω] = (ω + i0+ − hk )−1 = ω + hk

(ω + i0+)2 − E2
k

(13)

is the clean-limit matrix-valued retarded Green function.
Figures 3 (spin-triplet order parameters) and 4 (spin-singlets)
show δnq[ω] for either type of scatterer, as well as the

clean-limit contours of constant energy (CCEs) in the super-
conducting state. The total QPI signal is a linear combination
of δnc and δnv; in Fig. 3, transitions indicated by black arrows
are enhanced by increasing the applied magnetic field (which
increases vortex density), while those indicated by red arrows
are not. Black arrows in the bottom two rows are colored blue
in the top row for visual clarity.

Notice the clear difference between the geometry of the
low-energy CCEs for the triplet order parameters (p and f -
waves, Fig. 3) and the singlets (s and d waves, Fig. 4), and
the correspondingly different QPI patterns. There are also
subtler characteristic differences between the different angular
momentum channels with the same parity, i.e., s vs d wave and
p vs f wave. We will discuss these differences in Sec. III B.

A. QPI in the on-shell approximation

The function �μ
q [ω], defined in Eq. (12), includes all pos-

sible single elastic scattering events at energy ω where a
quasiparticle picks up momentum q from the scatterer. The
dominant contributions to �μ

q [ω] come from on-shell scatter-
ing, for which ω2 = E2

k = E2
k−q (such that both propagators

hit a pole)—in other words, the dominant scattering occurs
between momenta on the CCE at energy ω. Writing out the
summands explicitly using Eq. (13), a charge impurity yields

(
G0

kσ3G0
k−q

)
11

= (ω + εk )
(
ω + εk−q

) − �k�
∗
k−q[

(ω + i0+)2 − E2
k

][
(ω + i0+)2 − E2

k−q

] , (14a)

while a vortex yields (using χ = �/�0)

(
G0

kV
v

k,k−qG0
k−q

)
11

=
1

�0
(ω + εk )(�k�

∗
k−q + |�k−q|2) + 1

�0
(|�k|2 + �k�

∗
k−q)(ω + εk−q )[

(ω + i0+)2 − E2
k

][
(ω + i0+)2 − E2

k−q

] . (14b)

Physically, the denominators are the same in the two cases
because the on-shell condition depends only on the energy
of the scattered quasiparticle, and not on the properties of
the scatterer. This means that for any scatterer, strong fea-
tures in the FT-STS signal are constrained to lie in the same
regions of q space where the on-shell condition is satisfied,
i.e., where the joint density of states for momentum transfer
q is large. Crucially, however, even if a scattering process
is energetically on-shell, a mismatch between the involved
states3 may partially or completely suppress the scattering.
The numerators of Eqs. (14a) and (14b) are hence different
because, roughly speaking, the intermediate states4 of the
scattering process are different for the two types of scatterer.

2The equivalence follows from time-reversal symmetry in the spin-
singlet cases, and from the argument in the footnote of Sec. II A in
the triplet cases.

3Specifically, a mismatch between the particle-hole pseudospinors.
4The term “intermediate states” is imprecise in this context because

there are no true intermediate states in the first Born approximation.
The term remains useful in the present context because the states
we are probing (pure electron or pure hole states) are not the energy

The difference originates in the fact that a charge impurity
scatters particles into particles (and holes into holes), while a
vortex scatters particles into holes (and vice versa).

The summand given by Eq. (14b) vanishes when
�k = −�k−q; the corresponding vortex scattering processes
k − q → k are hence completely suppressed. In the following
section, we will show how this suppression plants signatures
of the order parameter symmetry into the vortex scattering
QPI.

In principle, if the single-particle band structure were
known exactly, the charge scattering signal alone would
contain enough information to unambiguously identify the
pairing channel—see Figs. 3 and 4. However, in reality,
the single-particle band structure is never available with
complete precision, and the QPI patterns are sensitive to
details of the CCE geometry. The (out-of-plane magnetic
field dependent) vortex scattering signal provides additional
information, at the cost of performing the experiment under
magnetic field. We therefore propose to measure the QPI

eigenstates of the unperturbed system, so the bare (mean-field) prop-
agator by itself already produces transitions between them.
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FIG. 4. The spin-singlet extended-s- and d-wave order parame-
ters �q, and their QPI patterns. The data are organized as in Fig. 3.

pattern as a function of magnetic field. The total signal will
be a combination of charge impurity scattering and vortex
scattering, αδnc + βδnv . α will not have strong field depen-
dence, but β will increase with magnetic field, as vortices are
created. As we will show in the next section, certain features
in the QPI will be enhanced with the field and others will not,
depending on the symmetry of the order parameter. We note
in passing that the magnetic field should be kept weak enough
that vortices are sufficiently dilute to avoid forming a vortex
lattice, which could introduce spurious QPI peaks associated
with the periodic structure of scatterers.

