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Inertial rotational diffusion and magnetic relaxation of the spin system in a strong magnetic field
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Analytical expressions for the longitudinal and transverse correlation functions pertaining to inertial magnetic
relaxation are obtained by expanding the deterministic magnetization trajectories into a Fourier series and
averaging the result over all possible initial conditions applying the stationary Boltzmann distribution function.
The longitudinal and transverse components of the magnetic susceptibility tensor are calculated for a system of
noninteracting macrospins in a strong uniform external field using Bloch’s phenomenological approach, which
postulates the exponential evolution of the spin system towards equilibrium, and the Lorentz model of rotational
diffusion of the magnetization vector. It is shown that the strength of the external field and the magnitude of
the inertia parameters noticeably affect the shape of the susceptibility in the THz (nutation resonance) spectrum
region. It is also demonstrated that the simple analytical Lorentz-type expression describes the main features of
the complex susceptibility in the ferromagnetic resonance and nutation resonance regions.
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I. INTRODUCTION

The study of the inertial dynamics of magnetization in
nanomagnets and the associated nutational resonance (NR)
has attracted great interest in recent years [1–13]. Recently,
experimental evidence for inertial dynamics of magnetization
in nanoscale ferromagnets, as manifested by magnetization
nutation analogous to that usually associated with a symmetric
spinning top, has been reported [1]. The nutation resonance
of forced oscillations in ferromagnetic thin films occurs at
ultrahigh frequencies, of the order of 0.5 THz, and is well
separated from the ferromagnetic resonance (FMR), which
usually lies in the GHz region. The phenomenon of ultra-
high frequency magnetization nutation is likely to be of some
importance for ultrafast manipulation of the magnetic order,
which is currently one of the most investigated topics in spin-
tronics [2–4]. Various physical models have been proposed to
justify the inertial behavior of the magnetization [5–10,14–
17]. A variety of theoretical models make it possible to study
more widely the nutation dynamics of magnetization and
its role in various magnetic phenomena. These studies are
important not only from a fundamental point of view, but
are also of practical significance, as terahertz frequencies at
which nutation is manifested are important for technological
applications.

It was found that theoretically nutation can be described by
including an additional term in the Landau-Lifshitz-Gilbert
(LLG) equation, which contains the second order derivative
of the magnetization M with respect to time [5–8,12]. The
inertial term in the inertial Landau-Lifshitz-Gilbert (ILLG)
equation thus obtained is significant over the ultrafast time
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scale of subpicoseconds and shorter [1] and accounts for ultra-
high frequency longitudinal and transverse oscillations of the
magnetization due to nutation. In coexistence with damping,
this nutation disappears in a short time [5]. Despite the novel
experimental evidence, and the significant theoretical progress
in understanding the microscopic origin of inertia [18–27],
inertial relaxation in spin systems affected by thermal noise
has not been adequately studied [21,28]. However, under
normal environmental conditions, due to the small size of
ferromagnetic particles (∼10 nm), thermal fluctuations caused
by thermal noise play a significant role.

The ILLG equation ignores the thermal fluctuations arising
because the nanomagnet is maintained at a finite temperature
T. If these fluctuations are included, the precessional motion
would endure due to the energy provided by the heat bath.
The theory of the thermal fluctuations of the magnetization,
having been initiated by Néel [29,30], was further developed
by Brown [31,32] who set it in the context of the general
theory of stochastic processes. To include thermal fluctua-
tions, Brown [31] in 1963 simply added a random isotropic
noise magnetic field h to the LLG equation, which in direct
contrast to the dissipative field acts as a source of energy to
the system. The same idea was realized in Ref. [21], where
the random magnetic field h was added to the ILLG equation.
The resulting generalized nonlinear vector magnetic Langevin
equation is written as [21]

dM
dt

= M ×
(

−γ (Heff + h) + α

MS

dM
dt

+ τ

MS

d2M
dt2

)
, (1)

where γ = 2.2 × 105rad m A−1 s−1 is the gyromagnetic ra-
tio, MS is the saturation magnetization, Heff = H + Ha(M)
is the effective magnetic field, including internal anisotropic
Ha(M) and external applied H magnetic fields, α is the Gilbert
precession damping parameter, and τ is the inertial parameter.
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The random magnetic field h is regarded as spatially isotropic
Gaussian white noise [21,33]. The magnetic Langevin equa-
tion can be used to treat stochastic magnetization dynamics.
For example, it makes it possible to describe the reversal of
the magnetization (unwanted in magnetic recording) from one
metastable state to another due to thermal fluctuations. The
magnetic Langevin equation, Eq. (1), ultimately determines
the magnetic Fokker-Planck equation for the distribution func-
tion of the coordinates of vector M in the phase space [5,21].
The stationary solution of this Fokker-Planck equation facil-
itates the calculation of the equilibrium correlation functions
of the magnetization [28].

