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Field direction dependent skyrmion crystals in noncentrosymmetric cubic magnets:
A comparison between the point groups (O, T ) and Td
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We investigate the instability toward a skyrmion crystal (SkX) in noncentrosymmetric cubic magnets with
an emphasis on a comparison between point groups (O, T ) and Td. By constructing low-temperature magnetic
phase diagrams under an external magnetic field for three directions based on numerically simulated annealing,
we find that the system under the point groups (O, T ) exhibits different two types of SkXs depending on the
field direction, while that under Td does not show such an instability. The difference between them is understood
from the difference in the momentum-dependent Dzyaloshinskii-Moriya interaction under each point group.
Meanwhile, we show that the system under Td leads to the SkX instability by considering an additional effect of
the uniaxial strain, which lowers the symmetry to D2d. We obtain two different SkXs: Néel-type SkX and anti-
type SkX, the former of which is stabilized in the presence of the interactions at the three-dimensional ordering
wave vectors. The present results provide rich topological spin textures in the three-dimensional systems, which
are sensitive to the magnetic-field direction and point-group symmetry.
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I. INTRODUCTION

Topological spin textures have been extensively studied in
various fields of condensed matter physics since they give rise
to intriguing low-energy excitations and physical phenomena
[1,2]. In solids, they often appear by superposing multiple
spiral waves along different directions, which are referred
to as the “multiple-Q” state. Depending on the direction of
magnetic wave vectors and the lattice structures, a variety of
multiple-Q states are realized [3], such as the skyrmion crystal
(SkX) characterized by the triple-Q (double-Q) modulations
on a triangular (square) lattice and the hedgehog crystal by
the triple-Q or quartet-Q modulations on a cubic lattice. The
search for the stabilization conditions of the multiple-Q states
has been still an active research field in both theories and
experiments.

One of the most fundamental mechanisms to stabilize the
SkX is the competition between the ferromagnetic exchange
interaction and the Dzyaloshinskii-Moriya (DM) interaction
[4,5] under an external magnetic field [6–10], the latter of
which is characterized by the antisymmetric anisotropic ex-
change interaction and originates from relativistic spin-orbit
interaction in the absence of the inversion center. The spin
model incorporating these interactions provides a deep un-
derstanding of the SkX in real materials [11], such as MnSi
[12,13], Fe1−xCoxSi [14], and Cu2OSeO3 [15–17] under the
chiral point group T and Co8Zn9Mn3 [18] under the chi-
ral point group O. In addition, the spin model extended to
multiple-spin interactions describes further intriguing SkXs in
materials, such as the SkX with the short-period modulation
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in EuPtSi [19–23]. Meanwhile, there have been few studies
for the multiple-Q instability in the other noncentrosymmetric
cubic point group Td since there are no Lifshitz invariants in
the free energy [24–27]; the role of the DM interaction on
magnetic states under Td has not been fully elucidated in a
systematic way. Furthermore, an effective spin model with not
only antisymmetric anisotropic exchange interactions but also
symmetric ones has been recently formulated under various
crystal symmetries including Td [28,29]. However, it has been
still unclear when and how the SkX and other multiple-Q
states appear in the phase diagram under these systems.

In this study, we investigate the possibility of the multiple-
Q states in a bilinear spin model with the DM interaction
on a simple cubic lattice under the point group Td. To un-
derstand the role of the DM interaction originating from
the Td symmetry, we compare the result under Td with that
under chiral point groups (O, T ). The similarities and differ-
ences between (O, T ) and Td are discussed by systematically
constructing low-temperature magnetic phase diagrams for
different magnetic-field directions in both point groups based
on the simulated annealing. As a result, we find that two
types of SkXs are realized in the case of (O, T ), while there
is no multiple-Q instability in the case of Td. We show a
way of inducing multiple-Q states in the model with the Td-
type DM interaction by considering the effect of the uniaxial
stress so that the symmetry reduces to D2d. In contrast to
the Bloch-type SkX in the chiral point groups (O, T ), we
obtain the Néel-type SkX and anti-type SkX with the opposite
sign of the scalar chirality in the phase diagram. Our results
indicate rich topological spin textures in noncentrosymmetric
cubic point groups, which will be useful for the explo-
ration of further exotic multiple-Q states in three-dimensional
systems.
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The rest of this paper is organized as follows. In Sec. II, we
introduce an effective spin model including the momentum-
dependent DM interactions on the cubic lattice. We discuss
the similarities and differences in the models between the
point groups (O, T ) and Td. We also outline the numerical
method based on the simulated annealing. We discuss the
instability toward the SkX in Sec. III. We show the magnetic
phase diagrams for three different magnetic-field directions
under both (O, T ) and Td. Then, we examine the effect of the
uniaxial strain under the point group Td. We summarize this
paper and discuss the possibility of the multiple-Q instability
under Td in Sec. IV.