B. Identifying the order parameter using vortex scattering QPI

1. The simplest nontrivial case: f wave

To demonstrate the utility of Eq. (14b), the case of
f -wave pairing (� = 3) is especially illustrative. The f -wave
order parameter on the triangular (C6-symmetric) lattice has
many features analogous to the d-wave order parameter on the
square (C4-symmetric) lattice, familiar from the cuprate super-
conductors [14]; in both cases, the order parameter changes
sign under a minimal C6 (for a triangular lattice) or C4 (for a
square lattice) rotation, and has nodal lines. The low-energy
quasiparticles then live near the intersections between the

nodal lines � = 0 and the Fermi surface ε = 0. At small en-
ergies ω, the CCEs ω = E = ±

√
ε2 + |�|2 form boomerang

shapes, as shown in Fig. 3(b).
Several features of the f -wave vortex scattering QPI pat-

tern, depicted in Fig. 3(f), follow readily. First, transitions
from one “tip” of a boomerang to the other tip of the
same boomerang (e.g., q0 in Fig. 3) have �k = −�k−q,
so those transitions are suppressed: �k�

∗
k−q + |�k−q|2 =

|�k|2 + �k�
∗
k−q = 0. On the other hand, transitions from

the tip of one boomerang to the nearest tip of a nearest-
neighbor boomerang (e.g., q1) have �k = �k−q, so those
transitions are not suppressed at all. Considering all six dis-
tinct boomerangs, all possible tip-to-tip transitions have �k =
±�k−q. Those transitions for which �k = −�k−q are com-
pletely suppressed, and their associated vortex QPI signals,
will not increase with magnetic field. Examples are indicated
by red arrows in Fig. 3. Those transitions for which �k =
�k−q are not suppressed at all, and their vortex QPI signals
will increase with magnetic field. Examples are indicated by
cyan (top row) or black (other rows) arrows in Fig. 3. In
contrast, the phase winding of the p-wave case means that
several transitions which are absent from the f -wave vortex
QPI signal are present in the p-wave QPI signal. We discuss
this in the following section.

2. s, p, and d waves

The s-, p-, and d-wave cases are slightly more complex
to analyze. The extended s-wave order parameter has a nodal
ring, which may or may not intersect the normal-state Fermi
surface, depending on doping. The p- and d-wave order pa-
rameters have no nodal lines and their phases instead wind
continuously. However, in all cases, since |�| varies over the
Fermi surface, the low-energy CCEs still form six pockets, as
shown in Fig. 3(a), and Figs. 4(a) and 4(b).

The singlet-versus-triplet question can be easily resolved
from the QPI patterns by eye—compare Fig. 3 to Fig. 4. We
then focus on the question of distinguishing the p from the
f wave, and the s from the d wave. We note that thermo-
dynamic probes, which can detect nodes in the spectrum of
Bogoliubov quasiparticles, would also be highly useful to
complement our proposed experiment.

We now turn our attention to the p-wave case. The or-
der parameter and Bogoliubov CCEs are shown in Fig. 3(a),
and the QPI data are shown in Figs. 3(c) and 3(e). The
CCEs resemble those of the f -wave case, taking the shape
of boomerangs near the tips of the warped hexagonal Fermi
surface. When the boomerangs are small (i.e., at energies ω

just above the gap), the order parameter phase φ is approxi-
mately constant over each boomerang. Since the phase winds
only once as a function of angle, only those pockets which are
opposite one another have a relative minus sign in the order
parameter. Therefore, only the transitions at q5 and q6 are
suppressed for the p-wave order parameter. Notably, signals
at q0 and q2 will show strong magnetic field dependence for a
p-wave order parameter, but not for the f wave. On the other
hand, the signal at q6 will show strong field dependence for
the f wave, but weak (if any) for the p wave. Our results
therefore provide a sharp distinction between these two spin-
triplet order parameters.
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If ω is large enough that the boomerangs are no longer
small, even though the approximation that φ is nearly con-
stant over a given boomerang breaks down, a similar analysis
still holds. The result is a hierarchy of transitions, which are
enhanced at different rates as the magnetic field is increased.
However, the signals are clearest in the small-pocket regime
(where ω is chosen to probe the lowest-energy quasiparticles),
so we suggest that interested experimentalists focus their at-
tention there. The evolution of the CCEs and QPI signals with
ω is shown in Appendix C.

In the preceding analysis, we showed how the simple sign
changes in the f -wave order parameter result in QPI pat-
terns with characteristic differences from the p-wave case.
Distinguishing between singlet order parameters (e.g., s vs
d wave) using QPI alone is less clear-cut. For these order
parameters, no prominent transitions have �k = −�k−q, so
no such transitions are fully suppressed in the vortex QPI
signal. However, the nodal ring � = 0 in the extended s-wave
order parameter [see Fig. 4(a)] does produce a signature in
the vortex QPI, which sets the extended s- and d-wave cases
apart. Transitions involving states on parts of the CCEs which
fall close to the nodal ring are suppressed by the very small
values of |�| there, suppressing some fine-scale contourlike
structures in the QPI maps—compare the zoomed regions of
Figs. 4(e) and 4(f).

