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State space geometry of the spin-1 antiferromagnetic Heisenberg chain
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We study the phase diagram of the spin-1 antiferromagnetic Heisenberg chain with uniaxial anisotropy and
applied magnetic field in terms of the genuine multipartite entanglement as witnessed by the mean quantum
Fisher information density. By considering the manifold generated by the staggered magnetization operator, we
connect the state space curvature in the vicinity of the ground state of the Heisenberg chain to the genuine
multipartite entanglement. Our analysis demonstrates that the quantum critical points and symmetry protected
topological (SPT) phase exhibit large state space curvature, while the separable phases are completely flat,
offering insight into the physical interpretation of state space curvature. We further show that the entanglement
in the SPT phase is enhanced by the presence of uniaxial anisotropy and undiminished in the presence of uniform
magnetic fields. The magnon condensate phase induced by large fields is shown to emanate from the Gaussian
critical point and exhibits massive multipartite entanglement over a robust region of the parameter space.
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I. INTRODUCTION

Since the work of Zanardi [1] and Gu [2], there has been
substantial interest in investigating the properties of many
body ground states from the perspective of quantum informa-
tion geometry (QIG) both theoretically [1,3–13] and recently
in several experiments [14–17]. The QIG is interesting as a
witness of genuine multipartite entanglement [18] that can
be probed directly in scattering experiments [7]. The QIG
also detects the utility of quantum states for quantum metrol-
ogy [19,20], allowing for measurement precision beyond the
classical bounds of precision [21]. Recently, there has been
renewed interest in geometrical properties of the quantum
state space for their own sake, with Ref. [22] noting that
noninteracting field theories appear to exhibit a flat state space
geometry and Ref. [3] emphasizing the relationship between
state space curvature and different scaling regimes. A cen-
tral concept in QIG is the quantum Fisher information (QFI)
[23,24] from which a metric can be derived, the quantum
Fisher information metric (QFIM) [25].

In this work, we investigate the QFIM in the context of
the ground states of the spin-1 antiferromagnetic Heisenberg
model, with uniaxial anisotropy D, and applied field Bz

H0 =
∑

r

Sr · Sr+1 + D
(
Sz

r

)2 + BzS
z
r , (1)

a paradigmatic model of low dimensional magnetism for
which the ground state at the isotropic point exhibits symme-
try protected topology order protected by π rotations about
any two given spin axes [26]. The ground state is thus gapped,
and the resulting ordering can be best characterized as a va-
lence bond solid (VBS) [27] (for a more thorough discussion,
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see Sec. I A). We show that the ground state entanglement of
the VBS phase is enhanced by the presence of small uniaxial
anisotropy and is undiminished by the application of homo-
geneous magnetic fields up to energies equal to the gap. Once
the applied field reaches a strength approximately equal to the
gap we demonstrate the onset of massive genuine multipartite
entanglement as the ground state enters a magnon condensate
phase [28]. Finally, we introduce a method of estimating the
state space curvature in the vicinity of the ground state, finding
that nonentangled regions of the phase diagram appear flat,
while entangled regions exhibit positive curvature, and critical
regions negative curvature.

To paraphrase Carlton M. Caves, Hilbert space is a big
place [29]. Consequently, any analysis of QIG begins with
specifying some interesting submanifold of states. Through-
out this paper, we will be concerned with manifolds that can
be generated from an initial state, |ψ (ξ, 0)〉, depending pos-
sibly on some other parameters ξ , via unitary transformations
generated by Hermitian operators of the form

�̂v(μ) =
∑

r

(−1)rv(μ) · Ŝr, (2)

where v(μ) ∈ R3 are vectors that determine the generators �̂μ,
and hence the unitary evolution of the state |ψ〉 through the
Schrödinger equation,

−i∂ημ
|ψ〉 = −i�̂v(μ) |ψ〉. (3)

Explicitly, the state |ψ (η)〉 is evolved into the state
|ψ (η + dημ)〉 via

|ψ (η + dημ)〉 = e−idημ�μ |ψ (η)〉 (4)

The distance element between |ψ (η)〉 and |ψ (η + dημ)〉
is determined by the quantum Fisher information metric
(QFIM), Fμν which, for pure states reduces to the real part
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of the covariance matrix for the hermitian generators [25],

Fμν{ψ} = 1

S2
�Covψ (�μ,�ν ), (5)

(we hereafter assume that S = 1 and omit the prefactor) with,

Covψ (�μ,�ν ) = 〈�μ�ν〉 − 〈�μ〉〈�ν〉. (6)

For a more detailed discussion of the QFIM see Sec. I B.
The QFIM can used to detect the presence of genuine mul-

tipartite entanglement in the state |ψ〉 via the bound [14,18],

f̄ := 1

3N
Tr{F} > 2m. (7)

for states that are (m + 1)-partite entangled. A major advan-
tage of the QFIM is that, at finite temperature, it is directly
related to the dynamical response [7]. Recently, the QFIM has
been measured in magnetic systems via dynamical neutron
scattering [14,15]. The fact that finite temperature entan-
glement is, at low temperatures, strongly controlled by the
entanglement in the ground state [6,8,30], makes investiga-
tions of the ground state QFIM relevant to experiments.

Traditionally, entanglement in many body systems has
been explored from the perspective of measures such as the
entanglement entropy and Rényi entropy [31] which gener-
ally require knowledge of the ground state to evaluate. Such
measures have been extensively explored, yielding interesting
results in spin chains [32,33]. In particular, much attention has
been paid to the area law scaling of the entanglement entropy
as a means of characterizing entanglement in many body
systems [34]. Despite the enormous theoretical success of this
approach, the experimental roadblocks to direct measurement
of the entanglement entropy impose a sharp limitation on its
utility in this context.