II. MODEL AND METHOD

We consider the model Hamiltonian on a simple cubic
lattice with the lattice constant a = 1, which is given by

H = −
∑

q

[JqSq · S−q + iDq · (Sq × S−q)] −
∑

i

H · Si,

(1)

where the first term represents an interaction in momentum
space; the summation regarding q is taken over the first Bril-
louin zone. Sq = (Sx

q, Sy
q, Sz

q) is the Fourier transform of the
localized spins Si = (Sx

i , Sy
i , Sz

i ) with the fixed length |Si| = 1,
and Jq and Dq are the Fourier transforms of the interactions
in real space, i.e., Ji j and Di j , respectively. We suppose the
absence of spatial inversion symmetry in the lattice structure
to discuss the role of the DM interaction, whose direction is
determined by the point-group symmetry and q. The micro-
scopic origin of the DM interaction is relativistic spin-orbit
coupling. We neglect the symmetric anisotropic exchange in-
teraction that arises from the higher-order contribution of the
spin-orbit coupling for simplicity, although it also becomes
the origin of the multiple-Q states [29,30]. The second term
represents the Zeeman coupling through an external mag-
netic field, which tends to polarize the spins along the field
direction H .

The ground-state magnetic instability in the model in
Eq. (1) has been studied especially for the chiral point groups
O and T to have Dq ‖ q [8,9,12,23,31,32]. In this case, the
helical spiral state, whose spiral plane is perpendicular to
the ordering vector q∗, is stabilized at zero field. When the
magnetic field is applied, the SkX, which is represented by
a superposition of multiple spiral states along the symmetry-
equivalent ordering vectors with q∗, appears instead of the
single-Q helical spiral state. Although the characteristic order-
ing vector q∗ is dependent on the magnitude and direction of
H , the spin configurations are well characterized by q∗ and its
symmetry-related ordering vectors once they are determined
by H . In other words, only a few characteristic ordering
vectors in the Brillouin zone contribute to the energy in the
ground state.

Then, one can simplify the model in Eq. (1) by extracting
the representative q∗, which is transformed as

H = −
∑

ν

[JSQν
· S−Qν

+ iDν · (SQν
× S−Qν

)] −
∑

i

H · Si,

(2)

(b) Td

(a) (O, T )

qy
qx

qz

qy
qx

qz

FIG. 1. The DM vector at Qν (ν = 1–12) in momentum space for
(a) the point groups (O, T ) [Eq. (3)] and (b) Td [Eq. (4)].

where we consider the specific ordering vectors Qν ∈ q∗ giv-
ing the dominant contributions to the energy; ν is the label of
the symmetry-equivalent wave vectors and the position of Qν

is fixed for simplicity. We set the same coupling constants J
and D ≡ |Dν | in the Qν channel from the symmetry; we set
J = 1 as the energy unit of the model.

The direction of D is determined by the symmetry in
terms of Qν and space group in the system [28,29]. We
consider three noncentrosymmetric point (space) groups, O
(P432), T (P23), and Td (P4̄3m), to discuss the similarities
and differences in terms of the magnetic instability in the
presence of the DM interaction. Since no DM interaction
appears for Qν ‖ [100] and Qν ‖ [111] in the case of Td

