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Unlike ferromagnetism, antiferromagnetism cannot readily be included in the quasiclassical Keldysh theory
because of the rapid spatial variation in the directions of of the magnetic moments. The quasiclassical framework
is useful because it separates the quantum effects occurring at length scales comparable to the Fermi wavelength
from other length scales, and has successfully been used to study a wide range of phenomena involving both
superconductivity and ferromagnetism. Starting from a tight-binding Hamiltonian, we develop general quasi-
classical equations of motion and boundary conditions, which can be used to describe two-sublattice metallic
antiferromagnets in the dirty limit. The boundary conditions are applicable also for spin-active boundaries that
can be either compensated or uncompensated. Additionally, we show how nonuniform or dynamic magnetic
textures influence the equations and we derive a general expression for observables within this framework.
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I. INTRODUCTION

The quasiclassical Keldysh Green’s function technique
[1–5] is a powerful tool to study mesoscopic structures [5–24].
It is applicable to systems where the Fermi wavelength is
much smaller than all other length scales and can be used to
study a wide range of systems, including heterostructure with
multiple competing types of order, such as superconductivity
and ferromagnetism [6–12], both in and out of equilibrium. In
addition, the quasiclassical framework is versatile in regards
to sample geometry [18–20] and the details of external or
intrinsic fields, such as applied magnetic fields [22,23] or
spin-orbit coupling [15,21], whether they are time dependent
[9,13–15] or spatially inhomogeneous [11,20,24]. This makes
the quasiclassical framework especially useful to the field of
superconducting spintronics [25], which aims to utilize super-
conductivity in the field of spintronics. In spintronics, spin is
used as an information carrier rather than the electric charge
used in conventional electronics [26,27]. The combination of
superconductivity and magnetism is therefore at the core of
superconducting spintronics.

While the presence of a magnetic field typically suppresses
superconductivity, the relationship between ferromagnets and
superconductors (SC) can be synergistic [8,25]. The interplay
between magnetic and superconducting orders may give rise
to spin-polarized superconductivity, which can transport spin
angular momentum with zero resistance [8,28], and the pres-
ence of superconductivity has also been shown to be beneficial
for other central effects in spintronics, such as giving rise to
infinite magnetoresistance [29].

Antiferromagnets (AFs) have many important advantages
over ferromagnets in the context of spintronics [30]. The al-
ternating magnetic moments mean that they are more robust
and impervious to external magnetic fields while creating
negligible magnetic stray fields of their own. As a result, they
are less intrusive to neighboring components. Moreover, the
resonance frequencies in AFs are on the order of terahertz

[31,32], which allows for very fast information processing.
The fact that spin transport has been shown to be long ranged
in AFs [33] also makes them promising and an active research
topic in spintronics.

Superconductivity may coexist with antiferromagnetism
[34–36], and AFs have a prominent role in the context of
high-Tc superconductivity [36–38]. Despite this, AFs are
much less studied in the field of superconducting spintron-
ics compared to ferromagnets. Heterostructures composed
of superconductors and ferromagnets, including strongly
polarized ferromagnets [6], has been studied theoretically
in a wide range of systems [6–12], including in systems
with complex geometries [19,20]. On the other hand, while
antiferromagnetic-superconductor junctions have been stud-
ied theoretically [39–44], such studies are typically limited
to simple geometries and clean systems. This is because
the rapid variation of the magnetic moments in AFs means
that they, unlike ferromagnets, cannot readily be incorporated
into the quasiclassical framework used for normal metals.
The quasiclassical Keldysh theory separates the short-range
quantum effects from the long-range semiclassical dynamics,
thereby allowing the inclusion of long-range spatial and tem-
poral gradients. As such, it is desirable with a quasiclassical
framework that is applicable to systems with both supercon-
ductivity and AFs.

One approach, which has been used previously when
studying the superconducting proximity effect in antiferro-
magnetic metals (AFMs) [45–47], is to treat the AFM as
a normal metal. The reasoning is that the magnetic order
is compensated on the length scale of the superconducting
correlation length. Using this framework, Hübener et al. [45]
studied AFM/SC/AFM structures and found an anomalous
strong suppression of the proximity effect happening when
the thickness of the AFM exceeded around 6 nm. They argued
that the drop in superconducting critical temperature could
possibly be associated with the onset of an incommensurate
spin-density wave (SDW) state. However, based on the theory
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presented in the present paper, the observed suppression is ex-
pected even without the SDW state. This is because Hübener
et al. [45] also reported a mean free path of 5.3 nm for their
samples, and the theory presented here shows that even non-
magnetic impurities behave magnetically in the presence of
antiferromagnetic order. As such, conventional, spin-singlet
superconductivity can be expected to be suppressed in antifer-
romagnetic systems when they enter the diffusive regime, and
in particular more so than in diffusive normal metals. This
happens when the system size exceeds the mean free path,
which was exactly the case in Ref. [45].

Quasiclassical equations of motion for AFMs, but with-
out superconductivity, have been derived by Manchon [48].
This was done by defining sublattice-resolved Green’s func-
tion. Such Green’s functions can be treated quasiclassically
because, while the magnetic order varies rapidly in the an-
tiferromagnet, the Néel order varies slowly. More recently,
Bobkov et al. [49] derived a sublattice-resolved quasiclassical
theory for antiferromagnetic insulators with superconductiv-
ity. Other related types of magnetically ordered systems that
have been studied within quasiclassical theory are spiral ferro-
magnets [50,51] and SDW AFs [52,53]. Spiral ferromagnets
have compensated magnetic order similar to AFs. However,
in order for these to be treated quasiclassically, the spatial
modulation of the magnetic order must be slow compared
to the Fermi wavelength. SDW is also a state of matter with
spatial modulation of the magnetic order, typically formed by
itinerant particles with Fermi-surface nesting [54,55]. SDW
can also coexist with SC [54,56], and quasiclassical theory
has been developed to model systems with both SDW and
SC [52,53]. This is possible because the SDW state can be
modeled using a mean-field approach with a slowly varying
SDW order parameter.

Here, we develop quasiclassical equations of motion for
two-sublattice AFMs with superconductivity and impurities,
as well as external fields and spin-orbit coupling, and where
all the parameters, including the direction of the Néel vector,
may be inhomogeneous in time and space, as long as it is not
rapidly varying on the atomic length scale. We also develop
boundary conditions for the diffusive regime, which work also
for spin-active interfaces that can be either uncompensated or
compensated. Because we consider antiferromagnetic metals,
we assume that the Fermi level is deep within the conduction
band compared to other energy scales except for the exchange
energy between localized spins and itinerant electrons, as
illustrated in Fig. 1. This exchange energy may be either
large or small compared to the distance between the Fermi
level and the edges of the conduction band. The quasiclassical
theory can therefore not be used to model heavy-fermion
antiferromagnetic superconductors, where the Fermi energy
is comparable to the superconducting gap [57]. On the other
hand, it is well suited to study heterostructures or other sys-
tems in which the Fermi level can be assumed to lie deep
within the conduction band.

Although our starting point is similar to that presented in
Refs. [48,49], except that we additionally consider the other
effects mentioned above, there are a few important differ-
ences. Instead of equations for sublattice-resolved Green’s
functions, we derive equations for the conduction band
Green’s functions. This is possible because there is no rapidly

FIG. 1. A sketch of the energy bands in an antiferromagnet,
where ξα

± = −μα ±
√

(Jα )2 + (Kα )2. Here, α labels different materi-
als, µα is the chemical potential, Jα is the exchange coupling between
itinerant electrons and localized magnetic moments and Kα is the
kinetic energy and �Eα is the smallest difference between the Fermi
level and the edges of the conduction band. The gap between the
energy bands is 2|Jα|. This gap can be arbitrary within the quasi-
classical theory developed here, but �Eα must be large compared to
other energies in the system, not including the gap.

varying magnetic order for these Green’s functions, just as
there is no rapidly varying magnetic order for sublattice-
resolved Green’s functions. The reason why we project onto
the conduction band is that only states close to the Fermi
level contribute to the quasiclassical Green’s function, and
the Fermi level lies deep inside the conduction band. As
a result, we end up with fewer Green’s functions to solve
for. More importantly, however, it means that the chemical
potential drops out of the equations, similar to how it drops
out in Keldysh theory for normal metals. Therefore, we can
consistently let it be much larger than other energies. This
procedure, leaving only the conduction band, means that the
spin- and sublattice degrees of freedom are not independent.
An important consequence of this fact is that the effect of
nonmagnetic impurities in AFMs is similar to the effect of
magnetic impurities in normal metals.

We summarize the main results, outline how they are de-
rived, and describe the necessary assumptions in Sec. II. The
derivations are presented in Secs. III–XIV. This includes the
derivation of quasiclassical equations of motion, boundary
conditions for the diffusive regime and a general expression
for computing observables. Concluding remarks are given in
Sec. XV.

II. OUTLINE

The main results are equations for the isotropic part of
the quasiclassical Green’s function ǧα

s and the matrix cur-
rent ǰ

α
, where α labels the materials in the junction. Under

the assumptions that the quasiclassical Green’s function is
approximately spherically symmetric and that the energy
difference between the Fermi level and the edges of the
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conduction band is larger than all other energy scales, except
possibly the exchange energy Jα , we find in Sec. XI that ǧα

s

and ǰ
α

solve

i∇̃ ◦ ǰ
α+
[
τzε − V̌ α

s + i(Jα )2

2τα
imp(ηα )2

σzτzǧ
α
s σzτz, ǧα

s

]
◦

= 0, (1a)

ǰ
α= − ǧα

s ◦ ∇̃ ◦ (Dα ǧα
s

)− ǧα
s ◦
[

(Jα )2

2(ηα )2
σzτzǧ

α
s σzτz, ǰ

α

]
◦
, (1b)

where all the symbols are explained below. In the absence
of antiferromagnetism, Jα → 0, Eq. (1) reduces to the well-
known Usadel equation for normal metals [4]. In the limit
of very strong exchange coupling, such that (Jα/ηα )2 → 1,
the short-range correlations become negligible in the diffusive
limit, as we show in Sec. XI.

The itinerant electrons in an AFM are described by a
Hamiltonian including kinetic energy Kα , exchange energy to
the magnetic lattice Jα , chemical potential µα , as well as other
additional terms coming from superconductivity, impurity
scattering, external fields, or spin-orbit coupling. Equation (1)
is valid under the assumption that Kα at the Fermi level is
large compared to all additional energies such as the impurity
scattering rate and the superconducting gap. Note that Kα

need not be large compared to Jα . As a result, the fraction
(Jα )2/(ηα )2, where ηα =

√
(Jα )2 + (Kα )2, can take any value

between 0 and 1.
The second assumption behind Eq. (1) is that the system is

in the dirty regime. This means two things. First, it means
that the elastic impurity scattering rate 1/τimp is dominant
out of all the additional energies in the system, not including
Kα , Jα , and µα . Second, it means that the matrix current
ǰ
α

is small compared to the Fermi velocity. As we show in
Sec. XI, this is the case if the variation in ǧα

s is small compared
to 1 over the length of the mean free path, either because
the mean free path is short or because the proximity effect
is weak.

To complete the theory for use in systems involving more
than one material, we derive the boundary condition

en · ǰ
α = [T̂αβ

l ◦ ǧβ
s

(
xβ

l

) ◦ T̂
βα

l + i
(
Sα

c

)T
R̂l S

α
c , ǧα

s

]
◦, (2)

which are valid when the quasiclassical Green’s function is
isotropic also close to the interface. This is the case for in-
stance when the tunneling is weak. Equation (2) can be used
to model interfaces that are compensated or uncompensated,
magnetic or nonmagnetic, and conducting or isolating. In the
absence of antiferromagnetism, Eq. (2) reduces to the general-
ized Kupriyanov-Lukichev boundary condition for spin-active
boundaries [58,59].

In Sec. XIV, we derive a general expression for computing
observables, which can be used to compute quantities such as
densities and currents once ǧα

s and ǰ
α

have been found. The
expression, Eq. (198), contains not only the contribution from
states captured by the quasiclassical Green’s function but also
a general expression for the contribution from states further
away from the Fermi level.

We present a detailed, self-contained derivation of Eqs. (1)
and (2), starting from a general tight-binding Hamiltonian
with a tunneling contact, introduced in Sec. III. The full
Green’s functions and their equations of motion are presented

FIG. 2. Sketch of a plane in material α for the case of a square
lattice. Each unit cell contains two orbitals. One is located at sublat-
tice A, xα

n , and one is located at sublattice B, xα
n + δα .

in Sec. IV. Impurity averaging is performed in Sec. V, where
we derive the impurity self-energy to second order in the
impurity potential. This is valid as long as the impurity po-
tential is weak, but since the self-energy depends only on
the isotropic part of the Green’s function, effects such as
skew scattering [60] would require going to third order. In
Sec. VI, we use the tunneling Hamiltonian to remove the
intermaterial Green’s functions from the equations of motion.
In Sec. VII we Fourier transform in relative coordinates, and
it is taken into consideration both that the system is defined
on a discrete lattice and, more importantly, different matrix
elements correspond to different relative spatial positions be-
cause of the relative displacement between the two sublattices.
In Sec. VIII we transform the Green’s functions into the basis
of the antiferromagnetic energy bands, and thereby extract the
conduction band. From this, we carefully define the quasiclas-
sical Green’s functions in Sec. IX and use them to remove
higher-order spatial derivatives from the gradient expansion.
Next, in Sec. X, we derive the quasiclassical expression for
the impurity scattering and show how it is modified by the
antiferromagnetic order. The main results are then derived
in Sec. XI and Sec. XII. Finally, in Sec. XIII we show
how the equations are influenced by nonuniform magnetic
textures.

III. HAMILTONIAN

We consider a system composed of two materials, which
we label material L and material R, connected through a
tunneling contact. The Hamiltonian is

H(t ) = HL(t ) + HR(t ) + HT . (3)

Here,

Hα (t ) =
∑

n,m∈Aα

cα†
n

[
Hα

0 (t ) + V α (t )
]

nmcα
m, (4)

where α ∈ {L, R} denotes material, Aα is the set of unit cells
in material α. As sketched in Fig. 2, each unit cell, labeled
by a 3-tuple n, contains one orbital associated with the A-
sublattice at position xα

n , and one orbital associated with the
B-sublattice at position xα

n + δα . We let the annihilation op-
erators for the orbitals with spin σ at unit cell n in material
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α at the A- and B-sublattice be cα
nAσ and cα

nBσ , respectively,
and define

cα†
n = (cα†

nA↑cα†
nA↓cα†

nB↑cα†
nB↓cα

nA↓ − cα
nA↑cα

nB↓ − cα
nB↑
)
. (5)

We include only nearest-neighbor hopping and assume that
this hopping is only between the two different sublattices.
The hopping parameter tα , chemical potential µα , and the
exchange energy Jα between localized spins and conduct-
ing electrons are collected in Hα

0 . The full electrochemical
potential need not be constant. However, we take µα to be
constant. Any deviation in the electrochemical potential away
from µα is included in V α . If σ is the vector of Pauli matrices
in spin-space, τ are the Pauli matrices in Nambu-space, and ρ

are the Pauli matrices in sublattice space, then(
Hα

0

)
nm

(t )

= −1

4
tα (ρx + iρy)τzχN.N.

(
xα

n − δα − xα
m

)
− 1

4
tα (ρx − iρy)τzχN.N.

(
xα

n + δα − xα
m

)− 1

2
δnmματz

− 1

2
δnmJαρzσ ·

[
1 + ρz

2
n
(
xα

n , t
)+ 1 − ρz

2
n
(
xα

n + δα, t
)]

,

(6)

where n = (sin θ cos φ, sin θ sin φ, cos θ ) is the direction of
the Néel vector, and χN.N(x) is a nearest neighbor charac-
teristic function, which is 1 if x is a nearest neighbor vector
between a A-lattice point and a B-lattice point and 0 otherwise.
Because the direction Néel vector generally is influenced by
the dynamics of the itinerant electron, it should be solved for
self-consistently. This can be done with the Landau-Lifshitz-
Gilbert equation [30].