Entries of the QFI matrix have now been studied in a wide
range of models [2,9–12,35–37]. These studies have empha-
sized either parametrizations that are linear in the spin degrees
of freedom, or in the case of Ref. [37], parametrizations using
nonlocal operators that exhibit super extensive scaling in topo-
logically nontrivial phases. The full QFI matrix that would
correspond to these parametrizations has been relatively less
explored.

Using the mean QFI density for a staggered magnetic field,
we first construct a map of the multipartite entanglement for
the spin-1 antiferromagnetic Heisenberg chain with uniaxial
anisotropy, D, and applied magnetic field oriented along the
z axis, Bz (see Sec. I A). Subsequently, using the quantum
metric, we calculate the volume of a two-dimensional slice
of state space parameterized by the orientation of a pertur-
batively small staggered magnetic field. By taking the ratio
of the volume of this slice of state space in the vicinity of
the ground state to the volume of a sphere in a flat state
space (see Sec. II for our definition of flat), we compute the
local curvature in the quantum state space. The Haldane phase
appears to be characterized by the presence of a large positive
curvature, while the trivial insulator phase and Néel phase
appear to be flat.

In the remainder of the introduction, we expand our discus-
sion of the QFI and its quantitative relationship to GME. We
also review the relevant details of the spin-1 antiferromagnetic

Heisenberg chain, which we use as a test case. In Sec. II, we
introduce our generalization of the construction in Ref. [38]
and the notions of quantum volume and quantum curvature.
The results of our analysis of the Heisenberg chain are pre-
sented in Sec. III with concluding remarks given in Sec. IV.

A. Spin-1 Heisenberg chain

We focus on the spin-1 antiferromagnetic Heisenberg chain
with uniaxial anisotropy, D and applied magnetic field along
the z axis, Bz,

H0 =
∑

r

Sr · Sr+1 + D
(
Sz

r

)2 + BzS
z
r , (8)

hereafter referred to as the Heisenberg chain. It is a well
studied model in low-dimensional magnetism which has been
extensively studied [8,28,39–48]. The completely isotropic
point (D = Bz = 0) is an example of a phase with symme-
try protected topological (SPT) order [26] and exhibits a
characteristic doubling of the spectrum of the entanglement
Hamiltonian [47]. We call this phase the isotropic phase or
the Haldane phase interchangeably. The ground state in this
phase is a singlet with a bulk gap to a degenerate triplet
mode [42] for periodic boundary conditions. In the presence
of an applied magnetic field, the degeneracy of this mode is
lifted, with one (or two depending on the field orientation) of
the triplet modes diminishing in energy until a lower critical
field, Blower

z where hybridization with the ground state singlet
induces a phase with long-range AFM order that can be inter-
preted as a BEC phase [28,49,50]. We use the term BEC or
magnon BEC to refer to this phase from this point on. Once
the upper critical field Bupper

z is attained, the per-site magne-
tization saturates and the spins form a classical paramagnet.
For large and positive D, there is a Gaussian transition to a
so called “large-D phase,” which we refer to as the insulator
phase, and for negative D a transition to a quasiordered Néel
phase [45,46].

Notice that at the isotropic point, this model commutes
with the total magnetization operator along any arbitrary ori-
entation, and that with nonzero anisotropy and applied field,
the total magnetization along the z axis is conserved. This
will help to motivate our choice of operator in Eq. (2) in the
following section.

B. Quantum Fisher information

The degree to which two probability distributions may be
distinguished from one another in some fixed set of measure-
ments induces a natural notion of distance on the state space
[51]. For a classical probability distribution p(x|η) giving
probability of outcome x depending on some set of parame-
ters η, this notion of distance is quantified by the Fisher-Rao
metric [52]

Fμν{p(x|η)} =
∫

1

p

∂ p

∂ημ

∂ p

∂ην

dx. (9)

The quantum generalization holds for both pure [23] and
mixed [24] states, and is termed quantum Fisher information
(QFI) with the density matrix ρ̂ taking the place of p(ω|η),
and the quantum expectation value replacing the integral. The
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associated geometrical structure is termed quantum informa-
tion geometry or simply quantum geometry (see Ref. [52] for
a complete introduction to the subject or Ref. [53] for a briefer
pedagogical introduction).

The relationship between the QFI and genuine multipartite
entanglement is derived in [18]. We recall again the operator
introduced in Eq. (2),

�v(μ) =
∑

r

(−1)rv(μ) · Ŝr . (10)

In the most general case, there may be any site dependence
one could imagine for the summand. We are motivated in our
choice of the staggered magnetization by the particular nature
of the spin-1 Hamiltonian in Eq. (1). We call Eq. (10) the
generator of the QFI. In choosing these generators we might,
in the most general case, allow the vector v(μ) to have a site
dependence. The relative orientation of the summands has a
significant impact on the QFI. In particular, if a generator
commutes with the Hamiltonian, then the ground state will be
an eigenstate of the generator, and the covariance, and hence
the QFI, will be zero. We discuss the implications of this fact
for the spin-1 Heisenberg chain more in Sec. II. The generator
that will detect the greatest QFI is the one for which [H,�]
is maximal. Often at the critical point this will be the most
relevant operator [7] in the renormalization group sense.