(P4̄3m) [29], we consider 12 ordering vectors lying on the
〈110〉 line, i.e., Qν ‖ 〈110〉 [Fig. 1(a)]: Q1 = Q(1, 1, 0), Q2 =
Q(−1,−1, 0), Q3 = Q(1,−1, 0), Q4 = Q(−1, 1, 0), Q5 =
Q(0, 1, 1), Q6 = Q(0,−1,−1), Q7 = Q(0, 1,−1), Q8 =
Q(0,−1, 1), Q9 = Q(1, 0, 1), Q10 = Q(−1, 0,−1), Q11 =
Q(−1, 0, 1), and Q12 = Q(1, 0,−1), with Q = π/3. The dif-
ference between (O, T ) and Td is found in the direction of Dν

in each Qν : In the case of the point group (O, T ), Dν is given
by

D1 = D(1, 1, 0), D3 = D(1,−1, 0), D5 = D(0, 1, 1),

D7 = D(0, 1,−1), D9 = D(1, 0, 1), D11 = D(−1, 0, 1),

(3)

and D2ζ = −D2ζ−1 for ζ = 1–6. This type of DM interac-
tion is referred to as the chiral-type DM interaction with
Dν ‖ Qν . On the other hand, Dν for the point group Td is
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given by

D1 = D(1,−1, 0), D3 = D(1, 1, 0), D5 = D(0, 1,−1),

D7 = D(0, 1, 1), D9 = D(−1, 0, 1), D11 = D(1, 0, 1),

(4)

and D2ζ = −D2ζ−1 for ζ = 1–6. This type of DM interaction
is referred to as the rank-3 polar-type DM interaction with
Dν ⊥ Qν [33,34]. The directions of the DM vectors at Qν for
(O, T ) and Td are schematically shown in Figs. 1(a) and 1(b),
respectively.

For the effective spin model in Eq. (2) with the DM in-
teraction in Eq. (3) or (4), we investigate a low-temperature
phase diagram while changing D and H ≡ |H| by performing
the simulated annealing following the manner in Ref. [35] as
follows. Starting from a random spin configuration at high
temperatures T0 = 1–10, we gradually reduce the temperature
(T ) by the rate α = 0.999 999 to the target low temperature
Tf = 0.001 in each Monte Carlo sweep; the local updates
are performed in real space based on the standard Metropolis
algorithm and we sample homogeneously on a unit sphere for
the updates. At the target temperature, we perform 105–106

Monte Carlo sweeps for measurements after equilibration.
The simulations are independently performed for a given set
of (D, H ) in Sec. III A and (κ, H ) in Sec. III B. When the
model parameters are close to those at the phase boundaries,
we also start the simulations from the spin configurations
obtained at low temperatures to avoid the local minima. The
system size is taken as N = 123 spins in order to be commen-
surate with the lattice structure; the position vector at each site
is given by ri = (xi, yi, zi ) where xi, yi, and zi are integers from
0 to 11. The boundary condition is the periodic boundary.

To identify the magnetic phases obtained by the simulated
annealing, we compute the uniform magnetization

Mη = 1

N

∑

i

Sη
i , (5)

for η = x, y, z and the spin structure factor divided by N ,
which corresponds to the magnetic moments, with wave vec-
tor Qν :

(
mQν

)2 = (
mx

Qν

)2 + (
my

Qν

)2 + (
mz

Qν

)2
, (6)

(
mη

Qν

)2 = 1

N2

∑

i j

Sη
i Sη

j eiQν ·(ri−r j ). (7)

It is noted mQ2ζ−1
= mQ2ζ

for ζ = 1–6. We also evaluate the
spin scalar chirality on the ηη′ = xy, yz, zx plane as

χηη′ = 1

N

∑

iδηδη′

δηδη′Si · (
Si+δη x̂η

× Si+δη′ x̂η′
)
, (8)

where δη, δη′ = ±1 and x̂η is the η-directional unit vector.

III. RESULTS

A. Comparison of phase diagrams between
point groups (O, T ) and Td

We construct the phase diagram of the model in Eq. (2)
with an emphasis on the similarities and differences of the

multiple-Q instability between the point groups (O, T ) and
Td, which are characterized by the different DM vectors. We
show the six phase diagrams in the D–H plane in Fig. 2, which
are obtained for the three different orientations of H and two
point groups (O, T ) and Td. We discuss the results for H ‖
[111] in Sec. III A 1, H ‖ [001] in Sec. III A 2, and H ‖ [110]
in Sec. III A 3.

1. [111] magnetic field

Figure 2(a) shows the D–H phase diagram for the model
in Eq. (2) with the DM interaction in Eq. (3) under the [111]
magnetic field. The phase diagram consists of three phases:
the single-Q (1Q) state, the triple-Q SkX (3Q SkX), and
the fully polarized (FP) state. The 1Q state at zero field is
characterized by the proper-screw spiral state in order to gain
the energy by the DM interaction; the spiral planes are per-
pendicular to Qν . The ordering vector is chosen out of Q1–Q12
depending on initial spin configurations; the spiral states with
any of Qη have the same energy with each other.