The term proportional to V α in Eq. (4) contains all
additional effects that may be present in the model, such as su-
perconductivity, external spin-splitting fields and corrections
to the hopping term from the vector potential or spin-orbit
coupling. Additionally, V α importantly also determines the
spatial geometry of material α by a potential that is zero
inside the material and very large outside the material. We can
therefore let the lattice Aα run to infinity in all spatial direc-
tions, meaning that Aα = Z3, where Z is the set of integers,
while still having the system be confined to a finite region of
space. Note that the potential can also be spin dependent, for
instance if there is a spin-splitting field in the neighboring re-
gion. This will influence the boundary condition we derive in
Sec. XII.

Finally, the tunneling Hamiltonian is

HT =
∑

n,m∈Z3

cL†
n T LR

nm cR
m =

∑
i, j∈Z3

cR†
n T RL

nm cL
m, (7)

where T RL and T LR = (T RL )† are matrices satisfying T LR =
diag(T, iσyT ∗iσy) for some 4 × 4 matrix T .

We rotate spin space such that the Néel vector is always
parallel to the z axis. To do this we define the rotation matrix

R(x, t ) = exp

{
−i

θ [n(x, t ) × ez] · σ

2 sin θ

}
, (8)

and

c̃α
n (t ) =

[
1 + ρz

2
R†
(
xα

n , t
)+ 1 − ρz

2
R†
(
xα

n + δα, t
)]

cα
n , (9)

such that

Hα (t ) =
∑

n,m∈Z3

c̃α†
n (t )

[
H̃α

0 (t ) + Ṽ α (t )
]

nmc̃α
m(t ), (10)

where, if we assume that n varies slowly in space over the
distance of neighboring lattice points,

(
H̃α

0

)
nm(t ) = − 1

2
δnm[Jαρzσz + μτz] + 1

2
Kα

nmτz

− τz

2

(
Kα

nm

[
xα

n − xα
m

]+ [δαρB, Kα
nm

])
· (R†∇R)

(
xα

n , t
)
. (11)

where the kinetic term is

Kα
nm = − tα

2

[
(ρx + iρy)χN.N.

(
xα

n − δα − xα
m

)
+ (ρx − iρy)χN.N.

(
xα

n + δα − xα
m

)]
(12)

Finally, we also define the projection operators in sublattice
space,

ρA = 1 + ρz

2
and ρB = 1 − ρz

2
, (13)

for ease of notation.

IV. GREEN’S FUNCTIONS AND EQUATIONS OF MOTION

In this section, we define the full Green’s functions. These
are the starting point of our derivation and will later be
used to define the quasiclassical, impurity-averaged conduc-
tion band Green’s functions, which are the objects of the
final equations. To obtain the final equations we must first
derive the equation of motion for the full Green’s function.
These are called the Gor’kov equations and are derived in
this section.

The retarded, advanced, and Keldysh Green’s functions are
defined respectively as

ĜR,αβ
nm (t1, t2) = −iτz

〈{
c̃α

n (t1), c̃β†
m (t2)

}〉
θ (t1 − t2), (14a)

ĜA,αβ
nm (t1, t2) = +iτz

〈{
c̃α

n (t1), c̃β†
m (t2)

}〉
θ (t2 − t1), (14b)

ĜK,αβ
nm (t1, t2) = −iτz

〈[
c̃α

n (t1), c̃β†
m (t2)

]〉
. (14c)

These are 8 × 8 matrices, and are collected in larger 16 ×
16 matrices,

Ǧαβ
nm =

(
ĜR,αβ

nm ĜK,αβ
nm

ĜA,αβ
nm

)
, (15)

and even larger 32 × 32 matrices,

Ğnm =
(

ǦLL
nm ǦLR

nm

ǦRL
nm ǦRR

nm

)
. (16)

We use the notation that ·̂ indicates a nontrivial matrix
structure in Nambu-space, ·̌ indicates a nontrivial structure
in Keldysh-space, and ·̆ indicates a nontrivial structure in
material-space.
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In order to derive the equations of motion, we use that any
operator A evolves in time according to

∂t

∂A
= i[H, A] +

(
∂A

∂t

)
H

. (17)

From this, together with the relation [AB,C] = A{B,C} −
{A,C}B, we find

∂ c̃α
n

∂t
= − 2i

∑
m∈Z3

[
H̃α

0 (t ) + Ṽ α (t )
]

nmc̃α
m − i

∑
m∈Z3

T̃ αβ
nm c̃β

m

− [ρA(R†Ṙ)(xn, t ) + ρB(R†Ṙ)(xn + δ, t )]c̃α
n , (18)

where β 	= α, and

∂ c̃α†
n

∂t
= 2i

∑
m∈Z3

c̃α†
m

[
H̃α

0 (t ) + Ṽ α (t )
]

mn
+ i

∑
m∈Z3

T̃ αβ
nm c̃β

m

+ c̃α†
n [ρA(R†Ṙ)(xn, t ) + ρB(R†Ṙ)(xn + δ, t )]. (19)

From this, we derive the Gor’kov equations,

iτz
∂Ğ

∂t
− �̆ • Ğ = δ(t1 − t2)δnm, (20a)

∂Ğ

∂t ′ iτz + Ğ • �̆ = −δ(t1 − t2)δnm, (20b)

where

�̆ =
(

ĤL
0 + V̌ L T̂ LR

T̂ RL ĤR
0 + V̌ R

)
, (21)

and(
Ĥα

0

)
nm

(t1, t2) = (Kα
nm − δnm[Jαρzσzτz+μ]

)
δ(t1 − t2), (22a)

(T̂ αβ )nm(t1, t2) = T̃ αβ
nm τzδ(t1 − t2), (22b)

V̌ α
nm(t1, t2) = (�̌α

inel

)
nm(t1, t2) + {2Ṽ α

nm(t )

− τz
(
Kα

nm

[
xα

n − xα
m

]+ [δαρB, Kα
nm

])
·(R†∇R)

(
xα

n , t1
)

−i[ρA(R†Ṙ)(xn, t1) + ρB(R†Ṙ)(xn + δ, t )]

× δnm
}
τzδ(t1 − t2). (22c)

We have added in V̌ α
nm a term, which models inelastic pro-

cesses �̌α
inel. The bullet product between two matrix-valued

functions, A and B, is defined as

(A • B)nm(t1, t2) =
ˆ ∞

−∞
dt
∑
l∈Z3

Anl (t1, t )Blm(t, t2). (23)

We also define the circle-product to be the integral over time,

(A ◦ B)(t1, t2) =
ˆ ∞

−∞
dtA(t1, t )B(t, t2). (24)

From Eq. (20) we also get the Dyson equations,

Ğ = Ğ0 + Ğ0 • δ�̆ • Ğ, (25a)

Ğ = Ğ0 + Ğ • δ�̆ • Ğ0, (25b)

if �̆ = �̆0 + δ�̆ and Ğ0 solves

iτz
∂Ğ0

∂t1
− �̆0 • Ğ0 = δ(t1 − t2)δnm, (26a)

∂Ğ0

∂t2
iτz + Ğ0 • �̆0 = −δ(t1 − t2)δnm. (26b)

Equation (25) can be derived by taking bullet products of
Eqs. (26a) and (26b) with Ğ from the left and right, respec-
tively, and using that A • (∂B/∂t1) = −(∂A/∂t2) • B when
limt→±∞ A(t1, t )B(t, t2) = 0.

V. IMPURITY AVERAGING

In this section, we average over impurities and identify
the self-energy, which relates the impurity-averaged Green’s
function to the Green’s function in the absence of impurities.
The impurity-averaged Green’s function can then be found by
replacing the impurity potential in the Gor’kov equations with
this self-energy. We determine this self-energy to second order
in the impurity potential. This is valid under the assumption
that the impurity potentials are weak, although the number
of impurities may be large. By not going to third order, the
self-energy depends only on the isotropic part of the Green’s
function and therefore does not capture effects such as skew
scattering [60].

Let mαX be the number of impurities in material α on
sublattice X ∈ {A, B}. Next, we assume that the impurity po-
tentials are local and that the potential strength and position of
the ith impurity in material α on sublattice X are U αX

i and rαX
i ,

respectively. The self-energy term from the impurity potential
is then

V̆ imp
nm = δnmδ(t1 − t2)

×
∑

X∈{A,B}

(∑mLX

i=1 ρXU LX
i δnrLX

i ∑mRX

i=1 ρXU RX
i δnrRX

i

)
.

(27)

Next, we define the impurity average as the sum over all
possible impurity locations and impurity potential strengths,
weighted by some normalized distribution function pimp :
{Ui}, {ri} �→ R, where {Ui} and {ri} denote the set of potential
strengths and locations, respectively. That is,

〈A〉imp =
∏

α∈{L,R}

∏
X∈{A,B}

mαX∏
i=1

ˆ ∞

−∞
dU αX

i

×
∑

rαX
i ∈Z3

pimp({Ui}, {ri})A({Ui}, {ri}). (28)

We do not specify pimp, but we assume it is such that impuri-
ties are independently and uniformly distributed. By assuming
that they are uniformly distributed in space, we have that
〈δnrαX

j
〉imp = 1/Nα = nαX

imp/mαX , where Nα is the number of

unit cells in material α and nαX
imp = mαX /Nα is the impurity

density on sublattice X in material α. The assumption that im-
purities are independent means that 〈U αX

i δnrαX
i

U βY
j δmrβY

j
〉imp =

〈U αX
i δnrαX

i
〉imp〈U βY

j δmrβY
j

〉imp if i 	= j, α 	= β or X 	= Y . Fi-

nally, we also assume that the strengths and locations
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of impurities are uncorrelated, such that 〈U αX
i δnrαX

i
〉imp =

〈U αX
i 〉imp〈δnrαX

i
〉imp, and that the impurities on each sublattice

and material are identically distributed, such that 〈U αX
i 〉imp =

〈U αX
j 〉imp =: 〈U αX 〉imp for all i and j.
To find how the impurity-averaged Green’s function,

Ğimp := 〈Ğ〉imp is related to the Green’s function in the ab-
sence of impurities, Ğ0, we take the impurity average of
Eq. (25a) with δ�̆ = V̆ imp to obtain

Ğimp = Ğ0 + Ğ0 • 〈V̆ imp • Ğ〉imp. (29)

We want an equation on the form

Ğimp = Ğ0 + Ğ0 • �̆imp • Ğimp. (30)

That is, we want to remove Ğ, which depends on the specific
realizations of the impurity configuration. To find �̆imp to
second order in V̆ imp, we again set δ�̆ = V̆ imp and insert
Eq. (25a) twice into Eq. (29) to obtain

Ğimp = Ğ0 + Ğ0 • 〈V̆ imp〉imp • Ğ0

+ Ğ0 • 〈V̆ imp • Ğ0 • V̆ imp〉imp • Ğ0

+ Ğ0 • 〈V̆ imp • Ğ0 • V̆ imp • Ğ0 • V̆ imp • Ğ〉imp. (31)

We need Ğ0 as a function of Ğimp to get Eq. (30). This can be
found to the appropriate order in V̆ imp in inserting Eq. (25a)
with δ�̆ = V̆ imp once into Eq. (29) and solving for Ğ0, giving

Ğ0 = Ğimp − Ğ0 • 〈V̆ imp〉imp • Ğ0

− Ğ0 • 〈V̆ imp • Ğ0 • V̆ imp • Ğ〉imp. (32)

In order to find a self-consistent expression for the impurity
self-energy �̆imp as a function of V̆ imp and Ğimp, we insert the

expression for Ğ0 iteratively into Eq. (31). By comparing the
result to Eq. (30), this gives that, to second order in V̆ imp,

�̆imp = 〈V̆ imp〉imp + 〈V̆ imp • Ğimp • V̆ imp〉imp

− 〈V̆ imp〉imp • Ğimp • 〈V̆ imp〉imp. (33)

Using the properties of pimp, we see that the first-order term

[
�̆

(1)
imp(t1, t2)

]
nm

= [〈V̆ imp〉imp(t1, t2)]nm = δnmδ(t1 − t2)

×
∑

X∈{A,B}

(
nLX

impρX 〈U LX 〉imp

nRX
impρX 〈U RX 〉imp

)
(34)

is an energy shift that may be sublattice dependent if the num-
ber or strength of impurities is different on the two sublattices.
It may in general also be spin dependent if the impurities are
magnetic, meaning that U αX

i has a nontrivial structure in spin
space. Here we assume that the impurities are not magnetic.
Nevertheless, we shall see in Sec. X that they will have an
effective magnetic component in the final equations.

To evaluate the second-order term,

�̆
(2)
imp = 〈V̆ imp • Ğimp • V̆ imp〉imp

− 〈V̆ imp〉imp • Ğimp • 〈V̆ imp〉imp. (35)

Note that the assumption that the impurities are independent
means that the contributions with different impurities to the
left and right of the Green’s function cancel. Hence,

[
�̆

(2)
imp(t1, t2)

]αβ

nm = δαβ

∑
X∈{A,B}

mαX∑
i=1

[
ρX
(
Ǧαα

imp

)
nmρX

〈
U αX

i δnrαX
i

U αX
i δmrαX

i

〉
imp − ρX

(
Ǧαα

imp

)
nmρX

〈
U αX

i δnrαX
i

〉
imp

〈
U αX

i δmrαX
i

〉
imp

]

= δαβ

∑
X∈{A,B}

δnmnαX
imp〈U XαU Xα〉impρX

(
Ǧαα

imp

)
nnρX − δαβ

∑
X∈{A,B}

nαX
imp

Nα
〈U Xα〉2

impρX
(
Ǧαα

imp

)
nmρX . (36)

We can neglect the second term because Nα is large and the
amplitude of the Green’s function decreases as a function
of relative distance in the presence of impurities, as will be
shown later. Thus, to second order the impurity self-energy is

[�̆imp(t1, t2)]αβ
nm = δαβδnm

∑
X∈{A,B}

nαX
imp(ρX 〈U Xα〉imp

+ 〈U XαU Xα〉impρX
(
Ǧαα

imp

)
nn(t1, t2)ρX ).

(37)

From here on we drop the subscript on the impurity averaged
Green’s function, such that Ğimp → Ğ.

VI. TUNNELING

In order to get closed equations for ǦLL and ǦRR, we must
first remove ǦLR and ǦRL. In this section, we do this by
treating the tunneling self-energy as the perturbation in the

Dyson equation. However, we note that the derived effective
tunneling self-energy is still of infinite order in the tunneling
amplitudes T̂ LR.

Let

T̆ =
(

T̂ LR

T̂ RL

)
, (38)

and let Ğ0 be the Green’s function with T̂ RL = T̂ LR =
0, meaning that it solves Eq. (26) with δ�̆ = �̆ − T̆ =
diag(�̌LL, �̌RR). Here δ�̆ includes the impurity self-energy
term obtained from the impurity average above. Note that
this means that ǦRR

0 still depends on ǦLL. This is because
ǦRR

0 depend on ǦRR through the impurity self-energy found
in Sec. V, and ǦRR depend on ǦLL. For the same reason ǦLL

0
depends on ǦRR.