At this point, it is clear why we choose to measure variants
of the staggered magnetization operator defined in Eq. (2).
The spin-1 Heisenberg chain commutes with the uniform
magnetization operator, and so the QFI generated by the
total magnetization is zero. In terms of the QFI, the fully
anti-ferromagnetic generator detects the greatest amount of
entanglement [8]. This is easy to see from the equivalence
between the QFI and the equal time structure factor, which, for
the AFM Heisenberg chain, exhibits a peak at k = π [43,44].

A natural choice for the vectors v(μ) is given by v1 = x,
v2 = y, and v3 = z. From this point on, we will simply write
�̂μ to denote the operator associated with the vector v(μ) or
collectively �̂ = (�̂1, �̂2, �̂3). The diagonal entries of the
3 × 3 QFI matrix associated with the generators correspond-
ing to this choice is given by

Fμμ = 〈
�̂2

μ

〉 − 〈�̂μ〉2, (11)

where μ ∈ {1, 2, 3} correspond to the three orthogonal unit
vectors in R3.

Now, we can consider the QFIM at the state |ψ〉 associated
with the three-dimensional parametrization generated by the
vector of operators �. The corresponding QFI matrix, Q [see
Eq. (5)] can be used to define an intensive, mean QFI density
[18]

f̄ = 1

3N
Tr (F ), (12)

where F is the QFI matrix and N is the number of sites.
The threshold for genuine multipartite entanglement is then
given (in the thermodynamic limit) by f̄ > 2m. The bound in
Eq. (7) can be arrived at by considering the operator defined
in Eq. (10) and then integrating over all possible orientations
of the unit vectors with fixed relative orientations on each site
(see Ref. [18] for details).

There is a different way of using the operator �̂μ to define a
parametrization in state space. Instead of acting directly on the
state |ψ〉 with the unitary operator exp −idημ�̂μ, we take |ψ〉
to be the ground state of a Hamiltonian Ĥ0, and then perturb
this Hamiltonian

Ĥ = Ĥ0 + ημ�̂μ. (13)

In this context, the distance between the state |ψ (0)〉 and
the state |ψ (ημ)〉 is called the fidelity susceptibility [1,2].
Provided we are away from a level crossing, the state |ψ (0)〉
is related to the state |ψ (ημ)〉 via the unitary operator

Û = |ψ (ημ)〉〈ψ (0)|, (14)

which can be evaluated in perturbation theory provided that
ημ is small. The QFIM can still be written in the covariance
form of Eq. (5), only now instead of the covariance of �̂μ we

consider the covariance of ˆ̃�μ defined by

ˆ̃�μ = i
(
∂ημ

Û
)
Û †. (15)

The resulting metric is denoted by F̃ , and it can be shown that,
for a system with energy gap ε [1],

F̃μν � 1

ε
Fμν. (16)

For a more thorough discussion of the relationship between
F̃μν and Fμν , one can refer to Ref. [53]. The important point
is that the manifold generated by applying a unitary operator
and manifold generated by perturbing a parent Hamiltonian
are intimately related, with distances between states on the
latter bounded by distances between states on the former.

II. METHODS

A. Quantum volume and curvature

1. Defining a manifold

In order to investigate the state space geometry in the
vicinity of many body wave functions, we consider the two-
dimensional sub manifold of the state space that generalizes
the manifolds of the form considered in Refs. [16,38] to a
many-body context. In that work, the manifold we introduce
here generated by the operator �nr defined in Eq. (10) was
examined for just a single site.

We return now to the scenario in Eq. (13), and take η =
(h, θ, φ),

Ĥ (ξ; h, θ, φ) = H0(ξ) + h�n(θ, φ), (17)

where ξ correspond to parameters of the Hamiltonian such
as, for example, D and Bz in Eq. (1). Infinitesimal shifts in
the values of η can be generated by the following operators
(where, by abuse of notation, we use subscript {h, θ, φ} as a
label):

�̂n =
∑

r

(−1)rn · Ŝr, (18a)

�̂θ =
∑

r

(−1)rdθ · Ŝr, (18b)

�̂φ =
∑

r

(−1)rdφ · Ŝr, (18c)
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FIG. 1. A schematic of the manifold generated by the applied
field parameterized by {θ, φ}, with the corresponding ground state
given by |θ, φ〉. The tangent vector ∂μ becomes the generator �μ.

where

dθ = ∂θn, (19a)

dφ = ∂φn. (19b)

For each orientation of n and value of h, there is a corre-
sponding ground state whose geometry can be explored via
the metric in state space can be determined using Eq. (5) (see
Fig. 1). In the limit of h → 0, we recover the case described
above Eq. (11). In state space this manifold can be considered
in terms of slices at fixed values of h,

�h = {|h, θ, φ〉|(θ, φ) ∈ [0, 2π ) × [0, π ]}, (20)

with the state manifold (actually a submanifold) given by P =⋃
h>0 �h.
Choosing a manifold in state space parameterized by the

orientation and strength of a magnetic field makes this study
distinct from many other investigations of the many-body
quantum state space geometry, which tend to employ state
space manifolds parameterized by the driving parameters of
the phase transitions (see, for example, Refs. [1,3,4,54–57],
or by examining the geometry of the momentum bands in
Fermion models (see Ref. [58] for a very general treatment
of N level systems).

From the metric, the quantum volume of the state space
manifold �h can be calculated,

V (λ; h) =
∫
S

√
det F dθdφ, (21)

where S = [0, 2π ) × [0, π ). Here we use the word volume to
refer to the size of the 2D state space manifold.