When the magnetic field is turned on, the ordering vector
parallel to the [111] axis as much as possible, i.e., Q1, Q5,
or Q9 (Q2, Q6, or Q10), is chosen as the lowest-energy state.
This is because the proper-screw spiral configuration for these
ordering vectors has more perpendicular spin components to
H than that for the other ordering vectors, which results in the
energy gain by the Zeeman coupling.

In the intermediate-field region, the 1Q state is replaced
by the 3Q SkX with the jumps of magnetization Mη for
η = x, y, z, as shown in Fig. 3(a). The region of the 3Q SkX
becomes wider for larger D. The spin configuration of the 3Q
SkX on the xy plane for different z coordinate is shown in
Fig. 4. The skyrmion core located at Sz

i = −1 is elliptically
distorted and it forms the square lattice in each xy plane,
which indicates the emergence of nonzero spin scalar chirality
in the xy plane, i.e., χ xy 
= 0, as shown in Fig. 3(b). Mean-
while, the 3Q SkX is characterized by a triple-Q superposition
of the spiral states at Q3, Q7, and Q11 (Q4, Q8, and Q12),
which are connected by threefold rotational symmetry around
the [111] axis, with the same intensity shown in Fig. 3(c):
mx

Q3
= my

Q3
= my

Q7
= mz

Q7
= mz

Q11
= mx

Q11
and mz

Q3
= mx

Q7
=

my
Q11

. The choice of these three ordering vectors is owing to
the relation Q3 + Q7 + Q11 = 0 (Q4 + Q8 + Q12 = 0), which
tends to avoid the higher-harmonics contribution to hamper
the formation of multiple-Q states. In addition, the triple-Q
ordering vectors are selected so as to be perpendicular to the
field direction for the same reason. Reflecting the presence
of the threefold symmetry around the [111] direction, the
triangular-lattice alignment of the skyrmion can be seen onto
the (111) plane, i.e., χ xy = χ yz = χ zx.

With a further increase of H , the 3Q SkX turns into
the 1Q state, whose transition is of first order, as shown in
Fig. 3. Finally, the 1Q state continuously changes into the
FP state. Such transitions between the 1Q state, 3Q SkX, and
FP state are also found for a different choice of the ordering
vectors [23].

In contrast, the model with the DM interaction under the
point group Td in Eq. (4) exhibits a qualitatively different
phase diagram, as shown in Fig. 2(b); no 3Q SkX appears for
nonzero D and H . In addition, the 1Q state is characterized by
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FIG. 2. Phase diagrams of the model in Eq. (2) under (a), (c), (e) the point groups (O, T ) and (b), (d), (f) Td in the D–H plane obtained
by the simulated annealing. The magnetic field directions are taken along (a), (b) the [111] direction, (c), (d) [001] direction, and (e), (f)
[110] direction. 1Q, 3Q SkX, 6Q SkX, and FP represent the single-Q state, triple-Q skyrmion crystal, sextuple-Q skyrmion crystal, and the
fully-polarized state, respectively. The lower panels stand for the ordering wave vectors among Q1–Q12.

different ordering vectors from the case of (O, T ) in the lower
panel of Fig. 2(b). The 1Q state at zero field is characterized
by the cycloidal spiral state in order to gain the energy by
the DM interaction; the spiral planes for Q1-Q4, Q5-Q8, and

Q9-Q12 are parallel to ẑ, x̂, and ŷ, respectively, as well as the
ordering wave vector Qν .

When the magnetic field is turned on, the ordering vector
perpendicular to the [111] axis, i.e., Q3, Q7, or Q11 (Q4, Q8, or
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(a)

 0.0

 0.2

 0.4

 0  1  2  3

 0.0

 0.2

 0.4

 0.6

-0.8

-0.4

 0.0
(b)

1Q FP3Q SkX 1Q

(c)

FIG. 3. H dependence of (a) the magnetization Mη for η =
x, y, z, (b) the scalar chirality χ� for � = yz, zx, xy, and (c) (mQν

)2

for ν = 1, 3, 5, 7, 9, 11 at D = 0.2 for the model in Eq. (2) under the
[111] field. The vertical dashed lines show the phase boundaries.