From the Dyson equation, (25), we have that\vskip-3pt

Ğ = Ğ0 + Ğ0 • T̆ • Ğ, (39a)

Ğ = Ğ0 + Ğ • T̆ • Ğ0. (39b)
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From the upper-right block of Eq. (39a) we have that

ǦLR = ǦLR
0 + ǦLR

0 • T̂ RL • ǦLR + ǦLL
0 • T̂ LR • ǦRR

= ǦLR
0 •

(
iτz

∂ǦRR

∂t
− �̌RR • ǦRR − T̂ RL • ǦLR

)

+ ǦLR
0 • T̂ RL • ǦLR + ǦLL

0 • T̂ LR • ǦRR

= −
(

∂ǦLR
0

∂t ′ iτz+ǦLR
0 • �̌RR

)
• ǦRR + ǦLL

0 • T̂ LR • ǦRR

= ǦLL
0 • T̂ LR • ǦRR, (40)

where we used Eq. (26) in the last equality.
Doing the same for ǦLR, and from similar calculations

using Eq. (39b) we find that

ǦLR = ǦLL
0 • T̂ LR • ǦRR = ǦLL • T̂ LR • ǦRR

0 , (41a)

ǦRL = ǦRR
0 • T̂ RL • ǦLL = ǦRR • T̂ RL • ǦLL

0 . (41b)

Inserting this into the Gor’kov equation, we can remove
ǦRL and ǦLR and get a block-diagonal self-energy,

�̆ = H̆0 + V̆ + �̆imp + �̆T , (42)

where

H̆0 =
(

ĤL
0

ĤR
0

)
, (43a)

V̆ =
(

V̌ L

V̌ R

)
, (43b)

�̆T =
(

T̂ LR • ǦRR
0 • T̂ RL

T̂ RL • ǦLL
0 • T̂ LR

)
. (43c)

VII. FOURIER TRANSFORM AND WIGNER
COORDINATES

In the quasiclassical framework, functions vary slowly with
the center-of-mass (COM) coordinates, and quickly with the
relative coordinates. It is therefore useful to Fourier transform
in the relative coordinates to obtain functions of momentum,
energy, COM time, and COM position, also known as Wigner
coordinates. The Fourier transform in relative time reads

Ft (A)(T, ε) =
ˆ ∞

−∞
dtA(T + t/2, T − t/2)eiεt , (44)

and for the Fourier transform in relative position we use

Fr (A)s(k, xα
n s) =

∑
m∈Z3

e−iρBk·δα

A(n+m)neiρBk·δα

e−ik·xα
m . (45)

This is is a three-dimensional discrete-time Fourier transform
(DTFT), and the inverse transform is given by

F−1
r (A)(n+m)n = V α

e

ˆ
♦α

d[3]k

(2π )3
eiρBk·δα

A
(
k, xα

n

)
e−iρBk·δα

eik·xα
m ,

(46)
where V α

e is the volume of the unit cell and ♦α is the first
Brillouin zone in material α. Note that xα

n in Eq. (45) is not
exactly the COM position, since the COM position for term m
on the right is (xα

n + xα
m)/2.

We use the same symbols as before to denote the bullet and
circle products in the Wigner coordinates, meaning that they

satisfy

Fr[Ft (A)] • Fr[Ft (B)] = Fr[Ft (A • B)] (47)

and

Ft (A) ◦ Ft (B) = Ft (A ◦ B). (48)

Thus, the Gor’kov equations in the Wigner coordinates read

τzε ◦ Ğ − �̆ • Ğ = 1, (49a)

Ğ ◦ τzε − Ğ • �̆ = 1. (49b)

The circle product in the Wigner product is the same as in
continuous models for normal metals [5,61],

A ◦ B = exp

(
i

2
∂A
ε ∂B

T − i

2
∂A

T ∂B
ε

)
AB, (50)

where the superscripts on the differential operators denote
which function they act on. The spatial part of the bullet prod-
uct, on the other hand, is different, and there are three reasons
for this. First, since we are working on a discrete lattice, we
cannot Taylor expand, which is how the series expansion in
differential operators is achieved in Eq. (50). Second, since we
are working with two sublattices that are located differently in
space, the COM positions and relative positions are different
for different matrix elements. Third, the COM position is not
set constant in the way we have defined the Fourier trans-
form in Eq. (45). Nevertheless, the bullet product can still
be written as a series of differential operators of increasing
order. To derive the explicit series expansion, one can use
the Newton forward difference equation, which is the discrete
analog to the Taylor series expansion. The zeroth-order term
is the same, namely just the normal matrix product, and we
will end up keeping only the zeroth-order terms, except for
the kinetic energy term, the tunneling term, and the potential,
which is large outside the material. We will evaluate these
terms explicitly when considering the boundary condition.
Note, however, that we cannot neglect the higher-order terms
at this stage because the Green’s function is strongly peaked
in momentum space.

To evaluate Ĥα
0 • Ǧαα and Ǧαα • Ĥα

0 in Wigner coordi-
nates, note that

Fr[A • B]
(
k, xα

n

) =
∑

m∈Z3

F[A]
(
k, xα

m + xα
n

)
◦ e−iρBk·δα

B(n+m)neiρBk·δα

e−ik·xα
m . (51)

Hence, as Ĥα
0 does not depend on COM-position,

Ft
{
Fr
[
Ĥα

0 • Ǧαα
]}(

k, xα
n

) = Ĥα
0 (k)Ǧαα

(
k, xα

n

)
. (52)

Here,

Ĥα
0 (k) = ρxKα (k) − (Jαρzσzτz + μ), (53)

and

Kα (k) = −
∑

δi∈N.N.

tα cos(k · δi ) (54)

where the sum goes over all the six nearest-neighbor-
displacement vectors.
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Interchanging the order, we find that

Ft
{
Fr
[
Ǧαα • Ĥα

0

]}
= ǦααĤα

0

− 1

2

∑
δi∈N.N.

(�RǦαα ) · (δi + δα )(ρx + iρy)tαe−ik·δi

− 1

2

∑
δi∈N.N.

(�RǦαα ) · (δi − δα )(ρx − iρy)tαe−ik·δi (55)

where the symbols on the right-hand side denote functions of
Wigner coordinates and the discrete finite difference operator
is defined as

xα
m · �RǦαα

(
k, xα

n

) = Ǧαα
(
k, xα

n + xα
m

)− Ǧαα
(
k, xα

n

)
. (56)

The finite difference is only well defined when xα
m is a lattice

vector, meaning that xα
m is a displacement vector from one unit

cell to another. However, we can define

δi · �RǦαα
(
k, xα

n

) = [Ǧαα
(
k, xα

n + 2δi
)− Ǧαα

(
k, xα

n

)]
/2.

(57)
This is possible because we assume that 2δi is a lattice vector
when δi is a nearest-neighbor-displacement vector. With this,

δi · �RǦαα
(
k, xα

n

)+ δα · �RǦαα
(
k, xα

n

)
= (δi + δα ) · �RǦαα

(
k, xα

n

)+ 1
2 Ǧαα

(
k, xα

n + 2δi
)

+ 1
2 Ǧαα

(
k, xα

n + 2δα
)− Ǧαα

(
k, xα

n + δi + δα
)
. (58)

The last three terms are equal to |δi − δα|2/2 times the second-
order central difference of Ǧαα , so they are negligible under
the assumption that the Green’s function changes slowly as
a function COM position compared to the interlattice spac-
ing. By the same reasoning we also approximate (−xα

m) ·
�RǦαα = −xα

m · �RǦαα , since the difference is equal to the
|xα

m|2 multiplied by the second-order derivative of Ǧαα . With
this we have

Ft
{
Fr
[
Ǧαα • Ĥα

0

]} = ǦααĤα
0

+ i(�RǦαα ) · (ρx∇kKα + δαρyKα ).
(59)

The dot product in the last term must be interpreted in the
following sense: If ∇kKα = A1δ1 + A2δ2 + A3δ3, where δ1,
δ2 and δ3 are three different, linearly independent, nearest-
neighbor-displacement vectors, then

(�RǦαα ) · ∇kKα =
3∑

i=1

δi · (�RǦαα )Ai. (60)

VIII. EXTRACTING THE CONDUCTION BAND

The main idea behind the quasiclassical theory is that most
of the interesting physics happens close to the Fermi surface.
Therefore, it is of interest to isolate the contribution from
states close to the Fermi surface. In our model there are two
energy bands that are not overlapping, so only one of these
can pass through the Fermi surface. In real materials, it is not
always the case that the energy bands are not overlapping. It
is sufficient that the energy bands are not overlapping near the
Fermi surface.

To separate the two bands, we must diagonalize Ĥα
0 . We

find that

Ĥα
0 = SαDα (Sα )T , (61)

where

Dα = diag(ξα
−, ξα

−, ξα
−, ξα

−, ξα
+, ξα

+, ξα
+, ξα

+) (62)

and (Sα )T denotes the transpose of

Sα = 1√
2ηα

⎡
⎢⎢⎣
⎛
⎜⎜⎝

−σ0 0 σ0 0
σ0 0 σ0 0
0 −σ0 0 σ0

0 σ0 0 σ0

⎞
⎟⎟⎠s̄α

−

⎛
⎜⎜⎝

σz 0 σz 0
σz 0 −σz 0
0 −σz 0 −σz

0 −σz 0 σz

⎞
⎟⎟⎠�sα

⎤
⎥⎥⎦, (63)

where σ0 is the 2 × 2 identity matrix, ηα =
√

(Jα )2 + (Kα )2,
ξα
± = −μα ± ηα , s̄α = (sα

+ + sα
−)/2, and �sα = (sα

+ − sα
−)/2,

with sα
± = √

ηα ± Jα .
Next, we define(

Ǧαα
−− Ǧαα

−+
Ǧαα

+− Ǧαα
++

)
= (Sα )T ǦααSα. (64)

We want an equation for the Green’s function associated with
the energy band, which crosses the Fermi surface. This can
be either Ǧαα

−− or Ǧαα
++. Here we choose Ǧαα

−−. To derive this
equation, we first find that

(Sα )T ρx∇kKαSα = ∇kD + Jα∇kη
α

Kα

⎛
⎜⎜⎝

0 0 σz 0
0 0 0 −σz

σz 0 0 0
0 −σz 0 0

⎞
⎟⎟⎠

(65)

and

(Sα )T iρySα =

⎛
⎜⎜⎝

0 0 −σ0 0
0 0 0 −σ0

σ0 0 0 0
0 σ0 0 0

⎞
⎟⎟⎠. (66)

Additionally, we continue to use τz to denote the third Pauli
matrix in Nambu space after transforming to the band basis,
which means that

(Sα )T τzS
α =

⎛
⎜⎜⎝

σ0 0 0 0
0 −σ0 0 0
0 0 σ0 0
0 0 0 −σ0

⎞
⎟⎟⎠ =

(
τz 0
0 τz

)
. (67)

Transforming the first Gor’kov equation to the AFM en-
ergy band basis and extracting the block corresponding to the
conduction band, we get

τzε ◦ Ǧαα
−− − ξα

−Ǧαα
−− − [(�̌α − Ĥα

0

) • Ǧαα
]
−− = 1, (68)

where �̌α is the block of �̆, given by Eq. (42), corresponding
to material α and the subscript on the last term on the left-hand
side means that one should take the upper left block in the
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FIG. 3. A sketch of the integration decomposition introduced by
Eilenberger [3].

conduction band basis. That is, for a general matrix A in the
sublattice basis,(

A−− A−+
A+− A++

)
= (Sα )T ASα. (69)

The second Gor’kov equation becomes

Ǧαα
−− ◦ τzε − ξα

−Ǧαα
−− − i∇kξ

α
− · �RǦαα

−−

− iJα∇kη
α

Kα
· �RǦαα

−+τzσz − Kαδα · �RǦαα
−+

− [Ǧαα • (�̌α − Ĥα
0

)]
−− = 1. (70)

IX. QUASICLASSICAL GREEN’S FUNCTIONS

In this section, we derive the quasiclassical equations of
motion. To do so, we must integrate the Green’s function
over momenta. Note that since we only want the contribution
from states close to the Fermi surface, we cannot integrate
over all momenta, but must instead integrate over a contour
close to the Fermi surface. While it is true that the Green’s
function will be strongly peaked around the Fermi surface,
the contribution from far away from the Fermi surface is not
negligible. This is because the retarded and advanced Green’s
function goes as 1/ξα

− far away from the Fermi surface.
Observables are given as integrals over all momenta. To

extract the quasiclassical contribution, one must decompose
this integral into one part, which includes the contribution
close to the Fermi surface and one part, which includes the
rest. By using the Eilenberger decomposition [3], as illus-
trated in Fig. 3, the contribution from the Fermi surface is
included as two closed contours in the complex plane, which
simplifies the calculations. We show how observables can be
expressed as a quasiclassical contribution and a rest term in
Sec. XIV.

To get the quasiclassical equations of motion, we must
integrate the Gor’kov equations over the closed contours. This
allows us to simplify many of the bullet products when the
self-energy varies slowly as a function of COM position, as
we show in this section. Note that the tunneling term and
the potential, which is large outside of the material change
rapidly as a function of COM position. These can therefore
not be simplified in the same way. However, these terms are
only nonzero at the interface. In this section, we consider
only positions inside the material and therefore ignore these
terms. We will return to them when deriving the boundary
conditions. Hence, as long as we consider COM positions
away from the boundaries,

�̌α − Ĥα
0 = V̌ α + �̌α

imp. (71)

To simplify the bullet product, we can use the gradient
expansion. However, the gradient expansion is more com-

plicated in our case compared to the continuous case. This
is because we are working with two discrete sublattices. To
derive the gradient expansion for discrete lattices, we can use
the Newton forward difference equation. If the basis vectors
are {vα

1 , vα
2 , vα

3 }, such that xα
m = am

1 vα
1 + am

2 vα
2 + am

3 vα
3 , with

integers am
1 , am

2 , and am
3 , then

A
(
xα

n + xα
m

) =
∑
j∈N3

0

(
xα

m

)
j

j!

3∏
i=1

([
sgn
(
am

i

)
vα

i

] · �R∣∣vα
i

∣∣
) ji

A
(
xα

n

)
,

(72)

where j = ( j1, j2, j3) is a multi-index, j! = j1! j2! j3! and(
xα

m

)
j = (am

1 vα
1

)
j1

(
am

2 vα
2

)
j2

(
am

3 vα
3

)
j3
, (73a)(

am
i vα

i

)
ji

= sgn
(
am

i

) ji ∣∣vα
i

∣∣[∣∣am
i

∣∣− (n − 1)
](∣∣am

i vα
i

∣∣)
ji−1.

(73b)

Hence, we see from Eq. (51) that the bullet product can be
written as a series expansion in derivative operators,

A • B = A ◦ B + [�RA] ◦ (i∇kB − [δαρB, B]) + · · · , (74)

where the circle product in the second term on the right-hand
side includes a dot product, which must be interpreted accord-
ing to Eq. (60). Equation (74) is the gradient expansion. The
gradient expansion is useful because the higher-order terms
can be neglected after a proper integral over momenta.

We define the quasiclassical Green’s function

ǧα = i

π

˛
dξα

−Ǧαα
−−, (75)

where the closed paths are illustrated in Fig. 3. They follow
the real line from ξα

− = −Eα
c to ξα

− = Eα
c and then split into

two semicircular paths to close the contours. Here, Eα
c is some

cutoff that is far larger than the other energies in the system,
but smaller than |μα|. Since the interval (−Eα

c , Eα
c ) must be

inside the conduction band, Eα
c must also be smaller than

�Eα , which is the smallest energy difference between the
Fermi level and the edges of the conduction band.

We can relate the kinetic energy Kα at the Fermi
level to �Eα . To do so, note that ξα

− + �Eα = −μα −√
(Jα )2 + (Kα )2 + �Eα � −μα − |Jα| means that(

Jα

Kα

)2

� (Jα )2

2|Jα|�Eα + (�Eα )2
. (76)

It is possible that �Eα � Jα . For this reason, one can
still consider Jα � Kα within this framework, meaning that
Jα/ηα = Jα/

√
(Jα )2 + (Kα )2 → 1. The only requirement for

the quasiclassical theory presented here to be valid is that �Eα

is large compared to all other energies except possibly the
exchange energy Jα . We can have any ratio Jα/Kα , and the
limit Jα/Kα → 0 should reproduce the quasiclassical theory
for normal metals.

Since the contours are closed in the complex plane and we
assume that the functions are analytic in ξα

−, we can use the
residue theorem to evaluate

ǧα = −
∑
ξi

sgn(Im[ξi]) Res(Ǧαα
−−, ξi ), (77)
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where the sum goes over all poles of Ǧαα
−−, which are inside the

contours and Res(Ǧαα
−−, ξi ) denote the corresponding residues.

To obtain an equation for the quasiclassical Green’s function,
we integrate the Gor’kov equations, Eqs. (68) and (70), over
momenta and use Eqs. (74) and (75).