We stress that the signatures distinguishing between the
singlets are less definitive than those distinguishing between
the triplets. As well, the signatures will likely be absent if
on-site s-wave pairing is dominant (since there is no nodal
ring in that case). Therefore, if the experimental QPI data
suggest a singlet order parameter, other experiments should
be performed to pin down its (orbital) angular momen-
tum. s-wave superconductors are known to be robust against
time-reversal symmetric disorder; charge impurities in such
a superconductor will not bind in-gap states [20]. On the
other hand, higher-� superconductors are sensitive to time-
reversal symmetric disorder, and the same scanning-tunneling
probes used to measure QPI could be used to observe im-
purity bound states at charge impurities, distinguishing the
higher-� singlets (most notably d wave) from the s-wave
case [21].

IV. CONCLUSION

In this paper, we proposed using LDOS modulations as a
means of identifying the order-parameter symmetry in two-
dimensional superconductors. We analyzed the QPI patterns
which would result from a variety of pairing functions, de-
fined on the nearest-neighbor bonds of a triangular lattice.
We computed these patterns using a phenomenological tight-
binding model, tailored for systems of adatoms deposited
on a host surface, using the case of tin-on-silicon as a pro-
totypical example. The QPI patterns are obtained as the
Fourier-transformed LDOS modulations which would result
from quasiparticles scattering off of charge impurities and
superconducting vortices. The QPI signal at momentum q and
energy ω encodes the probability of scattering with that mo-
mentum transfer on the relevant contour of constant energy,

and reveals the matrix elements of the scattering potential
combined with the Green function of the clean system. We
showed that certain vortex scattering events are suppressed,
or even absent, depending on the particular superconduct-
ing order parameter at play. Since the vortex density is
controlled by an applied out-of-plane magnetic field, the rel-
ative strength of the vortex and charge QPI signals can be
tuned by such a field, allowing the two contributions to be
distinguished. Therefore, our results could be used in con-
junction with a future LDOS measurement in magnetic field
in order to identify the order-parameter symmetry in the tin-
on-silicon adatom system. Our results can also be applied
to any other two-dimensional superconductor on a triangular
lattice.
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APPENDIX A: BAND DISPERSION AND ORDER
PARAMETERS

The normal-state dispersion εk includes hopping out as far
as the fifth-nearest neighbors:

εk = −2t1

[
cos (kx ) + 2 cos

(
1

2
kx

)
cos

(√
3

2
ky

)]

− 2t2

[
cos(

√
3ky) + 2 cos

(
3

2
kx

)
cos

(√
3

2
ky

)]

− 2t3[cos(2kx ) + 2 cos(kx ) cos(
√

3ky)]

− 4t4

[
cos

(
5

2
kx

)
cos

(√
3

2
ky

)

+ cos (2kx ) cos(
√

3ky)

+ cos

(
1

2
kx

)
cos

(
3
√

3

2
ky

)]

− 2t5

[
cos(2

√
3ky) + 2 cos (3kx ) cos(

√
3ky)

]
.

(A1)

Based on density functional theory, for the case of Sn atoms
on a Si (111) surface, the authors of Ref. [1] obtained the
hopping parameters t1 = −52.7 meV, t2 = −0.3881 t1, t3 =
0.1444 t1, t4 = −0.0228 t1, and t5 = −0.0318 t1. We use these
parameters in all numerics and neglect any magnetic or-
dering. The dispersion εk and its Fermi surface are shown
in Fig. 1.

We write the superconducting order parameter as �k =
�0χk in terms of a dimensionless function χk , and a parameter
�0 > 0 which controls the size of the gap in the non-nodal
cases, or the “gap velocity” (∼∂�/∂k) in the nodal cases. We
consider the following:
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FIG. 5. Energy evolution of the p-wave QPI.

(i) extended (i.e., nearest-neighbor) s wave (� = 0),

χs,k = cos (kx ) + 2 cos

(
1

2
kx

)
cos

(√
3

2
ky

)
; (A2a)

(ii) chiral p wave (� = 1),

χp,k = i sin (kx ) + i sin

(
1

2
kx

)
cos

(√
3

2
ky

)

+
√

3 cos

(
1

2
kx

)
sin

(√
3

2
ky

)
; (A2b)

(iii) chiral d wave (� = 2),

χd,k = cos (kx ) − cos

(
1

2
kx

)
cos

(√
3

2
ky

)

+ i
√

3 sin

(
1

2
kx

)
sin

(√
3

2
ky

)
; (A2c)

(iv) f wave (� = 3),

χ f ,k = i sin (kx ) − 2i sin

(
1

2
kx

)
cos

(√
3

2
ky

)
. (A2d)

In numerics, we use the somewhat large value �0 = 5 meV
to slightly exaggerate features in the CCEs for clarity of pre-
sentation.