Q12), is chosen as the lowest-energy state. This is because the
spiral plane under the point group Td tends to be parallel to Qν

in order to gain energy by the DM interaction. In the end, the
spiral state with the ordering vector perpendicular to the [111]
axis gains both energies by the DM interaction and Zeeman
coupling. When H increases, this state turns into the FP state.

2. [001] magnetic field

Next, we consider the situation where the magnetic field
is applied along the [001] direction. The phase diagrams for
the point groups (O, T ) and Td are shown in Figs. 2(c) and
2(d), respectively. The tendency of the multiple-Q instability
is similar to that in the [111] field; the SkX is stabilized for
the case of (O, T ), while no SkX appears for the case of Td.

As shown in the lower panel of Fig. 2(c), the ordering
vectors for the 1Q state under (O, T ) are given by Q5, Q7,

zi=0 zi=1

zi=2 zi=3

zi=4 zi=5

1- 10

FIG. 4. Real-space spin configuration of the 3Q SkX at D = 0.2
and H = 1 for H ‖ [111] on the xy plane at zi = 0–5. The arrows
represent the in-plane spin components, while the color represents
the out-of-plane spin component. The spin configuration is drawn by
the single snapshot at the lowest temperature.

Q9, or Q11 (Q6, Q8, Q10, or Q12). Similar to the [111] field,
the ordering vectors with a large parallel component to the
field are chosen, as shown in the lower panel of Fig. 2(c).
This is because the proper-screw spiral at these wave vectors
has more spin components perpendicular to the [001] field
than Q1–Q4. On the other hand, the sextuple-Q SkX (6Q
SkX) appears for D � 0.1 with the increase of the magnetic
field from the region of the 1Q state in Fig. 2(c); there are
sudden increases of Mη and χ xy, as shown in Figs. 5(a) and
5(b), respectively. The spin configuration of the 6Q SkX is
presented in Fig. 6 at D = 0.2 and H = 1.2. In contrast to
the elliptical skyrmion core in the 3Q SkX in Fig. 4, the
skyrmion core in the 6Q SkX has a circular shape. Meanwhile,
the skyrmion core in the 6Q SkX forms the square lattice as
well as the 3Q SkX. The different skyrmion core position
in different z coordinate indicates the modulation along the
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-0.8

-0.4

 0.0
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1Q FP6Q SkX 1Q
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FIG. 5. H dependence of (a) the magnetization Mη for η =
x, y, z, (b) the scalar chirality χ� for � = yz, zx, xy, and (c) (mQν

)2

for ν = 1, 3, 5, 7, 9, 11 at D = 0.2 for the model in Eq. (2) under the
[001] field. The vertical dashed lines show the phase boundaries.

z direction. Indeed, there are magnetic moments at Q5, Q7,
Q9, and Q11 with the same intensity as well as those at Q1
and Q3, as shown in Fig. 5(c), which indicates the translation
of the skyrmion core in the xy plane at different z coordinate
[36]. Moreover, these additional contributions from Q5, Q7,
Q9, and Q11 modulate the alignment of the SkX core from
the two-dimensional SkX with mQ1

= mQ3

= 0 and mQ5

=
mQ7

= mQ9
= mQ11

= 0: the former has the nearest-neighbor
skyrmion core along the 〈100〉 direction, while the latter has
that along the 〈110〉 direction. In each layer, the helicity of the
SkX is different but its vorticity is the same as each other so
as to have a nonzero skyrmion number in the whole system.
It is noted that the magnetic structure has fourfold rotational
symmetry around the z axis.

The appearance of the 6Q SkX rather than the double-Q
SkX to have only nonzero mQ1

and mQ3
but mQ5

= mQ7
=

mQ9
= mQ11

= 0 is a consequence of the three-dimensional

zi=0 zi=1

zi=2 zi=3

zi=4 zi=5

1- 10

FIG. 6. Real-space spin configuration of the 6Q SkX at D = 0.2
and H = 1.2 for H ‖ [001] on the xy plane at zi = 0–5. The arrows
represent the in-plane spin components, while the color represents
the out-of-plane spin component. The spin configuration is drawn by
the single snapshot at the lowest temperature.

system so that the z-directional modulation can reduce the
energy. Indeed, the relations of Q1 = −Q5 − Q10 and Q3 =
−Q7 − Q11 indicate the appearance of effective couplings
under the magnetic field, (m0 · mQ1