Consider first terms on the form Ǧαα
−− • A, for some A. The

zeroth-order term in gradients is Ǧαα
−− ◦ A. If A(ξα

−) has no
poles inside the contour, we see that

i

π

˛
dξα

−Ǧαα
−− ◦ A = −

∑
ξi

sgn(Im[ξi]) Res(Ǧαα
−−, ξi ) ◦ A(ξα

−)

= ǧα ◦ A(0) + O(ǧα ◦ a∂ξα−A), (78)

where a is the maximal distance from the poles of Ǧαα
−− to

ξα
− = 0. It is therefore much smaller than Eα

c . We can ne-
glect the second term when A varies slowly as a function
of ξα

−, such that |a∂ξα−A| � |A|. Note that this is not true
when A = ξα

−, which is the case for the second terms on the
left-hand sides of Eqs. (68) and (70). We can therefore not
evaluate

¸
dξα

−ξα
−Ǧαα

−− in terms of the quasiclassical Green’s
function.

From Eq. (37) we see that (�̌α
imp)−− only depend on mo-

mentum through S. Equation (22c) shows that V̌ α
nm depend on

relative coordinates if there are magnetic textures or if the
Hamiltonian includes terms other than the kinetic term, which
depend on relative position. Corrections to the hopping term
from the vector potential or spin-orbit coupling are included
in V̌ α

nm, and these terms will depend on relative position. As a
result, (V̌ α )−− depends on momentum, and therefore also on
ξα
−. However, we assume that the dependence on momentum

and ξα
− is sufficiently slow, such that the condition |a∂ξα−A| �

|A| is valid when A = (V̌ α + �̌α
imp)−−. As we now show, this

assumption is reasonable as long as the Fermi level is far away
from the bottom of the conduction band.

Fourier transforming the term in Eq. (22c) coming from the
magnetic texture, we get that

Fr
{(

Kα
nm

[
xα

n − xα
m

]+ [δαρB, Kα
nm

]) · (R†∇R)
(
xα

n , t1
)}

= i∇kFr
{
Kα

nm

}(
k, xα

n

) · (R†∇R)
(
xα

n , t1
)
. (79)

As long as the Fermi level is sufficiently far away from the
bottom of the conduction band, the gradient ∇kFr{Kα

nm} =
∇kKα will be approximately constant near the Fermi surface.
This can be seen from Eq. (54), since

∣∣∣∣a∂ξα−∇kKα

∇kKα

∣∣∣∣ =
∣∣∣∣∣ a

vα
F · k̂F

∑
δi

δi(δi · k̂F ) cos(kF · δi )∑
δi

(δi · k̂F ) sin(kF · δi )

∣∣∣∣∣ <
∣∣∣∣∣ a

vα
F · k̂F

∑
δi

δi(δi · k̂F ) cos(kF · δi )∑
δi

(δi · k̂F )(kF · δi )

∣∣∣∣∣ � aλF

|vα
F · k̂F | , (80)

where vα
F = ∇kξ

α
− is the Fermi velocity, λF = 1/|kF | is the

Fermi wavelength, and k̂F is the unit vector in the direction of
kF . Hence, the variation in ∇kKα is negligible provided that
λF � |vα

F |/a.
Physically, the condition can be understood in the follow-

ing sense. The inverse energy 1/a defines a time, so |vα
F |/a

is the distance an electron with speed |vα
F | travels in this

time. For instance, when the dominant energy scale, other
than Jα and Kα , comes from the impurity scattering, then
a is at most the impurity scattering rate. In this case, the
condition λF � |vα

F |/a implies that the mean free path should
be much greater than the Fermi wavelength. This condition
holds provided that the energy difference between the Fermi
level and the bottom of the conduction band is sufficiently
large. Under this assumption, we can approximate
i

π

˛
dξα

−Ǧαα
−− ◦ (V̌ α + �̌α

imp

)
−− = ǧα ◦ (V̌ α + �̌α

imp

)
−− (81)

in the presence of an inhomogeneous magnetic texture. A
similar argument can be used to show that the same assump-
tions also imply that the condition |a∂ξα−A| � |A| holds in the
presence of corrections to the hopping amplitude, which can
come from an external vector potential or spin-orbit coupling.
With these assumptions,

i

π

˛
dξα

−
[(

V̌ α + �̌α
imp

) ◦ Ǧαα
]
−−

≈ (V̌ α + �̌α
imp

)
−− ◦ ǧα + i

π

˛
dξα

−
(
V̌ α + �̌α

imp

)
−+ ◦ Ǧαα

+−.

(82)

Equation (78) works the same when reversing the order of A
and Ǧαα

−−, so it is also true that

i

π

˛
dξα

−
[
Ǧαα ◦ (V̌ α + �̌α

imp

)]
−− ≈ ǧα ◦ (V̌ α + �̌α

imp

)
−−

+ i

π

˛
dξα

−Ǧαα
−+ ◦ (V̌ α + �̌α

imp

)
+−. (83)

If we are also sufficiently far away from the top of the
conduction band, then the velocity vα

F = ∇kξ
α
− is also approx-

imately constant at all the poles of the Green’s function. By
approximately constant, we mean that the variation is small
compared to vα

F . To see why, note that

∇kξ
α
− =

√
(μα − ξα−)2 − (Jα )2∇kKα

(μα − ξα−)
. (84)

Differentiating with respect to ξα
− gives

|a∂ξα−∇kξ
α
−|∣∣∇kFr

{
Kα

nm

}∣∣ =
∣∣∣∣ a(Jα )2

(ξα− − μα )(Kα )2
+ a∂ξα−∇kKα

∇kKα

∣∣∣∣. (85)

From Eq. (76), we know that (Jα/Kα )2 < |Jα|/2�Eα . Since
|Jα/(ξα

− − μα )| ≈ |Jα/μα| < 1 and a/�Eα � 1, the first
term on the right-hand side of Eq. (85) is small. We have
shown that the second term on the right-hand side of Eq. (85)
is also negligible. As a result, integrating the third term on the
left-hand side of Eq. (70) gives

− i

π

˛
dξα

−i∇kξ
α
− · �RǦαα

−− = −ivα
F · �Rǧα. (86)
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Next, consider the higher-order terms in the gradient ex-
pansion. We will show that we can ignore these terms when
the Hamiltonian, and therefore the Green’s function, vary
slowly in the center-of-mass (COM) spatial coordinate. As-
suming |a∂ξα−A| � |A|,

i

π

˛
dξα

−[�RǦαα
−−] ◦ (i∇kA − [δαρB, A])

≈ [�Rǧα] ◦ (i∇kA − [δαρB, A]), (87)

where we used Eq. (78). The gradient ∇kA is evaluated at the
Fermi surface. We define the characteristic COM length scale
L to be the smallest number satisfying

|�Rǧα| <
|ǧα|
L

, (88)

everywhere and for all momentum directions, where the
norms can be understood using an appropriate matrix norm
such as the Frobenius norm. In the quasiclassical framework,
L is assumed to be much larger than the length of the nearest-
neighbor-displacement vectors and the Fermi wavelength. As
a result,

|�Rǧα ◦ [δαρB, A]| <
|δα|
L

|ǧα| ◦ |A| � |ǧα| ◦ |A|, (89)

meaning that the second term in Eq. (87) is negligible com-
pared to the zeroth-order term, ǧα ◦ A. The magnitude of the
first term is

|[�Rǧα] ◦ (i∇kA)| <
|vα

F |
L

|ǧα| ◦ |∂ξα−A|. (90)

Therefore, this term is negligible compared to the zeroth-order
term if ||vα

F |∂ξα−A/L| � |A|. This is guaranteed to be the case
if L > |vα

F |/a, since |a∂ξα−A| � |A|. Physically, this criterion
can again be understood by considering the time scale defined
by 1/a. For instance, 1/a can be on the order of the elastic
impurity scattering time. The condition L > |vα

F |/a then states
that the variation is small over a distance equal to the mean
free path. However, we note that this condition is too strict. It
assumes only that |∂ξα−A|/|A| � 1/a, but if one can replace
1/a with a smaller number, then one can also loosen the
condition on L.

With these assumptions, we neglect the first-order terms
in the gradient expansion of Ǧαα

−− • A after integration over
ξα
−. Since L is large, higher-order terms will be even smaller

than the first-order terms, so we neglect all terms except the
zeroth-order term in the gradient expansion of Ǧαα

−− • A. Next,
we must consider

i

π

˛
dξα

−[�RA] ◦ (i∇kǦαα
−− − [δαρB, Ǧαα

−−]). (91)

We can use Eq. (78) one the second term on the right-hand
side, which we see can be neglected since |�RA| < |A|/L and
|δα|/L � 1. However, we cannot use Eq. (78) to evaluate the
first term on the right-hand side of Eq. (91). This is because
Ǧαα

−− varies rapidly as a function of k near its poles. To pro-
ceed, we can use the contour integral of a total derivative is

zero. This implies that
˛

dξA
∂B

∂k
=
˛

dξA
∂ξα

−
∂k

∂B

∂ξα−
= −

˛
dξ

∂

∂ξα−

(
A

∂ξα
−

∂k

)
B,

(92)

for any A and B, where ∂/∂k is differentiation with respect to
the amplitude of k in spherical coordinates. This is not to be
confused with the gradient operator ∇k . We already assume
that ∇kξ

α
− is approximately constant on all the poles of Ǧαα

−−.
Using this we find that

i

π

˛
dξ�RA ◦ ∇kǦαα

−− = �RA

kF
◦
[

eθ

∂

∂θ
+ eφ

1

sin θ

∂

∂φ

]
ǧα

− ek · (∂k�RA) ◦ ǧα, (93)

where kα
F is the Fermi momentum, satisfying ξα

−(kα
F ) = 0 and

θ and φ are the azimuthal and polar angles in momentum
space, respectively. As long as ǧα does not vary rapidly as
a function of θ and φ, the right-hand side of Eq. (93) is
negligible under the same assumptions as Eq. (87). Hence,
we can also neglect the higher-order terms in the gradient
expansion of A • Ǧαα

−−. Combining the above results,

i

π

˛
dξα

−
[(

�̌α − Ĥα
0

) • Ǧαα
]
−−

= (�̌α − Ĥα
0

)
−− ◦ ǧα + i

π

˛
dξα

−
(
�̌α − Ĥα

0

)
−+ ◦ Ǧαα

+−,

(94)

and

i

π

˛
dξα

−
[
Ǧαα • (�̌α − Ĥα

0

)]
−−

= ǧα ◦ (�̌α − Ĥα
0

)
−− + i

π

˛
dξα

−Ǧαα
−+ ◦ (�̌α − Ĥα

0

)
+−.

(95)

The circle-products in the last terms on the right-hand side of
Eqs. (94) and (95) comes from a truncation in the gradient ex-
pansion, which is valid for the same reasons as the truncation
in the gradient expansions involving Ǧαα

−−.
To complete the derivation of the quasiclassical equations,

we must remove the terms involving Ǧαα
−+ and Ǧαα

+−. Physi-
cally, this can be done because the energy difference between
the two bands is large for momenta close to the Fermi sur-
face. This means that there is negligible coupling between the
electrons near the Fermi surface and the electrons in the other
band. In order to show∣∣∣∣ i

π

˛
dξα

−Ǧαα
−+

∣∣∣∣� |ǧα| and

∣∣∣∣ i

π

˛
dξα

−Ǧαα
+−

∣∣∣∣� |ǧα|,
(96)

we define

ǧα
±∓ = i

π

˛
dξα

−Ǧαα
±∓. (97)

We get from the first Gor’kov equation that

τzε ◦ ǧα
+− − ξα

+ǧα
+− − (�̌α − Ĥα

0

)
++ ◦ ǧα

+−

− (�̌α − Ĥα
0

)
+− ◦ ǧα = 0, (98)
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where ξα
+(kF ) = −μα + ηα (kα

F ) is evaluated at the Fermi sur-
face defined by ξα

−(kF ) = −μα − ηα (kα
F ) = 0. As a result,

|ξα
+| = 2|μα|, which is much larger than |(�̌α − Ĥα

0 )+−| by
assumption. We will also assume |ε| � Eα

c , and consider
larger |ε| separately when computing observables in Sec. XIV.
Therefore, ǧα

+− ≈ (�̌α − Ĥα
0 )+− ◦ ǧα/ξα

+ is negligible. The

same argument from the second Gor’kov equation shows that
ǧα

−+ is negligible as well.
Finally, integrating the Gor’kov equations, Eqs. (68) and

(70), over the contours in ξα
− space and using Eqs. (94)–(96)

we get

τzε ◦ ǧα − (�̌α − Ĥα
0

)
−− ◦ ǧα = i

π

˛
dξα

−ξα
−Ǧαα

−−, (99a)

ǧα ◦ τzε − ivα
F · �Rǧα − ǧα ◦ (�̌α − Ĥα

0

)
−− = i

π

˛
dξα

−ξα
−Ǧαα

−−. (99b)

We have no way to evaluate the right-hand sides because it would require first finding the poles of Ǧαα
−−. Instead, we can

subtract Eq. (99b) from Eq. (99a) to obtain the Eilenberger equation,

ivα
F · �Rǧα + [τzε − (�̌α − Ĥα

0

)
−−, ǧα

]
◦ = 0. (100)

The distances between neighboring points are short compared to the characteristic COM length scale L, defined in Eq. (88),
so we can approximate ǧα by a continuous function in COM position and replace �R by the gradient operator, ∇R. One way to
do this rigorously is to define the continuous function as a weighted average,

ǧα
c (R) =

∑
n∈Z3

ǧα
(
xα

n

) 1

C(R)
e−(R−xα

n )2/l2
, (101)

where l � L and C(R) =∑n∈Z3 e−(R−xα
n )2/l2

. From the fact that l � L, it is clear that ǧα (xα
n ) ≈ ǧα

c (xα
n ). Moreover, if |xα

m| � L,

(
xα

m · �Rǧα
)(

xα
n

) ≈
∑
n∈Z3

(
xα

m · �Rǧα
)(

xα
n

) 1

C(R)
e−(R−xα

n )2/(2l ) =
∑
n∈Z3

[
ǧα
(
xα

n + xα
m

)− ǧα
(
xα

n

)] 1

C(R)
e−
(

R−xα
n

)2
/(2l )

=
∑
n∈Z3

ǧα
(
xα

n

)[e−(R+xα
m−xα

n )2/(2l )

C(R + xα
m)

− e−(R−xα
n )2/(2l )

C(R)

]
≈ xα

m · ∇Rǧα
c

(
xα

n

)
. (102)

Inserting this into Eq. (100) and relabeling ǧα
c → ǧα , the

Eilenberger equation now becomes, in terms of continuous
COM coordinates,

ivα
F · ∇Rǧα + [τzε − (�̌α − Ĥα

0

)
−−, ǧα

]
◦ = 0. (103)

The Eilenberger equation does not have a unique steady-
state solution. This can be seen from the fact that any constant
multiple of the identity matrix is a solution. To compensate
for this, one typically assumes a normalization condition. In a
spatially and temporally uniform system, we see from Eq. (70)
that

Ǧαα
−− = (τzε − ξα

− − V̌ α − �̌α
imp

)−1 = P(−ξα
− + D)−1P−1,

(104)

where τzε − V̌ α − �̌α
imp = PDP−1 and D is diagonal. Since D

varies slowly as a function of ξα
− within the contour, we see

that
i

π

˛
dξα

−(−ξα
− + D)−1

ll = −sgn[Im(Dll )], (105)

which implies that ǧα ǧα = 1. More generally, we assume that
ǧα ◦ ǧα = 1. This is consistent with the fact that ǧα ◦ ǧα = 1
must also solve the Eilenberger equation, as can be seen by
taking the circle product of the Eilenberger equation by ǧα

from the left and from the right, as well as the fact that the ini-
tial condition, if taken at T → −∞, should be a time-invariant

state, such that ǧα ◦ ǧα = ǧα ǧα = 1. Moreover, it is possible
to derive ǧα ◦ ǧα = 1 if one defines the quasiclassical Green’s
function in terms of trajectory Green’s function, as shown by
Shelankov [62].