In the limit h → 0, the QFI matrix used to define the
mean QFI density in Eq. (12) can be recovered by considering
perturbations in the x, y, and z directions as defined by the
generators �μ with μ ∈ {x, y, z} discussed in Sec. I B. The
mean QFI density is then computed by evaluating the three
connected covariances in Eq. (11) in the ground state of the
source Hamiltonian.

By contrast, when we wish to compute the quantum vol-
ume of the 2D submanifold depicted schematically in Fig. 1,
we evaluate the covariances of the tangent operators �θ and

�φ for states that are held at some small, nonzero field h with
orientation (θ, φ).

2. Volumes in flat space

As an example, consider the quantum metric for a space of
S = 1/2 particles for which there is no energy landscape [i.e.,
H0 = 0 in Eq. (17)]. We call a space where H0 = 0 an empty
space, as there is nothing to distinguish between different spin
states except the orientation of the generator. In this case, the
generator cannot be treated as a perturbation because there is
nothing to perturb and the ground state manifold is isomor-
phic to a sphere. Explicitly for the case of S = 1/2, the QFI
matrix is

F = Nh2

(
1 0

0 sin2(φ)

)
, (22)

The resulting quantum volume is

VS= 1
2

= 4πNh2 (23)

(a detailed derivation is given in Appendix B), this expression
can be generalized to the case of spin S:

VP = 4π

(
N

2S

)
h2. (24)

(see Appendix C). The volume of the quantum paramag-
netic has no dependence on the relative orientations of n̂r .
Moreover, the volume scales exactly as h2 and thus the
local geometry of the empty space is flat, with zero curva-
ture. In the classical case, the covariance of the generators
of tangential transformations will be zero, since there are
no quantum fluctuations. This can be seen explicitly from
Eq. (24) which goes to zero in the classical limit, S → ∞. A
nonzero quantum volume can be taken to indicate the presence
of quantum fluctuations, since this nonzero quantum volume
is coming from the fluctuations in the spin expectation value
in the direction transverse to the orientation of the generator.
Hence, the quantum volume represents the same information
as the Heisenberg uncertainty relations for the spin compo-
nents and is an intrinsic consequence of the relationships
between the angular momentum components. We will return
to this point in discussing the results for the S = 1 Heisenberg
chain.

3. Quantum curvature

The notion of state space curvature can be developed by
considering the ratio of the quantum volume of the manifold
�h centered on a ground state ψ relative to the quantum
volume in an empty space. The quantum volume ratio

vh(ψ (h)) := V (ψ (h))

VP

= v0 − bRh2 + O(h3) (25)

may be expanded about small values of h, where in the
quadratic term determines the curvature of the manifold P .
This is essentially the definition of curvature familiar from
classical differential geometry, with the scalar curvature R
controlling the degree to which the scaling of volumes is
enhanced or suppressed in spaces with negative or positive
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curvatures, respectively. We call R the quantum curvature.
It is independent of the metric normalization A and should
therefore hold for any choice of QFI. The constant b is a
positive number that depends only on the dimension of the
manifolds used to compute the volumes. For the case of a
two-dimensional sphere, b = 1/12. The negative sign can be
understood by imagining drawing a circle on a saddle or on
a sphere. On the saddle (a surface with negative curvature),
the circumference of the circle will be greater than in the
Euclidean case, and so the scaling of the circumference with
the radius of the circle will be greater than in the case of flat
space, with the opposite argument going through the sphere (a
surface with positive curvature) [59].

When we speak of the quantum volume ratio of a state ψ ,
we mean the quantum volume of the spheroidal shell centered
at ψ in the state space.

B. Numerical methods

All data was collected using an iDMRG algorithm im-
plemented using the ITENSOR library [60]. Simulations were
performed with bond dimensions of up to 2800 in the vicinity
of the critical points, and optimization was run until truncation

errors not exceeding 10−9 were achieved. In the BEC phase,
we found that convergence was challenging, likely owing to
the long-range nature of the correlations that phase [49].

Within the iDMRG, correlation functions were measured
to a distance of 1000 sites starting from the center of an
effectively infinite chain. These correlations were then used
to compute the per-site connected covariances required for the
evaluation of the quantum volume.

The sum over N sites is easiest to compute in the iDMRG
because we can take advantage of the translation invariance.
The covariances involve a double summation over the cor-
relation matrix Cr1,r2 ,

∑N
r1=1

∑N
r2=1 Cr1,r2 . In systems with

translation invariance, we can assume that Cr1,r2 = C|r1−r2|
and reduce the double sum to N

∑N
r=1 Cr . If we had instead

considered a finite system with a boundary, the entire double
sum would have been needed. While this is still tractable
for nontrivial system sizes when considering the mean QFI
density, evaluating the quantum volumes becomes challenging
in all but the most symmetrical cases.

In order to compute the integral in Eq. (21), we can take
advantage of the symmetries of the source Hamiltonian. We
derive (see Appendix A) the following formulas for the case
of full rotational symmetry and axial symmetry:

V Spherical(λ; h) = 4πAh2
√

�xxyy, (26a)

V Axial(λ; h) = 2πAh2
∫ π

0

√
�xxyy cos2(φ) sin2(φ) − 2�yyzx cos(φ) sin3(φ) + �yyzz sin4(φ) dφ, (26b)

where, in general,

�abcd (λ; h, θ, φ) = AabAcd − AacAbd . (27)

Here Aab is the real part of the correlation matrix

Cab =
∑
r1,r2

(−1)r1+r2 Covψ (θ,φ)
(
Sa

r1
, Sb

r2

)
(28)

given by A = 1
2 (C + C∗) and the indices a, b, c, d ∈ {x, y, z}

are taken in the laboratory frame. The correlation matrix will
depend on the strength of the perturbing field h, and also on
the particular values of the Hamiltonian parameters which
we here denote as ξ. In Eqs. (26), the angular dependence
in (θ, φ) has been integrated out completely in the spherical
case, while in the axial case � will have some dependence
on φ. In the axial case the integral over φ can be performed
numerically with relatively few integration points. For the data
shown in Figs. 5 and 6, the φ component was integrated with
50 equally spaced points. This is relevant for experiments
where measurements would be required at a range of field
orientations in order to compute the quantum volume.