)(mQ5
· mQ10

) and (m0 ·
mQ3

)(mQ7
· mQ11

), which lowers the energy compared to the
double-Q SkX; one can find that the relations of Q1 + Q5 +
Q10 = 0 and Q3 + Q7 + Q11 = 0 are important in the effec-
tive coupling owing to the momentum conservation. Thus, the
6Q SkX is a characteristic phase that arises from the interplay
among the Heisenberg interaction, the DM interaction, and
the magnetic field at three-dimensional ordering vectors. Sim-
ilar multiple-Q states characterized by more than four wave
vectors have been also clarified for similar three-dimensional
models under noncentrosymmetric lattice structures [37,38].

Meanwhile, the phase diagram consists of the 1Q and FP
states in the case of Td. The 1Q state under Td is characterized
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 0
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 0.5  0.6  0.7  0.8  0.9  1.0

FP

3Q’ SkX

2Q SkX

1Q’

OM 

1Q’’ 1Q

FIG. 7. κ–H phase diagram of the model in Eq. (9) at D = 0.2
for H ‖ [001] under the point group D2d. 1Q′ and 1Q′′ represent
the different single-Q states from the 1Q state. 2Q SkX, 3Q′ SkX,
and OM represent the double-Q skyrmion crystal, different triple-Q
skyrmion crystal from 3Q SkX in Fig. 2, and other magnetic states,
respectively.

by the ordering vector at Q5, Q7, Q9, or Q11 (Q6, Q8, Q10,
or Q12), as shown in Fig. 2(d). This is because the cycloidal
spiral at these wave vectors has more spin components per-
pendicular to the [001] field than that at Q1–Q4.

3. [110] magnetic field

The phase diagrams under the [110] magnetic field for the
point groups (O, T ) and Td are shown in Figs. 2(e) and 2(f),
respectively. In both cases, no multiple-Q instability occurs
in the phase diagram; the 1Q state with Q1 is stabilized for
(O, T ) and that with Q3 is stabilized for Td; the conical spiral
state, whose spiral plane is perpendicular to the magnetic
field, is realized in both cases in order to gain the energy by
the Zeeman interaction under the local spin-length constraint
|Si| = 1. Thus, the energy of the 1Q state is always lower than
that of the multiple-Q state, the latter of which usually costs
the energy by the higher-harmonic wave-vector contributions.

B. Uniaxial strain effect for point group Td

We have so far considered the multiple-Q instability under
the point groups (O, T ) and Td. In contrast to the system
under the point groups (O, T ) with the chiral-type DM in-
teraction, the system under Td with the rank-3 polar-type DM
interaction does not lead to the multiple-Q instability, which
is consistent with the analysis based on Lifshitz invariants
in the free energy [24–27]. To explore the possibility of the
multiple-Q states under the Td system, we consider the ef-
fect of uniaxial strain along the z direction, which reduces
the point-group symmetry from Td to D2d since the two-
dimensional anisotropy tends to stabilize the multiple-Q states
including the SkX [15,39].

We express the effect of the uniaxial anisotropy by the
different interaction amplitudes for the xy and z directions
in real space from the symmetry viewpoint; the tetragonal
symmetry under the uniaxial strain leads to inequivalence

(a)

 0.0

 0.2

 0.4

 1  2  3

 0.0

 0.4

 0.8

-0.6

 0.0

 0.6
(b)

1Q’ FP3Q’ SkX 1Q

(c)

FIG. 8. H dependence of (a) the magnetization Mη for η =
x, y, z, (b) the scalar chirality χ� for � = yz, zx, xy, and (c) (mQν

)2

for ν = 1, 3, 5, 7, 9, 11 at κ = 0.9 for the model in Eq. (9) under the
[001] field. The vertical dashed lines show the phase boundaries.

of interactions at xy-plane and out-of-plane wave vectors in
momentum space. The model Hamiltonian is given by

H = −
∑

ν ′

[
JSQν′ · S−Qν′ + iDν ′ · (

SQν′ × S−Qν′
)]

− κ
∑

ν ′′

[
JSQν′′ · S−Qν′′ + iDν ′′ · (

SQν′′ × S−Qν′′
)]

−
∑

i

H · Si, (9)

where ν ′ = 1–4 and ν ′′ = 5–12. κ < 1 represents the ratio of
the interactions at Q1–Q4 and those at Q5–Q12. We fix D = 0.2
and H = (0, 0, H ) in the following calculations.