X. QUASICLASSICAL IMPURITY SELF-ENERGY

Before deriving the dirty limit equation of motion for the
quasiclassical Green’s function, we must express the impurity
self-energy in terms of the quasiclassical Green’s function.
From Sec. V we have that

�̌α
imp

(
ε, T, k, xα

n

) =
∑

X∈{A,B}
nαX

imp

(
ρX 〈U Xα〉imp

+ 〈U XαU Xα〉impρX (Ǧαα )nn(ε, T )ρX
)
.

(106)

If on average there are an equal amount of impurities of equal
average strength on both sublattices, and the impurities are
not magnetic, then the first term is simply equivalent to a shift
in the electrochemical potential. It can therefore be absorbed
into µα .
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To evaluate the second term in Eq. (106) we use the Eilenberger contour,

(Ǧαα )nn = V α
e

ˆ
♦α

d[3]k

(2π )3
eiρBk·δα

Ǧαα
(
k, xα

n

)
e−iρBk·δα = V α

e

ˆ
d�

4π

ˆ ξmax

ξmin

p2dξ−α

2π2(ξ−α )′e
iρBk·δα

Ǧαα
(
k, xα

n

)
e−iρBk·δα

= V α
e

ˆ
d�

4π

˛
k2dξ−α

2π2vα
F

eiρBk·δα

Ǧαα
(
k, xα

n

)
e−iρBk·δα + V α

e

ˆ
d�

4π

 
k2dξ−α

2π2(ξ−α )′e
iρBk·δα

Ǧαα
(
k, xα

n

)
e−iρBk·δα

. (107)

Using that

ρX eiρBk·δα

Ǧαα
(
k, xα

n

)
e−iρBk·δα

ρX = ρX Ǧαα
(
k, xα

n

)
ρX , (108)

where X ∈ {A, B}, we see that we can remove the exponentials
in Eq. (107). The first term on the right-hand side of Eq. (107)
is what gives us the quasiclassical Green’s function. To evalu-
ate the second term, we can use the fact that we are far away
from the Fermi surface, so, if we neglect spatial and temporal
derivatives in the Gor’kov equations,

Ǧαα ≈ (ετz − Ĥα
0 − V̌ α − �̌α

imp

)−1

= (−Ĥα
0

)−1 − (Ĥα
0

)−1(
ετz − V̌ α − �̌α

imp

)(
Ĥα

0

)−1

+ O([ξ−α]−3). (109)

We can neglect the second term after integration for the
following reason. We can complete the contour in

ffl
dξ−α

with a semicircle of radius (|ξmin| + |ξmax|)/2. Since there
are no poles inside the closed contour, the integral

ffl
dξ−α

must be equal to minus the integral over the semicircle arc.
The integral over this arc is negligible because it is less
than π (|ξmin| + |ξmax|)/2 × a max(Nα

0 )/ min(|ξmin|, |ξmax|)2,
which is O(Nα

0 (0)a/�Eα ), where a is again an order of mag-
nitude estimate of the elements of (ετz − V̌ α − �̌α

imp), and
therefore much smaller than �Eα , and

Nα
0 (ε) =

ˆ
d[3]k

(2π )3
δ(ξ (k) − ε)

=
ˆ

d�

4π

ˆ
k2dξ

2π2ξ ′δ(ξ (k) − ε) (110)

is the normal state density of states per spin. For the same
reason, the terms of higher order in (ξα

−)−1 are also negligible.
The first term, however, is not negligible, as the same argu-
ment shows that this integral is O(N0(0)), which is the same
as the quasiclassical term.

Evaluating the (−Ĥα
0 )−1 and applying the projection oper-

ators, we get

∑
X∈A,B

ρX (−Ĥ0)−1ρX = μα − Jαρzσzτz

ξα−ξα+
. (111)

Integrating out the momentum dependence, we see that we
get constant matrices with the same matrix structure as a
chemical potential and an antiferromagnetic spin-splitting. We
can therefore include this by renormalizing µα and Jα .

In order to evaluate the quasiclassical contribution, we
define

Sα

(
1
0

)
= Sα

c , (112)

where 1 and 0 are 4 × 4 matrices, such that

A−− = (Sα
c

)T
ASα

c . (113)

Since only the contribution from the conduction band is non-
negligible close to the Fermi surface, we have that

˛
k2dξ−α

2π2vα
F

Ǧαα
(
k, xα

n

) = −iπNα
0 (0)Sα

c ǧα
(
Sα

c

)T
, (114)

where Sα
c is evaluated at the Fermi surface.

Hence, if we define

ǧα
s :=

ˆ
d�

4π
ǧα = 〈ǧα〉, (115)

where in the last equality we also defined the angular average
in momentum space as 〈·〉, then(

�̌α
imp

)
−− = − i

τimp

∑
X∈{A,B}

(
Sα

c

)T
ρX Sα

c ǧα
s

(
Sα

c

)T
ρX Sα

c , (116)

where

τα
imp = (πNα

0 (0)V α
e nαA

imp〈U AαU Aα〉imp
)−1

(117)

is the impurity scattering time.
Next, we find that

(
Sα

c

)T
ρA/BSα

c = 1

2

(
1 ± Jα

ηα
σzτz

)
, (118)

such that(
�̌α

imp

)
−− = − i

2τα
imp

(
ǧα

s + (Jα )2

(ηα )2
σzτzǧ

α
s σzτz

)
. (119)

This reduces to the normal state impurity self-energy in the
absence of antiferromagnetism when Jα = 0. However, when
Jα 	= 0 we get an additional term, which is the same as one
gets when adding magnetic impurities in the quasiclassical
theory for normal metals. This is an important result, which
means that impurities in the antiferromagnet behave as if
they were magnetic. This effect becomes important when the
system size becomes larger than the mean free path, and
this is why one should expect the critical temperature to
decrease in superconducting proximity structures when the
antiferromagnet becomes larger than its mean free path, which
explains the findings of Hübener et al. [45], as alluded to in
Sec. I. Physical consequences of well Eq. (119), as well as a
physical explanation for its existence is further discussed in
Ref. [63].

The effective magnetic component of nonmagnetic impuri-
ties is similar to how interfacial disorder in antiferromagnetic
insulators has been shown to give rise to magnetic effects
when the interface is uncompensated [64], except that here
it is a bulk effect. As a result, it is present even though the
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magnetization is fully compensated. Another type of material
in which one can find effective “magnetic” coupling from
nonmagnetic impurities is in Rashba superconductors [65,66].
The strong coupling between spin and momentum degrees of
freedom in Rashba superconductors means that nonmagnetic
impurities get a nontrivial matrix structure in the helical basis
[65]. However, the effective “magnetic” impurities in Rashba
superconductors are different from what we see here. They
couple to the p-wave part of the Green’s function and not
the s-wave part. They are “magnetic” in the sense that they
couple different components in the helical basis, but not in the
sense that it is as if the system has magnetic impurities. Here
we find that nonmagnetic impurities in AFMs are mathemati-
cally equivalent to having magnetic impurities in the original
model.

XI. THE DIRTY LIMIT

In this section, we derive the equations of motion in the
dirty limit, which are valid for diffusive systems. There are
two central assumptions in the dirty limit. First, it is assumed
that the quasiclassical Green’s function is dominated by the
s-wave and p-wave components. Second, it is assumed that
the elastic impurity scattering rate is large compared to the
other energies in the system, except for the minimal distance
between the Fermi level and the edges of the conduction
band �Eα , and possibly Jα . We show that the resulting equa-
tions are valid if the variation in ǧα over the length scale of
the mean free path is small compared to 1. This is the case for
instance if the system varies slowly in space or the proximity
effect is small. In the limit of very strong exchange coupling,
such that (Jα )2/(ηα )2 = O(1), we show that the quasiclassical
Green’s function can be separated into short-range correla-
tions and long-range components, where the former vanish
in the diffusive limit. Therefore, this regime can be solved
by projecting the Green’s function onto the set of long-range
components. The derivation is done by averaging the Eilen-
berger equation,

ivα
F · ∇Rǧα + [τzε − V̌ α

−− − (�̌α
imp

)
−−, ǧα

]
◦ = 0, (120)

over momentum directions. This will reduce the problem
from having infinitely many coupled Green’s functions, one
for each momentum direction, to having only two coupled
Green’s functions.

Before proceeding, we first replace the gradient term with
the covariant derivative. This is done by extracting the p-wave
part of V̌ α

−−, meaning that we write

V̌ α
−− = −vα

F · Â
α + V̌ α

s + �V̌ α, (121)

where V̌ α
s = 〈V̌ α

−−〉 is the s-wave part and −vα
F · Â

α
is the p-

wave part of V̌ α
−−. The p-wave contribution includes the vector

gauge potential from the electromagnetic field as well as spin-
orbit coupling and the spatial variation in the Néel vector. The
covariant derivative is then defined as

∇̃ ◦ ǧ = ∇Rǧ − i[Â, ǧ]◦, (122)

such that

ivα
F · ∇̃ ◦ ǧα + [τzε − V̌ α

s − �V̌ α − (�̌α
imp

)
−−, ǧα

]
◦ = 0.

(123)

Doing an angular average of Eq. (123), we get

i∇̃ ◦ 〈vα
F ǧα
〉+
[
τzε − V̌ α

s + i(Jα )2

2τα
imp(ηα )2

σzτzǧ
α
s σzτz, ǧα

s

]
◦

− 〈[�V̌ α, ǧα]◦〉 = 0. (124)

If we take the product with vα
F before averaging, we get

i∇̃ ◦ 〈vα
F ⊗ vα

F ǧα
〉+
[
τzε − V̌ α

s + i

2τα
imp

ǧα
s ,
〈
vα

F ǧα
〉]

◦

+
[

i(Jα )2

2τα
imp(ηα )2

σzτzǧ
α
s σzτz,

〈
vα

F ǧα
〉]

◦
− 〈[�V̌ α, vα

F ǧα
]
◦
〉 = 0, (125)

where ⊗ denotes the tensor product. Next, we define the
matrix current

ǰ
α
:=〈vα

F ǧα
〉
. (126)

The aim is a set of equations for ǰ
α

and ǧα
s = 〈ǧα〉. This can

be obtained from Eqs. (124) and (125) if we assume that �V̌ α

is negligible. Neglecting the terms proportional to �V̌ α , mul-
tiplying Eq. (125) by τα

imp, and defining the diffusion tensor,

Dα:=τα
imp

〈
vα

F ⊗ vα
F

〉
, (127)

Eqs. (124) and (125) become

i∇̃ ◦ ǰ
α +

[
τzε − V̌ α

s + i(Jα )2

2τα
imp(ηα )2

σzτzǧ
α
s σzτz, ǧα

s

]
◦

= 0,

(128)

and

ǧα
s ◦ ǰ

α = − ∇̃ ◦ (Dα ǧα
s

)+ iτα
imp

[
τzε − V̌ α

s , ǰ
α]

◦

−
[

(Jα )2

2(ηα )2
σzτzǧ

α
s σzτz, ǰ

α

]
◦
, (129)

respectively. In Eq. (129) we assumed that the higher-order
spherical harmonics in ǧα are small, and used that { ǰ

α
, ǧα

s } =
0. The latter follows from the former together with the p-wave
component of the normalization condition, 〈vα

F ǧα ◦ ǧα〉 =
{ ǰ

α
, ǧα

s } = 0. The assumption that the d-wave component is
negligible compared to 1 is consistent as long as ǰ

α
is small

compared to the Fermi velocity. To see why, note that the
normalization condition

ǧα ◦ ǧα = ǧα
s ◦ ǧα

s + {ǧα
s , �ǧα

}
◦ + �ǧα ◦ �ǧα = 1 (130)

must be satisfied for all momenta. Hence, if �ǧα = ǧα
p +

ǧα
d + · · · , where ǧα

p is the p-wave component and ǧα
d is the

d-wave component, the d-wave component resulting from
ǧα

p ◦ ǧα
p must be canceled by the d-wave term in {ǧα

s , ǧα
d}◦.

If ǧs = O(1), then ǧα
d will be O[( ǰ

α · vα
F /(vα

F )2)2], which we
assume is negligible compared to 1. Hence,

τα
imp

〈
vα

F ⊗ vα
F ǧα
〉 ≈ Dα ǧα

s + τα
imp

〈
vα

F ⊗ vα
F

(
ǰ
α · vα

F

)
(
vα

F

)2
〉

≈ Dα ǧα
s . (131)
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If the Fermi surface is spherically symmetric, then Dα
i j =

δi jτ
α
imp(vα

F )2/3.

For a complete description in terms of ǰ
α

and ǧα
s , we must

also express the normalization condition, ǧα ◦ ǧα = 1 in terms
of ǧα

s and ǰ
α
. Taking the angular average of the normalization

condition and using that 〈vα
F /(vα

F )2〉 = 0, we get that

ǧα
s ◦ ǧα

s = 1 + O
(∣∣ ǰα/vα

F

∣∣2). (132)

We have already assumed that ( ǰ
α · vα

F /(vα
F )2)2 is negligible

compared to 1, so

ǧα
s ◦ ǧα

s = 1. (133)

Using Eq. (133), we can rewrite Eq. (129) to

ǰ
α = − ǧα

s ◦ ∇̃ ◦ (Dα ǧα
s

)+ iτα
impǧα

s ◦ [τzε − V̌ α
s , ǰ

α]
◦

− ǧα
s ◦
[

(Jα )2

2(ηα )2
σzτzǧ

α
s σzτz, ǰ

α

]
◦
. (134)

Eqs. (133), (128), and (134) can be used to study systems
with an arbitrary amount of disorder, provided that the matrix
current squared | ǰ

α|2 is small compared to the Fermi velocity
squared |vα

F |2. To say that | ǰ
α|2 � |vα

F |2 is the same as say-
ing that the quasiclassical Green’s function is approximately
isotropic in momentum space. Physically, this is expected to
be the case when the elastic scattering time τα

imp is small, but
this can also happen, for example, if the tunneling is weak.
In Sec. XII we show that the matrix current at the boundary
is proportional to the square amplitude of the tunneling in the
absence of spin-active boundaries.

We can also simplify Eq. (134) a bit further if we assume
that |τα

impV̌
α

s | � 1 and only consider energies |ε| � 1/τα
imp. In

this case, we can neglect the second term on the right-hand
side of Eq. (134), since this term must be much smaller in
magnitude than ǰ

α
. Hence,

ǰ
α = −ǧα

s ◦ ∇̃ ◦ (Dα ǧα
s

)− ǧα
s ◦
[

(Jα )2

2(ηα )2
σzτzǧ

α
s σzτz, ǰ

α

]
◦
.

(135)

At this point, it might be tempting to also assume that the last
term in the commutator in Eq. (128) is dominant, but this is
not generally true. Although 1/τα

imp � |V̌ α
s |, one can not say

in general that∣∣∣∣∣
[

i(Jα )2

2τα
imp(ηα )2

σzτzǧ
α
s σzτz, ǧα

s

]
◦

∣∣∣∣∣� ∣∣[V̌ α
s , ǧα

s

]
◦
∣∣. (136)

This can be because the prefactor (Jα )2/(ηα )2 is small, or it
can be because the matrices on the right-hand side commute.
even for very strong antiferromagnets with (Jα )2/(ηα )2 =
O(1). This is because, even though the prefactor can be large,
the commutator can still be small. Thus, one must in general
keep all terms in Eq. (128).

Next, consider the case of very strong exchange cou-
pling, such that (Jα )2/(ηα )2 = O(1). In this case the prefactor
(Jα )2/[2τα

imp(ηα )2] is large in the diffusive limit. This will
strongly suppress some components of the quasiclassical
Green’s function, making them negligible in the diffusive
limit. We can write the quasiclassical Green’s functions in

terms of Pauli matrices in spin space and Nambu space as

ǧα =
3∑

i=0

3∑
j=0

ci jτiσ j, (137)

where σ0 and τ0 are identity matrices and {ci j} is a set of scalar
functions. We can separate these components into long-range
components, satisfying

σzτzci jτiσ jσzτz = ci jτiσ j, (138)

and short-range components, satisfying

σzτzci jτiσ jσzτz = −ci jτiσ j . (139)

That is, long-range components have either i ∈ {0, 3} and
j ∈ {0, 3} or i ∈ {1, 2} and j ∈ {1, 2}, while the short-range
components are the remaining components. Note that the
product of two long-ranged components or two short-ranged
components is a long-range component, while the product of
one long-range component and one short-range component is
a short-range component.