III. RESULTS AND DISCUSSION

A. Mean QFI density

Taking Eq. (1) as our source Hamiltonian, the mean QFI
density divided by the metric constant was computed for a
patch of the (D, Bz ) parameter space with D ∈ [−0.5, 1.5]

and Bz ∈ [0, 0.5]. In this section, we imagine a 3 × 3 QFI
matrix where the parametrizations are generated by the fields
in the x, y, and z directions in the laboratory frame as dis-
cussed in Sec. I B. The correlation functions are evaluated for
the ground state of the source Hamiltonian, taking h = 0 in
Eq. (17). The results are given in Fig. 2. We see robust mul-
tipartite entanglement through the Haldane phase, indicating
at minimum bipartite entanglement. We find our results to be
consistent with the low temperature single mode approxima-
tion employed by the authors in Ref. [8].

Taking a slice of the phase diagram along D = 0 (see
Fig. 3), we see that the multipartite entanglement of the
magnon BEC is substantially higher, and estimate the value of
the lower critical field to be Blower

z ≈ 0.41, which is consistent
with previous studies [28] which place the value of Blower

z at
the Haldane gap [48]. From Fig. 3, the multipartite entangle-
ment can be seen to peak before falling to the upper critical
field of approximately Bupper

z ≈ 4, beyond which the system
enters a classical paramagnetic phase for which the mean QFI
density is nearly zero and the per site magnetization becomes
saturated.

In Fig. 2, we see that the BEC phase appears as a fan of
genuine multipartite entanglement emanating from the Gaus-
sian transition to the insulator phase. The BEC phase can be
reached from either the insulator phase or the Haldane phase.
Experimental studies [49] on the material NiCl2-4SC(NH2)2,
for which the ground state is in the insulator phase and which
exhibits an additional easy axis anisotropy, reveal that the
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FIG. 2. Phase diagram of the mean QFI generated by the stag-
gered magnetization operator. The Néel and insulator phases are
unentangled away from the critical point. The magnon BEC phase
appears as the critical fan of the Gaussian critical point separat-
ing the Haldane phase from the Insulator phase. Regions of low
entanglement in the BEC phase are numerical artifacts from failed
convergence of the iDMRG. When points do converge, it is with
a truncation error of no more than 10−9. The red horizontal line
indicates the slice that is shown and extended in Fig. 3

long-range correlations in the BEC phase persist up to a finite
temperature that grows as a function of the applied field to
a maximal point which occurs at approximately the point
where the average onsite magnetization assumes a value of
〈Mz〉/N ≈ 0.4. Owing to the analogous peak in the GME as
witnessed by the QFI at the point where the onsite magne-
tization assumes the values of 〈Mz〉/N ≈ 0.4, we speculate
that this temperature scale may be related to the massive
multipartite entanglement in the ground state. In particular,

FIG. 3. QFI associated with staggered magnetization operator as
a function of magnetic field in the z direction (magenta curve) and
average per site magnetization along the z axis (blue curve). Notice
that the mean QFI density is constant in the Haldane phase and nearly
zero in the fully spin polarized (FSP) phase.

FIG. 4. QFI associated with staggered magnetization operator as
a function of the uniaxial anisotropy. The Haldane phase exhibits the
largest amount of multipartite entanglement, which is enhanced by
nonzero values of the uniaxial anisotropy.

the temperature curve for the BEC phase in Ref. [49] is of a
form that is very similar to the curve of genuine multipartite
entanglement in Fig. 3.

Within the Haldane phase the multipartite entanglement is
completely constant as a function of Bz, as can be seen in
Fig. 3 in the phase labeled H. This indicates that the Haldane
phase entanglement is robust to the presence of magnetic
fields. Coupled with the already established robustness of
the Haldane phase entanglement to finite temperatures [6,8],
our observations establish Haldane gap anti-ferromagnets as
reliable sources of at least bipartite entanglement even in the
presence of environmental disturbances that tend to decohere
entangled states. This has especially important application in
light of the application of SPT phases to measurement based
quantum computation [61,62].

In contrast to a homogeneous applied field, any nonzero
uniaxial anisotropy appears to increase the amount of genuine
multipartite entanglement, as seen by considering a cut in
the state space where Bz = 0 (see Fig. 4). Along this cut
we can see clear divergences in the GME at both the Néel
and insulator transitions. The Haldane phase exhibits two par-
tite entanglement in the vicinity of the isotropic point where
D = 0, while the other phases are trivial from a quantum
perspective, exhibiting zero GME.

The behavior of the mean QFI can be contrasted with the
fidelity susceptibility, which, for the Gaussian transition in
particular, exhibits a less pronounced signal (see Fig. 3 of
Ref. [46]). While the fidelity susceptibility associated with the
Ising transition does exhibit a divergence, this divergence does
not establish the entanglement of the critical point, due to the
reasons discussed in Sec. I B.