Figure 7 shows the phase diagram obtained by the simu-
lated annealing while κ and H are varied. The result for κ = 1
corresponds to that in Fig. 2(d). By introducing the effect of
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zi=0 zi=1

zi=2 zi=3

zi=4 zi=5

1- 10

FIG. 9. Real-space spin configuration of the 3Q′ SkX at κ = 0.9
and H = 1.3 for H ‖ [001] on the xy plane at zi = 0–5. The arrows
represent the in-plane spin components, while the color represents
the out-of-plane spin component. The spin configuration is drawn by
the single snapshot at the lowest temperature.

uniaxial anisotropy κ < 1, two types of SkXs are realized in
the intermediate-field region: 3Q′ SkX and 2Q SkX. We show
the details of the two SkXs below.

First, we discuss the 3Q′ SkX stabilized for 0.85 � κ �
0.94, which appears in the region between the 1Q and 1Q′
states; the 1Q′ state is characterized by the single-Q cycloidal
spiral state at Q1–Q4. The phase transition between the 3Q′
SkX and 1Q (1Q′) state is discontinuous, as found in the
magnetization in Fig. 8(a). The real-space spin configuration
of the 3Q′ SkX is shown in Fig. 9. In each z coordinate, the
SkX with the distorted skyrmion core forms the square lattice,
which is similar to the 3Q SkX under the [111] magnetic
field in Fig. 4. This state exhibits nonzero spin scalar chirality
and triple-Q peaks at Qν , as shown in Figs. 8(b) and 8(c),
respectively, which is also a similar tendency to the 3Q SkX
in Fig. 3. On the other hand, there are two main differences
between the 3Q′ SkX and the 3Q SkX: One is the degeneracy

(a)

 0.0

 0.2

 0.4

 1  2  3

 0.0

 0.4

 0.8

 0.0

 1.2(b)

1Q’ FP2Q SkX 1Q’’

(c)

 0.6

FIG. 10. H dependence of (a) the magnetization Mη for η =
x, y, z, (b) the scalar chirality χ� for � = yz, zx, xy, and (c) (mQν

)2

for ν = 1, 3, 5, 7, 9, 11 at κ = 0.8 for the model in Eq. (9) under the
[001] field. The vertical dashed lines show the phase boundaries.

of the SkXs. In the case of the 3Q SkX in Fig. 3, the state
with χ xy, χ yz, χ zx < 0 is always selected since the choice
of the triple-Q ordering vectors is unique in order to satisfy
Qν ⊥ H . Meanwhile, the plane consisting of the triple-Q or-
dering vectors in the 3Q′ SkX is not perpendicular to the
field direction in the present [001]-field case. For example,
the triple-Q ordering vectors Q3, Q5, and Q10 in Fig. 8(c)
are perpendicular to the [1̄1̄1] axis rather than the [001] axis
while keeping Q3 + Q5 + Q10 = 0. In other words, the plane
consisting of the triple-Q ordering vectors is tilted from the
plane perpendicular to the field. Such a tilting causes uniform
negative magnetizations on the xy plane, i.e., Mx < 0 and
My < 0, as shown in Fig. 8(a), which results in the positive
scalar chirality of χ yz and χ zx in Fig. 8(b). Accordingly, mQ3

has a different amplitude from mQ5
and mQ9

(=mQ10
), as shown

in Fig. 8(c). Similarly, the other three types of the 3Q′ SkX
are possible as energetically degenerate states by selecting the
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1- 10

FIG. 11. Real-space spin configuration of the 2Q SkX at κ = 0.8
and H = 1.2 for H ‖ [001] on the xy plane at zi = 0. The arrows
represent the in-plane spin components, while the color represents
the out-of-plane spin component. The spin configuration is drawn by
the single snapshot at the lowest temperature.

different triple-Q superposition so as to be perpendicular to
the [111], [11̄1̄], or [1̄11̄] axis; the sign of Mx (χyz) and My

(χzx) can be reversed for the different axis while the sign of Mz

(χxy) is fixed by the [001] field. Another difference is found
in the real-space spin configuration in Fig. 9; the Néel-type
helicity around the skyrmion core is realized in the 3Q′ SkX
in contrast to the Bloch-type one in the 3Q SkX in Fig. 4.
This is owing to the different nature of the DM interaction;
the triple-Q superposition of the cycloidal spirals is favored in
the case of Td, while that of the proper-screw spirals is favored
in the case of (O, T ).