Let the subscripts SR and LR denote the short-range and
long-range components, respectively, such that ǧα = ǧα

SR +
ǧα

LR. Using the product properties of long-range and short-
range components, the long-range component of Eq. (128)
becomes

i∇̃LR ◦ ǰ
α

LR + [τzε − V̌ α
LR,s, ǧα

LR,s

]
◦ + [ÂSR, ǰ

α

SR

]
◦

− [V̌ α
SR,s, ǧα

SR,s

]
◦ = 0, (140)

where ∇̃LR ◦ ǰ
α

LR = ∇R · ǰ
α

LR − i[ÂLR, ǰ
α

LR]◦. We want to
show that the short-range components vanish from the equa-
tions in the diffusive limit when (Jα )2/(ηα )2 → 1. This means
that in this limit one can solve quasiclassical equations by
simply setting the short-ranged components to zero.

Assuming that (Jα )2/(ηα )2 ≈ 1, |τα
impV̌

α
s | � 1 and only

considering energies |ε| � 1/τα
imp, the Eilenberger equa-

tion for the short-range components becomes

∇̃ ◦ (vα
F ǧα

SR

)+ 1

τα
imp

[〈
ǧα

LR

〉
, ǧα

SR

]
◦ = 0. (141)

The short-range correlations and the long-range correlations
will generally not commute. As a result, we see that the short-
range correlations decay exponentially over a distance equal
to the mean free path in this case.

Making no assumptions other than assuming that τimp is
small and ǧα

s ◦ ǧα
s = 1, which is valid even if the short-range

components are not isotropic, provided they are small in mag-
nitude, the short-range component of Eq. (125) becomes

ǰ
α

SR = − τα
imp

(
ǧα

s ◦ ∇̃ ◦ 〈vα
F ⊗ vα

F ǧα
〉)

SR

−
(

ǧα
s

2
◦ [〈ǧα

LR

〉− ǧα
SR

〉
, ǰ

α]
◦

)
SR

. (142)

Using that ǧα
SR decays exponentially away from the interface

with over a length-scale equal to the mean free path, Eq. (142)
implies that, since ǧα

LR = O(1),

ǧα
SR = O

(
lα
mfp ǰ

α

SR

|Dα|

)
, (143)
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where lα
mfp = vα

F τα
imp is the mean free path. The short-range

component of the matrix current will be largest closest to the
interface, where it will be determined by the boundary con-
ditions. Moreover, in the diffusive regime, the matrix current
is small at the interface, as discussed in Sec. XII. Hence, in
the diffusive regime we see that ǧα

SR = O(τα
imp). Hence, to

zeroth order in τα
imp the long-ranged components can be solved

for consistently in the limit (Jα )2/(ηα )2 → 1 by setting the
short-ranged components to zero, effectively projecting out
these components from the Green’s function.

Very close to the interface the term [ÂSR, ǰ
α

SR]◦ can give a
contribution to Eq. (140). This is not a problem if ÂSR = 0,
but in Sec. XIII we show that, similar to spin-orbit coupling,
nonuniform magnetic textures can induce a nonzero ÂSR. This
means that if there are domain walls very close to the interface
to a spin-singlet superconductor, it can induce long-ranged su-
perconducting correlations in the antiferromagnetic metal. As
long as ÂSR = 0, the limit of very strong exchange coupling,
(Jα )2/(ηα )2 → 1, can be consistently captured by setting the
short-range components to zero and solving

i∇̃LR ◦ ǰ
α

LR + [τzε − V̌ α
LR,s, ǧα

LR,s

]
◦ = 0. (144)

The matrix current can be found by doing the same projec-
tion in Eq. (125), which in the limit (Jα )2/(ηα )2 → 1 simply
becomes

ǰ
α

LR = − ǧα
LR,s ◦ ∇̃ ◦ (Dα ǧα

LR,s

)
2

. (145)

From Eq. (135) we see that ǰ
α · vα

F /(vα
F )2 = O(lα

imp∇̃ ◦ ǧα
s ),

where lα
imp = vα

F τα
imp is the mean free path. As a result, the

assumption that ǧα
s ◦ ǧα

s = 1 is consistent as long as the change
in ǧα

s over the length of the mean free path is small compared
to 1. In the limit of strong exchange coupling, the short-ranged
components can decay over a length scale equal to the mean
free path, but these components also become negligible, as
shown above. Therefore, although the short-ranged compo-
nents are not necessarily isotropic in the limit Jα → ∞, one
can still solve the diffusive equations as long as there is no
strong spin-orbit coupling or sudden change in the Néel vector
close to the interface. To simplify the equations in this limit,
one can project out the long-range components. Spin-orbit
coupling or nonuniform Néel vector close to the boundary
can induce long-range components from the short-range com-
ponents of the matrix current. In this case, it is therefore not
always consistent to simply set the short-range components to
zero. Instead, if the limit of very strong exchange coupling is
necessary, one should solve the full Eilenberger equation for
the short-ranged components.

Equations (135) and (128) are our main results, together
with the boundary condition derived in Sec. XII. They pro-
vide general equations of motion, which can be solved to
obtain information about currents, densities, the local density
of states, and superconducting correlations in systems with
antiferromagnetism and arbitrary geometry both in and out of
equilibrium. In the absence of antiferromagnetism, meaning
that Jα → 0, Eqs. (135) and (128) reduce to the well-known
Usadel equation for normal dirty metals [4]. In the presence
of antiferromagnetism, there are three important differences.
First, all self-energies must be projected onto the conduction

band, which means that they must be transformed according
to the Sα

c matrix. Second, the coupling between spin and
sublattice gives rise to effective magnetic impurities with scat-
tering time τα

imp(ηα )2/(Jα )2. Third, the magnetic impurities
also modify the equation for the matrix current, which in the
normal metal case is simply ǰ

α = −ǧα
s ◦ ∇̃ ◦ (Dα ǧα

s ).
One can solve Eq. (135) for jα in time-independent situa-

tions. If we can diagonalize (ǧα
s σzτzǧα

s σzτz )i j = Ǔ −1
ik λkǓk j , we

find that

ǰ
α

i j = −Ǔ −1
ik

Ǔkm
[
ǧα

s ∇̃ · (Dα ǧα
s

)]
mnǓ

−1
ml

1 + (Jα )2(λk + λl )/[2(ηα )2]
Ǔl j, (146)

with summation over repeated indices. Alternatively, since
(Jα/ηα )2 is smaller by 1 by definition, one can solve for ǰ

α

by iteratively inserting into the right-hand side of Eq. (135).
To get a series expansion with a faster convergence rate it can
be beneficial to rewrite Eq. (135) as

ǰ
α = − [1 + (Jα/ηα )2]−1

{
ǧα

s ◦ ∇̃ ◦ (Dα ǧα
s

)

+ ǧα
s ◦
[

(Jα )2

2(ηα )2
σzτz

[
ǧα

s , σzτz
]
, ǰ

α

]
◦

}
. (147)

This is because the effective magnetic impurities in Eq. (128)
will tend to suppress [ǧα

s , σzτz]. In the limit of small Jα/ηα

or vanishing [ǧα
s , σzτz], one can solve Eqs. (128) and (135)

in the same way as the Usadel equation for normal metals,
but with a renormalized diffusion coefficient, Dα → Dα/[1 +
(Jα/ηα )2], additional magnetic impurities and self-energies,
which are projected onto the conduction band of the antifer-
romagnet. Otherwise, in the more general case, one can for
instance solve Eqs. (128) and (135) numerically using the
algorithm presented in Appendix.

XII. BOUNDARY CONDITION

Next, we derive the boundary condition, which is valid in
the diffusive regime. To do so, we must evaluate the two terms,
which we could neglect in the equation of motion inside the
materials. These are the tunneling terms and the potentials,
which are large only outside the materials. Here we consider
the interface between material L and R. To get the boundary
condition at the interface to a vacuum or an insulator, one
need only set the tunneling to zero. As before, let (α, β ) be
either (L, R) or (R, L). We assume that the Green’s functions
are approximately spherically symmetric also close to the
interface. This is the case as long as the matrix current at
the interface is small compared to the Fermi velocity, which
happens for instance when the tunneling amplitudes are small.

The way the boundary condition is derived here is that we
sum the Gor’kov equations over a small set of unit cells, which
includes the interface. We take this set to be the shape of a
wide cylinder. The width of this cylinder is much larger than
its length but much smaller than the characteristic length scale
L of the bulk as defined in Sec. IX. Then we integrate over
all momentum directions and integrate over the Eilenberger
contour. First, we consider the potential, which is large only
outside material α,(

�̂α
R

)
nm(t1, t2) = R̂α

n (t1)δnmδ(t1 − t2), (148)
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where R̂α
n is nonzero only at the boundary and outside of

material α. Taking the bullet product with Ǧαα , we have(
Ǧαα • �̂α

R

)
nm(t1, t2) = Ǧαα

nm(t1, t2)R̂α
m(t2). (149)

Next, we sum this over a set of unit cells V and define I ⊂
V to be the subset of V , which is at the interface. We get〈

i

π

˛
dξ−α

∑
n∈V

Ǧαα • �̂α
R

〉
=
∑
n∈I

Sα
c ǧα

s

(
xα

n

)(
Sα

c

)T ◦ R̂α
n .

(150)

Note that in our model �̂α
R is very large outside material α,

such that Ǧαα (k, x)�̂α
R (x) ∼ 1 when x is outside material α.

Nevertheless, only the points in I contribute in Eq. (150).
This is because the poles of Ǧαα are shifted outside of the
Eilenberger contour when x is outside of material α, rendering
the quasiclassical Green’s function exactly equal to zero. The
points at, or very close to, the interface are therefore the only
points where both ǧα and R̂α

n are different from 0.
Since the width of the cylinder is small compared to L, ǧα

s is
approximately constant on the points in I . We further assume
that R̂α

n is also approximately constant on the points in I . This
means that if l ∈ I and � is the number of unit cells in I , then〈

i

π

˛
dξ−α

∑
n∈V

Ǧαα • �̂α
R

〉
= �Sα

c ǧα
s

(
xα

l

)(
Sα

c

)T ◦ R̂α
l .

(151)
Next, we must evaluate(

�̂α
R • Ǧαα

)(
k, xα

n

)
= V α

e

∑
m∈Z3

ˆ
♦α

d[3]q

(2π )3
R̂α

m ◦ e−iρB (k−q)·δα

× Ǧαα (q, xn)eiρB (k−q)·δα

e−i(k−q)·(xα
m−xα

n ). (152)

First, we evaluate the sum over m. We use that R̂α
m = R̂α

l ,
where xα

l is a point on the interface close to xα
n , whenever xα

m

is on the interface. Otherwise, R̂α
m = 0. We find that

(
�̂α

R • Ǧαα
)

i j

(
k, xα

n

) = R̂α
l ◦

ˆ
♦α

d[3]q

(2π )3
fi j (q)Ǧαα

i j (k + q, xn),

(153)

where fi j is a normalized function, which is peaked at q = 0.
Next, integrating over the Eilenberger contour and averaging
over momentum directions, we find that〈

i

π

˛
dξ−α

∑
n∈V

�̂R • Ǧαα

〉
= �R̂l ◦ Sα

c ǧα
s

(
xα

l

)(
Sα

c

)T
. (154)

Next, we must evaluate the tunneling self-energy,

�̌α
T = T̂ αβ • Ǧββ

0 • T̂ βα. (155)

To proceed, we must assume some properties of the tunneling
term. The tunneling should be short ranged and only at lattice
points at the interface between the two materials. For each
unit cell in material α at the interface we assume that there is
exactly one connected unit cell in material β. For simplicity,
we label the connected unit cells the same. This means that if
xα

n is at the interface, then the connected unit cell in material

β is xβ
n . With this we have

T̂ αβ
nm =

∑
l∈int

t̂αβ

l δlnδlm, (156)

where the sum goes over all the points at the interface. Hence,
if χint is the characteristic function, which is 1 if the argument
is at the interface and 0 otherwise, then(

�̌α
T

)
nm(t1, t2) = t̂αβ

n (t1)
(
Ǧββ

0

)
nm(t1, t2)t̂βα

m (t2)χint(n)χint(m),
(157)

In order to evaluate the bullet product(
Ǧαα • �̂α

T

)(
k, xα

n

) = χint(n)
∑
m∈int

Ǧαα
(
k, xα

m

)
◦ e−iρBk·δα

t̂αβ
m ◦ (Ǧββ

0

)
mn ◦ t̂βα

n eiρBk·δα

× e−ik·(xα
m−xα

n ), (158)

we write(
Ǧββ

0

)
mn

=V β
e

ˆ
♦β

d[3]p

(2π )3
eiρB p·δβ

Ǧββ

0

(
xβ

n , p
)
e−iρB p·δβ

× eip·(xβ
m−xβ

n ). (159)

We can separate this integral into the quasiclassical contribu-
tion and a rest term, or high-energy contribution, according
to the Eilenberger contour. The high-energy contribution was
not negligible when we calculated the impurity self-energy.
This was because we evaluated the Green’s function at m = n.
The high-energy contribution to the term in Eq. (158) with
m = n will only renormalize R̂n, because it only depends on
Ĥβ

0 , as we showed earlier. When evaluated at m 	= n the oscil-
lating exponential suppresses the integral for the high-energy
contribution. For this reason, we neglect the high-energy con-
tribution.

Next, we must evaluate the quasiclassical part. Close to
the Fermi surface we have ξ

β
−(p) = 0 + (p − pβ

F )(ξβ
−)′(pβ

F ) =
v

β
F (p − pβ

F ). Hence, if the poles are located at {ξi}i,

i

π

˛
dξ

β
−Ǧββ

0 eip·r = −
∑
ξi

sgn(Im[ξi]) Res
(
Ǧββ

0 , ξi
)

× exp
(
ir · ep

[
pF + ξi/v

β
F

])
(160)

From Eq. (119) we know that impurity scattering gives rise to
an imaginary shift in the pole location, such that |Im(ξi )| �
1/2τ

β

imp. Therefore,

|eirξi/v
β
F | < e−r/2lβmfp , (161)

where lβ

mfp = τ
β

impv
β
F is the mean free path. The effective mean

free path very close to the interface may additionally be low-
ered by interfacial disorder.