While the Ising transition was already established as a
strongly entangled critical point by the authors in Ref. [8],
the observation of entanglement at the Gaussian critical point
was not made. This is because the component Qzz of the QFI
matrix which was studied by the authors in Ref. [8] does
not diverge at the Gaussian transition, and it is rather the
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FIG. 5. Quantum volume ratio for spheres centered at the
isotropic point.

components of the QFI matrix in the directions transverse to
the critical point.

B. Quantum curvature

In this section, we consider the 2D submanifold centered at
the ground state of the source Hamiltonian for small, nonzero
values of h in Eq. (17). The correlation functions then in
general depend on both h and the orientation of the field
(θ, φ). Due to the symmetries of the spin-1 chain defined
in Eq. (1), we can integrate out the dependence on (θ, φ)
at the isotropic point, and the dependence on θ for the case
of nonzero uniaxial anisotropy, using the formulas defined in
Eqs. (26). The correlations are then evaluated as functions of
h in the case of spherical symmetry, or as functions of h and φ

in the case of axial symmetry. In both cases, the correlations
will depend on the value of D. The volumes of the 2-spheres
for different values of h are sufficient for us to then compute
the quantum curvature defined in Eq. (25). If all correlations
〈Sa

r1
Sb

r2
〉 for a given field strength h and orientation (θ, φ) are

evaluated with a, b ∈ {x, y, z} in the laboratory frame then
Eq. (26) can be evaluated.

We begin at the isotropic point with D = Bz = 0 and ex-
amine the volume ratios of the ground state of Eq. (17) as
a function of h that are taken to be small relative to the ex-
change coupling. The results of this calculation are shown in
Fig. 5. We see that the volume ratio decreases monotonically,
indicating that the manifold P is asymptotically flat in the
limit of large h. Near h = 0 it is clear that this function is
concave down, which, from Eq. (25) implies that the curvature
is positive. The volume ratio being larger than 1 indicates the
presence of a high degree of quantum fluctuation relative to
those implied purely by the uncertainty relation for the spin
operators, as discussed in Sec. II.

By sweeping across values of D from −1 to 3 we can
determine how the curvature of the state space depends on
the uniaxial anisotropy. The results of this analysis are shown
in Fig. 6. Taking the second derivative of the volume ratio as a
function of h at h = 0 gives us the sign of curvature, indicated
by the red (positive curvature) and grey (negative curvature)

FIG. 6. Quantum volume ratio for spheres of perturbatively small
radius as a function of the uniaxial anisotropy D. Sphere sizes (ap-
plied fields) range in size from h = 0.0001 to 0.04. The red shaded
region indicates where the curvature is positive while the grey region
indicates where the curvature is negative, approximately correspond-
ing to the onset of the scaling regime.

shaded regions in Fig. 6). We see that the Haldane phase is
characterized by strong positive curvature, while the Néel and
insulator phases are flat with essentially zero curvature.

Recall from Sec. II that the quantum volume quantifies
the fluctuations in the spin degrees of freedom. In flat space
(i.e., spaces where H0 = 0), these fluctuations come purely
from the Heisenberg uncertainty relations. Hence, the quan-
tum volume in a flat space of N spin-S particles tends to
zero in the limit S → ∞. In the Néel and Insulator phases,
we find a quantum volume ratio vh > 1, indicating that these
phases exhibit enhanced fluctuations relative to what would
be expected from the pure uncertainty relations. From Fig. 4,
we see clearly that neither of these phase are entangled [see
the inequality in Eq. (7)]. Hence, quantum phases might have
enhanced fluctuations without necessarily exhibiting any en-
tanglement.

Despite these enhanced fluctuations, both the Néel and
insulator phases are flat, with quantum volume ratios that are
constant as a function of the field h. By contrast, the Haldane
phase, which exhibits the greatest enhancement in quantum
fluctuations of the three, also exhibits a region of large positive
curvature, leading into the critical points where we find a
sudden, discontinuous jump to a region of negative curvature
which we interpret as the onset of the scaling regime. The
Haldane phase is the only phase of the three that exhibits
any degree of entanglement, and it appears that the quantum
curvature tends to grow as the entanglement increases, as seen
by the dispersion of the curves at fixed values of h in Fig. 6.
The flatness of the insulator phase also establishes that the
curvature in the Haldane phase is not simply a consequence
of the Haldane gap, as the insulator phase is also gapped but
exhibits no quantum curvature.

It seems clear that the quantum curvature is connected to
the presence of entanglement, with the trivial phases appear-
ing completely flat. A phase with no entanglement would then
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be expected to have zero curvature, except perhaps when the
critical point is approached. However, it is not clear whether
or not the presence of quantum curvature is only incidental
in the Haldane phase, and is in fact due to the nearby quan-
tum critical points which exhibit a massive divergence in the
amount of GME. This would account for the presence of small
amounts of positive curvature in the Néel and insulator phases
as the critical points are approached. In this case, the positive
curvature in the Haldane phase is a consequence of the phases
existing in between these two critical points. This introduces
the possibility of detecting the presence of quantum critical
points even outside of the scaling regime, without the need
to directly witness the diverging multipartite entanglement
at the critical point. This would be especially useful in in-
elastic neutron scattering experiments where resolution issues
make it effectively impossible to directly measure diverging
multipartite entanglement [14]. That state space curvature is
induced by the phase boundary implies that quantum critical
regions have long-range effects in the state space, influencing
not just the geometry of states in the scaling regime but also
the states that lie in between these critical points.

It is also possible that state space curvature is generic in
the presence of any amount of entanglement, with entangle-
ment and state space curvature sharing a relationship that is
somewhat analogous to the relationship between mass and
space-time curvature.