With a further small κ , the 2Q SkX appears instead of the
3Q′ SkX shown in Fig. 7. This state appears as the magnetic
field increases in the 1Q′ state for κ � 0.88, whose transition
is identified by the jump of Mz in Fig. 10(a). The real-space
spin configuration at zi = 0 is shown in Fig. 11, which remains
the same for the other z coordinate; there is no contribution
from Q5–Q12. In contrast to the other SkXs in Figs. 4, 6, 9, this
state is characterized by the antiskyrmion structure with posi-
tive scalar chirality, i.e., χ xy > 0, as shown in Fig. 10(b). This
is naturally understood from the DM interaction at the point
group D2d [40,41], although the stability region of the SkX is
similar to the polar point group C4v with the different sign of
the DM interaction [42]. Owing to the uniform structure along
the z direction, scalar chirality across the different xy planes
vanishes χ yz = χ zx = 0 [Fig. 10(b)]. In momentum space, the
2Q SkX is expressed as a superposition of the double-Q spiral
states at Q1 and Q3 with the same intensity, mQ1

= mQ3
, as

shown in Fig. 10(c).
The 2Q SkX changes into the 1Q′′ state for small κ and

the other magnetic (OM) states for large κ in Fig. 7; the 1Q′′
state is almost characterized by the conical spiral structure
with the spiral plane on the xy plane at Q1 or Q3, although
there is a small contribution in the z-spin component by the
DM interaction, which leads to the uniform in-plane magneti-

zation perpendicular to Qν . The OM state is characterized by
a transient multiple-Q state between the 1Q and 1Q′′ states.

IV. SUMMARY AND DISCUSSION

To summarize, we have investigated the low-temperature
magnetic phase diagrams of the spin model in noncentrosym-
metric cubic point groups (O, T ) and Td. By performing the
simulated annealing, we systematically examined the instabil-
ity toward the multiple-Q states in (O, T ) and Td. Reflecting
the difference of the DM interactions between (O, T ) and
Td, the SkX is realized only for the point groups (O, T );
the SkX corresponds to the triple-Q structure (sextuple-Q
structure) for the [111] ([001]) magnetic field. The difference
of the SkX instability between (O, T ) and Td is understood
from the different orientations of the DM vector, where the
stabilization tendency is consistent with Lifshitz invariants
in the free energy [24–27]. In other words, our results an-
swer why the SkX has not been observed in materials under
the Td symmetry [11]. Meanwhile, we have shown that the
triple-Q and double-Q SkXs appear under Td by introducing
the uniaxial strain lowering the symmetry to D2d. The above
results indicate the emergence of various types of SkXs for
the different lattice structures and the magnetic-field direc-
tion. Since several lattice structures, such as a zinc-blende
structure, cubic half-Heusler structure, A-site cation-ordered
spinel structure in LiFeCr4O8 [43], and other cubic structures
like Ho(In,Cd)Cu4 [44], have the Td symmetry, the SkX might
be expected by applying external pressure and chemical sub-
stitution.

Finally, let us discuss the possibilities of the SkX under
the point group Td without uniaxial strain. One is to intro-
duce the anisotropic exchange interaction that is neglected
in the model in Eq. (1). In the present ordering vectors for
Qν ‖ 〈110〉, there are two types of anisotropic exchange in-
teractions [29]: One is Sx

Q1
Sx

−Q1
= Sy

Q1
Sy

−Q1

= Sz

Q1
Sz

−Q1
and the

other is Sx
Q1

Sy
−Q1

+ Sy
Q1

Sx
−Q1

for Q1. Since these interactions
tend to deform the circular shape of the spiral plane leading to
the energy cost by higher-harmonic contributions, they can be-
come a source of inducing multiple-Q states [45–47]. Another
is the multiple-spin interaction like the form of K (SQν

· S−Qν
)2

with the positive coupling constant K > 0. This interaction
also becomes the origin of multiple-Q states irrespective of
the presence or absence of the DM interaction [23,35,48,49].
Indeed, we obtained a similar spin configuration to the
3Q′ SkX under the [001] field at K = 0.4 and D = 0.3
(not shown).
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