The exponential decay means that we need only consider
relative distances up to around the mean free path in the sum
over m ∈ int. In the dirty limit, which is what we consider
here, it is assumed that 1/2τ

β

imp is much larger than all the
other self-energy contributions, and therefore |Im(ξi )| is much
larger than the real part of ξi. As a result, when r < 2lβ

mfp,

r Re(ξi)/v
β
F < 2τ

β

imp Re(ξi) � 1, which means that we can
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neglect Reξi/v
β
F in the exponential function when r < 2lβ

mfp. Hence,

i

π

˛
dξ

β
−Ǧββ

0 eip·r = Sβ
c ǧβ

0

(
Sβ

c

)T
eir·pβ

F f β (r). (162)

where f β (r) is an exponentially decaying function that gives rise to a soft cutoff as a function of relative distance at |r| ≈ 2lβ

mfp.
Hence, we find that〈

i

π

˛
dξ−α

∑
n∈V

Ǧαα • �̂T

〉
= − iπV β

e

∑
n∈I

∑
m∈int

ˆ
d�p

4π

ˆ
d�k

4π

f β
(
xβ

m − xβ
n

)(
pβ

F

)2
2πv

β
F

Sα
c ǧα
(
kα

F , xα
m

)(
Sα

c

)T
◦ e−iρBkα

F ·δα

t̂αβ
n eiρB pβ

F ·δβ

Sβ
c ǧβ

0

(
pβ

F , xβ
n

)(
Sβ

c

)T ◦ e−iρB pβ
F ·δβ

t̂βα
m eiρBkα

F ·δα

e−ikα
F ·(xα

m−xα
n )eipβ

F ·(xβ
m−xβ

n ). (163)

Next, we assume that the averaging over all momentum directions for both pβ
F and kα

F gives the s-wave contribution from
the Green’s function together with a renormalization of the tunneling amplitudes. This is the case because we assume
that the Green’s functions are approximately spherically symmetric also close to the interface. As a result, we finally
have 〈

i

π

˛
dξ−α

∑
n∈V

Ǧαα • �̂T

〉
−−

= −i
∑
n∈I

ǧα
s

(
xα

n

) ◦ T̂
αβ

n ◦ ǧβ

0,s

(
xβ

n

) ◦ T̂
βα

n , (164)

where

T̂
αβ

n = (Sα
c

)T ˆ̃tαβ
n Sβ

c , (165)

and where ˆ̃tαβ
n are the renormalized versions of t̂αβ

n resulting from the average over momentum directions. Similarly, T̂
βα

n =
(Sβ

c )T ˆ̃tβα
n Sα

c . In a similar way, we find that〈
i

π

˛
dξ−α

∑
n∈V

�̂T • Ǧαα

〉
−−

= −i
∑
n∈I

T̂
αβ

n ◦ ǧβ

0,s

(
xβ

n

) ◦ T̂
βα

n ◦ ǧα
s

(
xα

n

)
. (166)

We choose the volume defined by the unit cells in V to be approximately the shape of a wide cylinder, which includes the
interface. Let the discs at the ends of this cylinder have �2 points and define a plane. Let en be the unit vector that is orthogonal
to this plane and points out of material α. We assume that the width of the cylinder is much larger than the length. Inserting
Eqs. (164) and (151) into Eq. (70), integrating over the Eilenberger contour and momentum directions and summing over the
unit cells in V , we get that

i�2en · ǰ
α(

xα
l

)
/|δ| +

∑
n∈V

ǧα
s ◦ ετz −

〈
i

π

˛
dξ−α

∑
n∈V

Ǧαα • (�̌α
imp + V̌ α

)〉
−−

+ i�ǧα
s

(
xα

l

) ◦ T̂
αβ

l ◦ ǧβ

0,s

(
xβ

l

) ◦ T̂
βα

l

− �ǧα
s

(
xα

l

) ◦ (Sα
c

)T
R̂lS

α
c =

〈
i

π

˛
dξ−α

∑
n∈V

Ǧααξ−α

〉
, (167)

where l is again a unit cell in I and |δ| is the distance between nearest neighbors in the direction of en. We note that �/�2 can in
general be different from 1 because the interface need not lie in a perfect plane parallel to the ends of the cylinder. We assume
that the second and third terms on the left-hand side of Eq. (167) are negligible compared to the fourth and fifth terms because

the width of the cylinder is much larger than its length and R̂l and T̂
αβ

l T̂
βα

l are large compared to ε and (�̌α
imp + V̌ α ). However,

we cannot neglect the term on the right-hand side. The way to remove this term is again to use the other Gor’kov equation. From
the other Gor’kov equation, Eq. (68), we get, using Eqs. (166) and (154), that

∑
n∈V

ετz ◦ ǧα
s −

〈
i

π

˛
dξ−α

∑
n∈V

(
�̌α

imp + V̌ α
) • Ǧαα

〉
−−

+ i�T̂
αβ

l ◦ ǧβ

0,s

(
xβ

l

) ◦ T̂
βα

l ◦ ǧα
s

(
xα

l

)− �
(
Sα

c

)T
R̂lS

α
c ◦ ǧα

s

(
xα

l

)

=
〈

i

π

˛
dξ−α

∑
n∈V

Ǧααξ−α

〉
. (168)

Here, we neglect the first two terms for the same reason as above. Combining Eqs. (167) and (168) and absorbing the factor
|δ|�/�2 into the reflection and tunneling matrices, we finally get the boundary condition,

en · ǰ
α = [T̂αβ

l ◦ ǧβ

0,s

(
xβ

l

) ◦ T̂
βα

l + i
(
Sα

c

)T
R̂lS

α
c , ǧα

s

]
◦. (169)
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One can use the Dyson equation to write ǧβ

0,s as a series
expansion in ǧβ

s and the tunneling matrix. In principle, this
should produce a generalization of the Nazarov boundary
condition [67,68]. However, we are here interested in the
diffusive regime, meaning that the matrix current is small
compared to the Fermi velocity. This is the case when the
tunneling and reflection amplitudes are small. For this reason,
we need only consider Eq. (169) to the lowest order in the
tunneling matrices, which are obtained by setting ǧβ

0,s = ǧβ
s ,

yielding

en · ǰ
α = [T̂αβ

l ◦ ǧβ
s

(
xβ

l

) ◦ T̂
βα

l + i
(
Sα

c

)T
R̂lS

α
c , ǧα

s

]
◦. (170)

We note that in the absence of antiferromagnetism, this
exactly reproduces the generalized Kupriyanov-Lukichev
boundary condition for spin-active boundaries in the quasi-
classical theory for normal metals [58,59].

XIII. NONUNIFORM MAGNETIC TEXTURES

In this section, we derive the self-energy terms associated
with nonuniform magnetic textures in antiferromagnets. We
find that a spatial gradient in the magnetic texture gives rise to
a term in the covariant gradient, similar to spin-orbit coupling,
and a temporal gradient gives rise to an effective magnetic
field.

In both cases, we must evaluate R†∂R, where ∂ can be
either the time derivative or gradient operator and R is given
by Eq. (8). We find that

R†∂R = − i

2
∂ (θ sin φσx − θ cos φσy), (171)

where the direction of the Néel vector is n =
(sin θ cos φ, sin θ sin φ, cos θ ). From Eq. (22c) we see
that the spatial gradient of the Néel vector gives rise to a
self-energy term equal to(

�α
s

)
nm(t1, t2) = − (Kα

nm

[
xα

n − xα
m

]+ [δαρB, Kα
nm

])
· (R†∇R)

(
xα

n , t1
)
δ(t1 − t2). (172)

To get how it looks in the final equation, we must Fourier
transform and project onto the conduction band by use of Sα

c .
By doing this, we get

(
Sα

c

)T
�α

s

(
k, xα

n , T
)
Sα

c = −vα
F

2
· ∇(θ sin φσx − θ cos φσy).

(173)

Since this is a momentum-dependent self-energy, we see that
this is supposed to go into the covariant derivative. As a result,
the covariant derivative looks like

∇̃ ◦ ǧα = ∇ǧα − i
[

1
2∇(θ sin φσx − θ cos φσy), ǧα

]
− i[Ǎrest, ǧα], (174)

where Ǎrest is the remaining p-wave contribution, which may
come from the vector gauge field or spin-orbit coupling.

The temporal gradient gives rise to a term similar to a mag-
netic field. From Eq. (22c) we see that the temporal gradient
of the Néel vector gives rise to a self-energy term equal to(

�α
t

)
nm(t1, t2) = −iτz(R†Ṙ)

(
xα

n , t1
)
δnmδ(t1 − t2), (175)

since

ρA(R†Ṙ)
(
xα

n , t1
)+ ρB(R†Ṙ)

(
xα

n + δα, t1
) ≈ (R†Ṙ)

(
xα

n , t1
)
.

(176)

If we again Fourier transform in relative coordinates and trans-
form using Sα

c , we get

(
Sα

c

)T
�α

t

(
k, xα

n , T
)
Sα

c = − 1
2

√
1 − (Jα/ηα )2

× τz∂T (θ sin φσx − θ cos φσy).

(177)

The factor
√

1 − (Jα/ηα )2 comes from the projection of σx

and σy onto the conduction band. To understand the physical
reason for this factor, consider a general electron state near the
Fermi level. An electron near the Fermi level will in general be
in a superposition of spin-up and spin-down, but the spin-up
component and the spin-down component will have different
spatial distributions. For the spin of this electron at a given
lattice site to have a nonzero projection in a direction orthog-
onal to the Néel vector, it will need to be in a superposition of
spin-up and spin-down. At Jα/ηα = 0, an electron state near
the Fermi level, which is in an equal superposition of spin-up
and spin-down will have spin everywhere orthogonal to the
Néel vector. However, as Jα/ηα increases, the spin-up and
spin-down component starts to separate in space, and in the
limit Jα/ηα → 1, any superposition of spin-up and spin-down
has all of its spin-up component localized on one sublattice
and all of its spin-down component localized on the other
sublattice. This means that it has spin along the Néel vector
everywhere in space. As a result, the effect of spin-splitting
fields orthogonal to the Néel vector is suppressed as Jα/ηα

increases.

XIV. OBSERVABLES

Generally, observables such as densities or currents may be
written

Q
(
xα

n , T
) = 〈cα†

n (T )M
(
xα

n ,−i�R
)
cα

n (T )

− (cα
n

)T
(T )MT

(
xα

n ,−i�R
)(

cα†
n

)T
(T )
〉+ C,

(178)

where C is a constant and M is a matrix that depends on
the observable. We can relate this to our Green’s functions,
which are defined by the spin-rotated creation and annihilation
operators c̃α

n , as defined by Eq. (9), if we define

M̃ = [ρAR†(xα
n , t
)+ ρBR†(xα

n + δα, t
)]

M

× [ρAR
(
xα

n , t
)+ ρBR

(
xα

n + δα, t
)]

. (179)

With this

Q
(
xα

n , T
) =C + i

ˆ
♦α

d[3]k

(2π )3

ˆ ∞

−∞

dε

2π

× Tr
[
M̃
(
xα

n , k
)
τzĜ

K,αα
(
k, xα

n , T, ε
)]

. (180)

174503-19



FYHN, BRATAAS, QAIUMZADEH, AND LINDER PHYSICAL REVIEW B 107, 174503 (2023)

The quasiclassical treatment is only valid for ε � Eα
c . As a result, we should split the energy integral,

ˆ
♦α

d[3]k

(2π )3

ˆ ∞

−∞

dε

2π
Tr
[
M̃
(
xα

n , k
)
τzĜ

K,αα
(
k, xα

n , T, ε
)] =

ˆ a

−a

dε

2π

ˆ
♦α

d[3]k

(2π )3
Tr
[
M̃
(
xα

n , k
)
τzĜ

K,αα
(
k, xα

n , T, ε
)]

+
(ˆ −a

−∞

dε

2π
+
ˆ ∞

a

dε

2π

) ˆ
d[3]k

(2π )3
Tr
[
M̃
(
xα

n , k
)
τzĜ

K,αα
(
k, xα

n , T, ε
)]

,

(181)

where a is much smaller than Eα
c . In the diffusive regime, a should also be much smaller than the elastic impurity scattering

rate. We can rewrite the first term on the right-hand side by again using the Eilenberger contour. The Keldysh Green’s function
is ∼1/(ξ−α )2 for large (ξ−α )2, so we can neglect the high energy contribution,

ffl
dξ−α . Hence,

ˆ a

−a

dε

2π

ˆ
♦α

d[3]k

(2π )3
Tr
[
M̃
(
xα

n , k
)
τzĜ

K,αα
(
k, xα

n , T, ε
)] = −iπNα

0

〈ˆ a

−a

dε

2π
Tr
[(

Sα
c

)T
M̃
(
xα

n , kF
)
Sα

c τzĝ
K,α
(
kF , xα

n , T, ε
)]〉

. (182)

Next, we must evaluate the second term on the right-hand side of Eq. (181). Generally, we can write

ĜR,αα = (τzε − Ĥα
0 − �̂R,α

)−1 + δĜR,αα. (183)

Inserting this into the equation

τzε ◦ ĜR,αα − Ĥα
0 ĜR,αα − �̂R,α • ĜR,αα = 1, (184)

one gets an equation for δĜR,αα . We find that the contribution to the expression for the observable from δĜR,αα is negligible, so
we neglect it in the following. We assume that a is sufficiently large such that states at |ε| � a are either completely occupied
or completely unoccupied. Moreover, a is much larger than the superconducting gap, so the density of states at energies above a
should not be affected by superconductivity. For this reason, we assume that we can neglect superconductivity when considering
the high-energy contribution. When this is the case,

ĜK,αα = sgn(ε)[ĜR,αα − (ĜR,αα )†]. (185)

By neglecting δĜR,αα , we find that

ĜR,αα = Sα

[
τzε −

(
ξ−α,

ξα
+

)
− (Sα )T �̂R,αSα

]−1

(Sα )T . (186)

Let (Sα )T �̂R,αSα = A, then

[(Sα )T ĜR,ααSα]−− = [τzε − ξ−α − A−− − A−+(τzε − ξα
+ − A++)−1A+−]−1, (187a)

[(Sα )T ĜR,ααSα]++ = [τzε − ξα
+ − A++ − A+−(τzε − ξ−α − A−−)−1A−+]−1, (187b)

[(Sα )T ĜR,ααSα]−+ = −[(Sα )T ĜR,ααSα]−−A−+(τzε − ξα
+ − A++)−1, (187c)

[(Sα )T ĜR,ααSα]+− = −[(Sα )T ĜR,ααSα]++A+−(τzε − ξ−α − A−−)−1. (187d)

If

A−− − A−+(τzε − ξα
+ − A++)−1A+− = P−J−P†

−, (188a)

A++ − A+−(τzε − ξ−α − A−−)−1A−+ = P+J+P†
+, (188b)

where J− and J+ are diagonal, we find that

[(Sα )T Ĝk,ααSα]±±,i j = 2π i sgn(ε)
∑

l

P±,il
Im(J±,ll )/π

[ετz,ll − ξα± − Re(J±,ll )]2 + [Im(J±,ll )]2
P†

±,l j . (189)

If not for the fact that J± depends on ε, this would be a sum of Lorentz distribution as functions of ε. However, the dependence
of J± on ε is very weak close to the peak of the distribution. For this reason, we neglect the dependence of both P± and J± on
ε. From Eq. (187) we can see that [(Sα )T ĜR,ααSα]±∓ are products of two functions with peaks at distantly separated values of ε.
One peak is close to ξ−α and the other is close to ξα

+. As a result, we neglect these terms.
To proceed, we must evaluate terms that look like

I±:=
(ˆ −a

−∞

dε

2π
+
ˆ ∞

a

dε

2π

)ˆ ξmax

ξmin

dξ−α2πsgn(ε)g(ξ−α )
Im(J±,ll )/π

[ετz,ll − ξα± − Re(J±,ll )]2 + [Im(J±,ll )]2
, (190)

where the function g can be identified from Eqs. (181) and (189).
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From the fact that the retarded Green’s function should be nonzero only for positive relative times, we have that Im(J−,ll ) =
τz,ll |Im(J−,ll )|. If we define

f (y) =
ˆ y

−∞
dx

|Im(J±,ll )|/π
x2 + [Im(J±,ll )]2

, (191)

we find that

I− =
ˆ ξmax

a−Re(J±,ll )+C
dξ−αg(ξ−α ) −

ˆ −a−Re(J±,ll )−C

ξmin

dξ−αg(ξ−α )

+
ˆ C

−C
dξ−α f (ξ−α ){g[ξ−α + a − Re(J±,ll )] − g[−ξ−α − a − Re(J±,ll )]}, (192)

where C is a number, which is on the order of Im(J±,ll ), and sufficiently large such that f (y) ≈ 0 for y � −C and f (y) = 1
for y � C. From Eqs. (181) and (189), one can see that g is a slowly varying function. For this reason, we can neglect the last
integral in Eq. (192). Next, we rewrite I− as one term, which depend on J±,ll and one, which does not, as

I− ≈
ˆ ξmax

a+C
dξ−αg(ξ−α ) −

ˆ −a−C

ξmin

dξ−αg(ξ−α ) + Re(J±,ll )[g(a) + g(−a)], (193)

so that, since g(±a) ≈ g(0),(ˆ −a

−∞

dε

2π
+
ˆ ∞

a

dε

2π

) ˆ ξmax

ξmin

dξ−αg(ξ−α )[(Sα )T Ĝk,ααSα]−−,i j

= iδi j

ˆ ξmax

a+C
dξ−αg(ξ−α ) − iδi j

ˆ −a−C

ξmin

dξ−αg(ξ−α ) + ig(0)[A−− + A†
−−]i j, (194)

where we have used that for ξ−α ≈ 0,

2P−Re(J−)P†
− = P−J−P†

− + (P−J−P†
−)† ≈ A−− + A†

−−. (195)

Evaluating I+ is less difficult because ξα
+ � a for all k. Hence,

I+ =
ˆ ξmax

ξmin

dξ−αg(ξ−α ). (196)

Inserting this into the expression for the high-ε contribution to the observable, we find(ˆ −a

−∞

dε

2π
+
ˆ ∞

a

dε

2π

) ˆ
d[3]k

(2π )3
Tr[M̃τzĜ

K,αα]

= i

〈ˆ ξmax

ξmin

dξ−αNα
0 (ξ−α )Tr{[(Sα )T M̃Sα]++τz}

〉
+ i

〈ˆ ξmax

a+C
dξ−αNα

0 (ξ−α )Tr{[(Sα )T M̃Sα]−−τz}
〉

− i

〈ˆ −a−C

ξmin

dξ−αNα
0 (ξ−α )Tr{[(Sα )T M̃Sα]−−τz}

〉
+ i
〈
Nα

0 Tr
{
[(Sα )T M̃Sα]−−τz[A−− + A†

−−]
}〉

. (197)

The first three terms on the right-hand side are just constants and can be absorbed into the constant C in the expression for the
observable. By doing this, we get that the observable can finally be written

Q =C + Nα
0

2

〈ˆ a

−a
dεTr

[(
Sα

c

)T
M̃Sα

c τzĝ
K,α
]〉− Nα

0

〈
Tr
{[(

Sα
c

)T
M̃Sα

c τz
(
Sα

c

)T [
�̂R,α + (�̂R,α )†]Sα

c

}〉
. (198)

To compute observables from the quasiclassical Green’s functions, one therefore generally also need to take into account the
contribution from the self-energy term. Note that since the quasiclassical Green’s function is not gauge-invariant, the second
term in Eq. (198) is required to make the observables gauge-invariant.