Our calculation of the state space curvature can be
contrasted with those of Refs. [4,55,56] and especially
Refs. [3,54]. In these studies, it is the curvature corresponding
to the ground state manifold parameterized by the driv-
ing parameters of the phase transitions themselves that is
computed. In particular, Ref. [3] finds that the curvature of
the manifold parameterized by a uniform field along the z
axis and the temperature in the XXZ model reveal differ-
ent scaling regimes in the vicinity of the quantum critical
point.

This is similar to our observation that the state space
curvature becomes negative in the immediate vicinity of the
quantum critical point, but our construction pertains to a state
space manifold that might be applied to transitions where the
magnetic field is not a priori the driving parameter of the
phase transition. It is also interesting that there is a discontin-
uous jump from a region of positive state space curvature in
the Haldane phase and immediately around the critical points
to a region of negative state space curvature in the quantum
critical regime, without any intermediate flat region. In the
grey regions of Fig. 6, it is important to emphasize that the
form of the quantum metric defined in Eq. (5) breaks down,
as it does not account for the nonadiabatic level crossings that
occur at the critical point. A more careful treatment would
involve computing the entire spectrum and applying the form
of the quantum metric introduced in Ref. [1]. We leave these
questions to future study.

IV. CONCLUSION

In this work, we have mapped out the phase diagram of
the spin-1 antiferromagnetic Heisenberg chain in the space
of applied magnetic field and uniaxial anisotropy (both along
the z axis). The five phases of the spin-1 Heisenberg chain

considered here have all been shown to have substantially
different behavior in terms of the mean QFI density. In par-
ticular, we find the both the Néel and insulator phases exhibit
small but nonzero genuine multipartite entanglement relative
to the SPT Haldane phase. The entanglement in the SPT
phase seems to be greatly enhanced by the presence of unixial
anisotropy, and is undiminished under the application of a
uniform magnetic field. The fact the multipartite entangle-
ment in the Haldane phase is robust against the application
of magnetic fields and exhibits a finite temperature plateau up
to energies on the scale of the Haldane gap [6,8] may have
implications from quantum metrology and quantum informa-
tion, where state exhibiting robust entanglement are used as a
resource in various measurement and information processing
tasks

Once the applied field reaches a strength on the order of
the Haldane gap we find a drastic increase in the multipartite
entanglement in the magnon BEC phase. This condensate is
found to emanate from the Gaussian quantum critical point
that is generated by large positive values of the uniaxial
anisotropy, and is similar to the quantum critical fans ex-
pected in the finite temperature region above the quantum
critical point. In the BEC phase, we find a peak multipartite
entanglement at Bmax

z ≈ 1.6. More work should be done to
understand the relationship between the massive amount of
multipartite entanglement in the ground state and the finite
temperature transition points of the BEC phase mapped out
in Ref. [49].

By computing the quantum metric corresponding to a
state space manifold parameterized by the magnitude and
orientation of a small, staggered magnetic field, we intro-
duced the ideas of quantum volume and quantum curvature,
and computed both for a range of values of the uniaxial
anisotropy.

Crucially, we have demonstrated that the Haldane phase
in this model is characterized by a sizable, positive quantum
curvature, while the Néel and insulator phases are flat. We
have identified two possibilities. First, the presence of quan-
tum curvature is induced by the presence of quantum critical
points, in which case measurement of such curvature may
prove applicable as a probe of quantum criticality outside of
the scaling regime in neutron scattering experiments. Second,
it is possible that massive positive curvature is an intrinsic
feature any GME phase. It is important to emphasize that the
entanglement in the SPT phase is short range in nature [26]. It
is unclear whether or not the state space geometry computed
in terms of a linear, local operator would be sensitive to long-
range entangled phases, where the mean QFI density of local
operators does not detect GME [9,37].

One final observation is that the mean QFI density along
the Bz = 0 cut shown in Fig. 4, and the quantum volume ratio
in the limit h → 0, v0 shown as the maximal curve in Fig. 6
appear to be almost exactly proportional to one another. Fur-
thermore, the curvature appears to grow proportionately to the
mean QFI density up to the onset of the critical region. This
raises the possibility that the GME is a source of curvature
in the state space, analogous to the curvature of space time
due to the presence of mass energy. We do not present any
rigorous proof of the relationship between v0 and f̄ in this
work, leaving the problem to future study.
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APPENDIX A: SYMMETRIC FORMULAE
FOR THE QUANTUM VOLUME

In order to efficiently evaluate Eq. (21), it is crucial that
we exploit symmetries of the source Hamiltonian. This would
also be the case for experimental explorations of the quantum
volume ratio. There are two symmetries that are of particular
interest to us. The first is the full rotational symmetry given
by the Euler angles (θ, φ). Recall the rotation operator [63]

R(θ, φ) = ei
∑

r Sz
rθei

∑
r Sy

r φ, (A1)

where the gauge angle representing an initial rotation about
the z axis is taken to be zero. If this operator represents a
symmetry of the source Hamiltonian, we may generate the
state manifold by applying the rotation to H,

H(λ; h, θ, φ) = R(θ, φ)H(λ; h, 0, 0)R−1(θ, φ). (A2)

Each element of the quantum metric is given by the real
symmetric part of the covariance of the generators, as defined
in Eq. (5). Using the particular form of the generator in Eq. (2)
and denoting the real symmetric part of the covariance matrix

C gives

Fμν = A

S2
h2da

μdb
νCab (A3)

and

Cab =
∑
r1,r2

(−1)r1+r2 Covψ (θ,φ)
(
Sa

r1
, Sb

r2

)
. (A4)