APPENDIX B: QUASIPARTICLE INTERFERENCE IN THE
FIRST BORN APPROXIMATION

STS measures the local density of electronic states, which
is given (for a spinless model) by [18,19]

n(r; ω) = − 1

π
ImG(r, r; ω). (B1)

Taking the Fourier transform,

nq = 1√
N

∑
r

e−iq·rn(r). (B2)
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FIG. 6. Energy evolution of the f -wave QPI.

Now express G(r, r) in terms of its Fourier transform with
respect to both indices,

G(r, r) = 1

N

∑
kk′

ei(k−k′ )·rGkk′ , (B3)

so

nq = − 1

π

1√
N3

∑
r

∑
kk′

e−iq·rIm(ei(k−k′ )·rGkk′ )

= − 1

π

1√
N3

∑
r

∑
kk′

e−iq·r{cos[(k − k′) · r]ImGkk′

+ i sin[(k − k′) · r]ReGkk′ }
= − 1

2π

1√
N

∑
k

{Im(Gk,k−q + Gk,k+q )

+ Re(Gk,k−q − Gk,k+q )}. (B4)

To proceed any further, we need to compute the Green
function Gkk′ including scattering. The simplest approach is
the first Born approximation and the calculation is easiest
using the Nambu formalism, in terms of the two-component
particle-hole pseudospinors given by Eqs. (2) and (3). We

consider a single pointlike scatterer. For a charge impurity
(μ = c) or a vortex (μ = v), we have

Gkk′ = G0
kδkk′ + 1√

N
G0

kV
μ

kk′G0
k′ . (B5)

Recall that V c
kk′ = σ3 and V v

kk′ = ( 0 χk + χk′
χ∗

k + χ∗
k′ 0 ). Note that

the dispersion has inversion symmetry in the plane, i.e.,
εk = ε−k . For the spin-singlet pairing channels, χk = χ−k

as well, so hk = h−k , G0
k = G0

−k , and V v
k,k′ = V v

−k,k′ = V v
k,−k′ .

Altogether, we can then simplify

∑
k

G0
kV

μ

k,k+qG0
k+q =

∑
k

G0
−kV

μ

−k,−k−qG0
−k−q

=
∑

k

G0
kV

μ

k,k−qG0
k−q, (B6)

where we relabeled k → −k to obtain the final equality. Equa-
tion (B4) then simplifies to

δnμ

↑q = − 1

π
Im�μ

q (B7)
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FIG. 7. Energy evolution of the s-wave QPI.

with

�μ
q = 1

N

∑
k

G0
kV

μ

k,k−qG0
k−q. (B8)

For the spin-triplet cases, the order parameter is antisymmetric
under in-plane inversion: χk = −χ−k , which means that inver-
sion symmetry acts on h, V v , and G0 as hk = σ3h−kσ3, V v

k,k′ =
σ3V v

−k,−k′σ3 = −V v
−k,−k′ , and G0

k = σ3G0
−kσ3. Inversion acts

trivially on V c = σ3, but we can still write it as σ3 = σ3σ3σ3.
Then, we can simplify:

∑
k

G0
kV

μ

k,k+qG0
k+q =

∑
k

σ3G0
−kV

μ

−k,−k−qG0
−k−qσ3

=
∑

k

σ3G0
kV

μ

k,k−qG0
k−qσ3, (B9)

which yields

δnμ

↑q = − 1

2π

{
Im

(
�μ

q + �
μ
−q

)
11

+ Re
(
�μ

q − �
μ
−q

)
11

}
= − 1

2π

{
Im

(
�μ

q + σ3�
μ
q σ3

)
11

+ Re
(
�μ

q − σ3�
μ
q σ3

)
11

}
= − 1

π
Im

(
�μ

q

)
11

, (B10)

just as in the spin-singlet cases. It is straightforward to
repeat this calculation with a spatially extended scatterer, de-
scribed by a real-valued symmetric envelope function uμ(r) =
uμ(−r) (with Fourier transform uμ,q = uμ,−q ∈ R), yielding
the general result [22]

δnμ

↑,q = − 1

π
uqIm

(
�μ

q

)
11

. (B11)

APPENDIX C: ENERGY EVOLUTION OF THE QPI
PATTERNS

As the CCEs evolve with the probing energy ω, so too
do the QPI patterns. We show the evolution through the low-
energy regime in Figs. 5–8.
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FIG. 8. Energy evolution of the d-wave QPI.
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