For concrete examples of observables, consider the electric charge density in material α, nα
e , and the spin densities in material

α, sα = (sα
x , sα

y , sα
z ). For the electric charge density M̃ = eτz/4, which can be confirmed by inserting this into Eq. (178). The

denominator 4 comes from the fact that we count each electron 4 times in Eq. (178). To derive the formula for electric charge
density, we can insert this into Eq. (198), giving

nα
e = Nα

0 e

8

ˆ a

−a
dεTr

(
ĝK,α

s

)− 2Nα
0 eφα

e , (199)

where we dropped the constant and φα
e is the deviation in the electrochemical potential away from µα , and may therefore

vary in both time and space. In other words, φα
e is the real, diagonal part of the self-energy. Equation 199 reproduces earlier
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results for charge density in the quasiclassical regime [1,69]. We can see that the second term in Eq. (199) is necessary to
retain gauge invariance. Take for example, a nonsuperconducting stationary system in equilibrium with an electrochemical
potential φα

e . The symmetric part of the quasiclassical Keldysh function is then ĝK,α
s = 2diag(tanh[β(ε + φα

e )/2], tanh[β(ε +
φα

e )/2],− tanh[β(ε − φα
e )/2],− tanh[β(ε − φα

e )/2]), where β is inverse temperature. Taking the trace and integrating over
energies, we get

Nα
0 e

8

ˆ a

−a
dεTr

(
ĝK,α

s

) = Nα
0 e

8
16φα

e = 2Nα
0 eφα

e . (200)

The electrochemical potential is gauge dependent, so the second term in Eq. (199) is required to cancel the gauge-dependent
contribution from ĝK,α

s in this case.
For the spin density in direction i, M̃ = σi/8. The projection of spin Pauli matrices onto the conduction band is trivial for the

z direction since it commutes with the Sα matrix. That is, (Sα
c )T σzSα

c = σz. However, (Sα
c )T σx/ySα

c =
√

1 − (Jα/ηα )2σx/y, so for
the directions orthogonal to the Néel vector we get an additional factor

√
1 − (Jα/ηα )2. If the initial Hamiltonian in material

α, given by Eq. (4), has a Zeeman spin-splitting field hα , this gives rise to a self-energy term equal to �̂R,α
Z = hα · στz before

projection onto the conduction band. Inserting this into Eq. (198), we get that the spin densities are given by

sα
x =

√
1 −

(
Jα

ηα

)2 Nα
0

16

ˆ a

−a
dεTr

(
σxτzĝ

K,α
s

)−
[

1 −
(

Jα

ηα

)2
]

Nα
0 hα

x , (201a)

sα
y =

√
1 −

(
Jα

ηα

)2 Nα
0

16

ˆ a

−a
dεTr

(
σyτzĝ

K,α
s

)−
[

1 −
(

Jα

ηα

)2
]

Nα
0 hα

y , (201b)

sα
z = Nα

0

16

ˆ a

−a
dεTr

(
σyτzĝ

K,α
s

)− Nα
0 hα

y , (201c)

where we again dropped the constant. The extra factor of
√

1 − (Jα/ηα )2 comes from the fact itinerant electrons become more
polarized in the direction of the Néel vector as Jα/ηα increases, as discussed above. This polarization comes in through two
different aspects. First, the Zeeman spin-splitting felt by the itinerant electrons is reduced by a factor

√
1 − (Jα/ηα )2. Second,

the σx and σy components of the Green’s function do not correspond to spin in the same sense as in a normal metal. In the limit
of very strong exchange coupling Jα , the itinerant electrons become fully polarized, and sα

x = sα
y = 0.

To compute the sublattice-resolved charge densities, one can use Eq. (118) together with M̃ = eτzρA/B/4, which gives

nα
A/B = 1

2
nα

e ± eJα

ηα
sα

z . (202)

One can similarly use Eq. (198) to compute energy and spin-energy densities [70] and all associated current. Another way to
derive expressions for currents is to use the expressions for densities together with Eq. (128) to obtain conservation laws of the
form ∂n/∂t + ∇ · j = S, where n is the density, j can be identified as the current and S is a source term. For instance, multiplying
Eq. (128) with −ieN0τz/8, taking the trace, integrating over energy and adding −2N0e∂φα

e /∂t to both sides of the equality sign,
one obtains ∂nα

e /∂t + ∇ · jαe = Sα
e , where the electric current density can be identified as

jαe = Nα
0 e

8

ˆ a

−a
dεTr(τz ĵ

K,α
). (203)

XV. CONCLUSION

We have derived quasiclassical equations of motion, which
are valid for mesoscopic heterostructures with antiferromag-
netic order, superconductivity, impurity scattering, external
electric or magnetic fields, spin-orbit coupling, temporally
or spatially inhomogeneous Néel vector, or, in principle any
other effect that can be modeled using a quadratic Hamilto-
nian. These are valid when the distance between the Fermi
level and the edges of the conduction band �Eα is larger than
all other energy scales except possibly the exchange energy,
which couples the itinerant electrons to the localized, antifer-
romagnetically ordered spins. The ratio between the exchange
energy and the chemical potential relative to the center of
the two energy bands Jα/ηα can take any value between 0

and 1. Our main results are the quasiclassical equation in
the dirty regime, which are valid when the elastic impurity
scattering rate is high compared to other energies, except for
�Eα and possibly Jα , and when the isotropic part of the
quasiclassical Green’s function dominates. The latter is true
when the matrix current is small, which happens for instance
when the system varies slowly on the scale of the mean free
path, or when the proximity effect is small. In the limit of
very strong exchange coupling, such that (Jα/ηα )2 → 1, the
short-ranged correlations can vary on the scale of the mean
free path. However, these correlations become vanishingly
small in the diffusive limit. Therefore, one can solve the
equations by projecting the Green’s functions onto the set of
long-range components. Being based on Keldysh theory, the
equations can be used to study nonequilibrium situations, such
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as externally driven currents or spin injection. Additionally,
they can also be solved to study time-dependent phenomena,
as there are ways to evaluate the circle products [9,13–15].
In the absence of antiferromagnetism, the equations reduce to
the Eilenberger equation [3] and Usadel equation [4] for nor-
mal metals, as expected. However, with antiferromagnetism,
there are a few important differences. First, all self-energy
terms must be projected onto the conduction band. Second,
even nonmagnetic impurities behave magnetically because of
the coupling between spin and sublattice. Finally, this also
changes the equation for the matrix current in the dirty regime.
We discuss the physical origin and implications of these ef-
fects in Ref. [63].

We have also derived boundary conditions that are valid
in the diffusive regime. These are valid as long as the tun-
neling amplitudes are small, such that the matrix current
is small compared to the Fermi velocity. They take into
account both tunneling and reflection and allow for both
compensated and uncompensated interfaces, meaning that the
coupling can be asymmetric in sublattice. Additionally, the
boundary conditions allow for spin-active boundaries and iso-
lating, spin-active boundaries can be obtained by setting the
tunneling matrices to zero. In the absence of antiferromag-
netism, the boundary conditions reduce to the generalized
Kupriyanov-Lukichev boundary conditions for spin-active
boundaries [58,59].

Finally, we have derived an expression that can be used
to compute observables from the quasiclassical Green’s func-
tion. This expression also includes the contribution from
energies, which are not captured by the quasiclassical Green’s
function. As we saw in the example of charge density, the
high-energy contribution is needed to make the observables
gauge invariant.
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APPENDIX: NUMERICAL SOLUTION ALGORITHM

As an example, we illustrate how one can solve Eqs. (128),
(135), and (170) in a time-independent one-dimensional sys-
tem at thermal equilibrium. The components of the Green’s
function are not independent because of the normalization
condition, so it is necessary to use a parametrization scheme.
For instance, one can use the Ricatti parametrization [71,72]
or the θ parametrization [73]. In order to solve Eqs. (128),
(135), and (170) numerically, one must first define a set of
algebraic equations. These equations can then be solved for
the unknown parameters. For simplicity, assume we need only
solve Eqs. (128), (135), and (170) in one material because the
solution is known in all neighboring materials. For this reason,
we remove the superscript α. Let there be N discretization
points, and denote by u j

n the jth parameter at discretization
point n ∈ {1, . . . , N}. The spherically symmetric part of the

quasiclassical Green’s function at point n is a function of
the M parameters. Depending on the problem, the number of
different parameters needed to characterize the system will
vary. At most, M = 8 in thermal equilibrium since it is only
necessary to compute the retarded Green’s function. Let ǧR

s,n
be the spherically symmetric part of the retarded Green’s
function in position x = (n − 1)�x, where �x is the distance
between discretization points. Then,

ĝR
s,n = ĝR

s,n

(
u1

n, u2
n, . . . , uM

n

)
(A1)

is a function of only the local parameters (u1
n, u2

n, . . . , uM
n ).

In order to solve Eqs. (135) and (128), we need not only
the Green’s function but also its spatial derivative. Let the
derivative at point n be (∂xǧR

s )n. This can be obtained from
the gradients of the parameters,

(
∂xǧR

s

)
n =

M∑
j=1

∂ ĝR
s,n

∂u j
n

∂u j
n

∂x
. (A2)

Thus, we have 2M unknown parameters at each point:
(u1

n, . . . , uM
n , ∂xu1

n, . . . , ∂xuM
n ). The circle products reduce to

normal matrix products in a static system, so, if ĵR
n is the

retarded matrix current at point n, we get from Eq. (135) that

ĵR
n = − DĝR

s,n

(
∂xĝR

s

)
n + iDĝR

s,n

[
AR

x , ĝR
s,n

]
− ĝR

s,n

[
J2

2η2
σzτzĝ

R
s,nσzτz, ĵR

n

]
. (A3)

The boundary conditions, given by Eq. (170), is in this case

ĵR
1 = −[T̂LĝR

s,LT̂ †
L + iR̂L, ĝR

s,1

]
, (A4a)

ĵR
N = [T̂RĝR

s,RT̂ †
R + iR̂R, ĝR

s,N

]
, (A4b)

where T̂L and T̂R are the tunneling matrices, R̂L and R̂R are
the reflection matrices, and ĝR

s,L and ĝR
s,R are the quasiclas-

sical Green’s functions on the left (x = 0) and right (x =
[N − 1]�x) side, respectively. If a boundary is insulating, then
the corresponding tunneling matrix is zero. A magnetic insu-
lator will have nonzero magnetic components in the reflection
matrix, so that R̂ = r0 + m · σ for some scalar r0 and some
vector m.

We have 2NM unknown parameters, so we need 2NM
algebraic equations. These can be obtained by integrating
Eq. (128) in space. Equation (128) can in this case be written

∂ ĵR

∂x
+ F = 0, (A5)

where

F = −i

[
τzε − V̂ R

s + iJ2

2τimpη2
σzτzĝ

R
s σzτz, ĝR

s

]
− i
[
ÂR

x , ĵR
]
.

(A6)

To obtain algebraic equations, we can integrate Eq. (A5)
between two discretization points and use a numerical inte-
gration scheme to approximate the integral of F . Integrating
between (i − 1)�x and (i + j − 1)�x, we get

ĵR
i+ j − ĵR

i +
j∑

k=1

wkFi+k = 0, (A7)
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where (w1, . . . ,w j ) is the set of weights defined by the
numerical integration scheme and Fn is Eq. (A6) evaluated
with ĝR

s = ĝR
s,n and ĵR

s = ĵR
s,n. Equation (A7) is a matrix-valued

equation from which one can take M independent scalar equa-
tions. For instance, in the most general case with M = 8,
one can take the upper right and lower left 2 × 2 blocks of
Eq. (A7). Another M algebraic equations can be found from
the same interval by integrating ∂xup for p ∈ 1, . . . , M,

up
i+ j − up

i −
j∑

k=1

wk∂xup
i+k = 0. (A8)

To obtain 2NM algebraic equations, one can choose
N different subintervals, each of which defines 2M alge-
braic equations through Eqs. (A7) and (A8). These can
be solved using Newton’s method, and one can use for
instance forward-mode automatic differentiation or finite dif-
ferences to determine the Jacobian. The algorithm for solving
Eqs. (128), (135), and (170) for arbitrary values of J/η in one
dimension is summarized in Algorithm 1. Having found the
retarded Green’s function, one can determine the advanced
and Keldysh Green’s functions, and thereby compute observ-
ables, through

ĝA
s = −τz

(
ĝR

s

)†
τz, (A9a)

ĝK
s = (ĝR

s − ĝA
s

)
tanh(βε/2), (A9b)

where β is inverse temperature. Equation (A9a) follows from
the definition of the advanced and retarded Green’s function

Algorithm 1. Numerical scheme for solving Eqs. (128), (135),
and (170).

Require (ni, mi ) for i ∈ {1, . . . , N} are N different intervals and
(wi

1, . . . , w
i
mi−ni

) are corresponding numerical weights.
1: function (R){u j

n}, {∂xu j
n}

2: for i ← 1 to N do
3: ĝR

s,i ← ĝR
s,i(u

1
i , . . . , uM

i )
4: (∂xĝR

s )i ← (∂xĝR
s )i(u1

i , . . . , uM
i , ∂xu1

i , . . . , ∂xuM
i )

5: if i = 1 or i = N then
6: ĵR

i ← ĵR
i (ĝR

s,i, (∂xĝR
s )i ) � Eq. (A4)

7: else
8: ĵR

i,0 ← 0
9: ĵR

i ← ĵR
i (ĝR

s,i, (∂xĝR
s )i, ĵR

i,0) � Eq. (A3)
10: while | ĵR

i − ĵR
i,0| > tolerance do

11: ĵR
i,0 ← ĵR

i

12: ĵR
i ← ĵR

i (ĝR
s,i, (∂xĝR

s )i, ĵR
i,0) � Eq. (A3)

13: end while
14: end if
15: end for
16: for i ← 1 to N do
17: ri

1 ← ĵR
mi

− ĵR
ni

+∑ j
k=1 wi

kFni+k � Eq. (A7)
18: ri

2 ← {up
mi

− up
ni

−∑ j
k=1 wi

k∂xup
ni+k}p

19: end for
20: return {ri

1}, {r2}
21: end function
22: Solve R({u j

n}, {∂xu j
n}) = 0

while Eq. (A9b) follows from the fluctuation-dissipation the-
orem.
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