Under a rotation, the covariance matrix transforms

Covψ (θ,φ)
(
Sa

r1
, Sb

r2

) → Raa′
Rbb′

Covψ (0,0)
(
Sa′

r1
, Sb′

r2

)
,

where Einstein summation is used and

R =

⎛
⎜⎝cos(θ ) cos(φ) − sin(θ ) cos(θ ) sin(φ)

sin(θ ) cos(φ) cos(θ ) sin(θ ) sin(φ)
sin(φ) 0 cos(φ)

⎞
⎟⎠. (A5)

Using this transformation, we can extract the angular de-
pendence of the metric for the case of spherical and axial
symmetry, and integrate out that dependence completely, leav-
ing

V Spherical(ξ; h) = 4π
1

S2
h2

√
�xxyy, (A6)

where

�abcd = AabAcd − AacAbd . (A7)

For the axial case we, without loss of generality, choose the
case where the system is symmetric about rotations about the
z axis [set φ = 0 in Eq. (A5)]. In this case, we have

V Axial(ξ; h) = 2π
1

S2
h2

∫ π

0

√
�xxyy cos2(φ) sin2(φ) − 2�yyzx cos(φ) sin3(φ) + �yyzz sin4(φ) dφ. (A8)

In the axial case, we still have to perform a numerical integra-
tion with respect to φ but good convergence can be achieved
using relatively few slices.

APPENDIX B: QFI MATRIX OF A FLAT SPACE
FOR S = 1/2

The quantum metric of a flat space can be calculated for N
spin-1/2 particles by considering the Hamiltonian in Eq. (17)
setting H0 = 0. The tangent operators are given by,

�μ = h

2
�dμ · �σ , (B1)

where dμ is the derivative of the unit vector along the μ

direction.
Substituting these definitions into Eq. (5) (assuming sum-

mation over repeated indices),

Fμν = Ah2da
μdb

ν�(〈σ aσ b〉 − 〈σ a〉〈σ b〉)

= Ah2da
μdb

ν�Cab, (B2)

where we have defined the connected correlation Cab. We can
use the algebra of the Pauli matrices to simplify the expression

for the correlations somewhat,

Cab = 〈σ aσ b〉 − 〈σ a〉〈σ b〉
= δab + iεabc〈σ c〉 − 〈σ a〉〈σ b〉. (B3)

Now substituting this Eq. (B2) gives

Fμν = h2�( �dμ · �dν + i( �dμ × �dν ) · 〈�σ 〉 − da
μdb

ν 〈σ a〉〈σ b〉).
(B4)

Now we must evaluate the expectation values of the Pauli
matrices. Recall that these are themselves functions of (θ, φ).
For the two level case, we can compute the ground state
explicitly,

|λ�=0
− 〉 =

(
sin( φ

2 )

− cos( φ

2 )eiθ

)
. (B5)

The expectation value of the Pauli vector in the ground
state is then

〈�σ 〉 =

⎛
⎜⎝− cos(θ ) sin(φ)

− sin(θ ) sin(φ)
− cos(φ)

⎞
⎟⎠ = −n̂(θ, φ). (B6)

174427-9



JAMES LAMBERT AND ERIK S. SØRENSEN PHYSICAL REVIEW B 107, 174427 (2023)

The metric in Eq. (B4) is now given by

Fμν = h2�( �dμ · �dν − i( �dμ × �dν ) · n̂). (B7)

In this form, evaluating the components of the metric proves
to be a straightforward exercise

F = h2

(
1 0

0 sin2(φ)

)
. (B8)

Generalizing this expression to N spins amounts to multiply-
ing by N

F = Nh2

(
1 0

0 sin2(φ)

)
(B9)

since the connected correlations between sites is zero by
construction. Notice that this expression does not depend on
the relative orientation of the neighboring sites. For S = 1/2,
the quantum volume (surface area of a 2D sphere in the spin
Hilbert space) is then

VS= 1
2

= 4πNh2. (B10)

APPENDIX C: QUANTUM VOLUME OF A FLAT
SPACE FOR SPIN S

In computing to quantum volume ratio, we want to gener-
alize the volume computed in Eq. (B10) to the case of spin S.
This is easy to do by employing the formula for the spherically
symmetric quantum volume given in Eq. (A6)

Using Eq. (A6), we can compute the quantum volume of
a paramagnet. Taking H0 = 0 in Eq. (17) and denoted the

ground state of the spin-S paramagnet as |S,−S〉, we can use
the raising and lowering operators:

S+|S, m〉 = √
S(S + 1) − m(m + 1)|S, m + 1〉,

S−|S, m〉 = √
S(S + 1) − m(m − 1)|S, m − 1〉. (C1)

For the paramagnet, the connected correlation between is
exactly zero, so we can evaluate only the onsite correlations in
the directions transverse to the orientation of the field (which
we take to be z). The expectation values in x and in y are the
same, so we only present the calculation of the former. For
the state that is fully polarized down along the z axis, the only
contribution to (Sx )2 is given by

Cxx = 1

4
〈S,−S|S−S+|S,−S〉 = S

2
. (C2)

Substituting this into Eq. (A6) gives

VP = 4π

(
N

2S

)
h2, (C3)

where we have grouped the spin, S, and number of sites N
along with the factor of 1/2 in order to emphasize the familiar
form of the volume of a sphere. The factor N is coming from
the fact that Cab in �abcd contains a sum over N sites, which for
the case of H0 = 0 scales linearly in N (since the connected
correlations between sites are zero). We can check and see that
for S = 1/2, we recover Eq. (B10).
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