Here, to investigate the inertial magnetic relaxation of spin
ensembles in a strong magnetic field including thermal agita-
tion, we derive analytical expressions for the time-dependent
equilibrium longitudinal and transverse correlation functions
of the magnetization. The general solution of the the iner-
tial Landau-Lifshitz-Gilbert Eq. (1) is a rather complicated
problem due to the need to take into account the magne-
tocrystalline anisotropy of ferromagnetic particles [22]. The
problem significantly simplifies and becomes universal (the
form of the magnetocrystalline anisotropy is no longer impor-
tant) if the contribution of the internal anisotropic field can
be neglected in comparison with a strong external magnetic
field, |Ha(M)| � |H|. This approximation makes it possible
to obtain analytical expressions for the components of the
susceptibility tensor of the spin system, valid in the presence
of the thermal agitation. Moreover, some other spin systems
with no magnetocrystalline anisotropy can be considered in
the same way, for example, electrons under the action of an
external field, embedded in a dense medium, which may be
either liquid or solid, so that the spins are coupled to all the
other degrees of freedom, traditionally called “the lattice”
by reference to the crystalline lattice of solids. The tempo-
ral correlation functions are used for the description of the
temporal evolution of microscopic variables, such as the com-
ponents of magnetization of ferromagnetic nanoparticles, and
its influence on the value of the same microscopic variables
at a later time. These correlations are important in equilib-
rium systems, because a time-invariant macroscopic ensemble
can still have nontrivial temporal dynamics microscopically.
Moreover, according to linear response theory, there is a re-
lationship between the equilibrium correlation function and
the susceptibility [34]. Thus, the longitudinal and transverse
components of the magnetic susceptibility tensor are also cal-
culated for a system of noninteracting macrospins in a strong
uniform external field.

II. EQUILIBRIUM LONGITUDINAL
CORRELATION FUNCTION

The derivation of correlation functions is based on av-
eraging deterministic trajectories M(t ) over all possible
initial conditions ϑ0 = ϑ (0), ϕ0 = ϕ(0), ω0

x = ϑ̇ (0), and
ω0

y = ϕ̇(0) sin ϑ (0), using a stationary distribution function
Wst (ϑ0, ϕ0, ω

0
x , ω

0
y ). Here ϑ and ϕ are the polar and azimuthal

angles of the spherical polar coordinate system determin-
ing the direction of vector M(t ) [22,35,36]. Expressions
for deterministic trajectories of motion of the magnetization
of ferromagnetic nanoparticles can be obtained by solving

Eq. (1) with α = 0 and h = 0. These expressions are rather
complicated and contain the Jacobi elliptic functions and el-
liptic integrals [22]. Simplification of the problem is achieved,
when the external magnetic field applied along the Z axis H =
HeZ is much larger than the internal anisotropic one, Ha(M),
and the internal field can be neglected [35]. Equation (1) can
be rewritten as an equation for the unit vector u = M/MS ,
directed along the magnetization vector, which with negligible
α, h, and Ha(M) has the form

u̇ = γ [H × u] + τ [u × ü]. (2)

It should be noted that in strong external fields a ferro-
magnet is close to saturation, and therefore the solution of
Eq. (2) can be sought by the perturbation method as a correc-
tion �M(t ) = MS�u(t ) to the saturation state M0 ≈ MSeZ ,
namely M = MSeZ + MS�u(t ) [37]. However, such solutions
violate the principle of invariability of the magnitude of the
magnetization vector |M(t )| = MS [22]. Moreover, it is not
possible to use perturbed trajectories to calculate the corre-
lation functions of magnetization, where averaging over all
possible initial conditions is required, including those violat-
ing the condition �M(t ) � M0. The solution of Eq. (2) is
briefly described in Appendix A (see also [22,35]).

Having determined the longitudinal u‖(t ) = cos ϑ (t )
(along the Z axis) and transverse (perpendicular to the Z axis)
components u⊥(t ) = sin ϑ (t ) cos ϕ(t ) of vector u we can now
calculate the longitudinal Cun

‖ (t ) = 〈u‖(0)u‖(t )〉 − 〈u‖(0)〉2

and transverse Cun
⊥ (t ) = 〈u⊥(0)u⊥(t )〉 equilibrium correlation

functions of the undamped rotation of magnetization. The
equilibrium ensemble averages in the four-dimensional phase
space {ϑ0, ϕ0, ω

0
x , ω

0
y } are [21]

〈(·)〉 =
∫ π

0

∫ 2π

0

∫ ∞

−∞

∫ ∞

−∞
(·)Wst

(
ϑ0, ϕ0, ω

0
x , ω

0
y

)
× sin ϑ0dω0

x dω0
y dϕ0dϑ0, (3)

where

Wst
(
ϑ0, ϕ0, ω

0
x , ω

0
y

) = Z−1e−(ηω0
x )

2−(ηω0
y )

2+ξ cos ϑ0 (4)

is the stationary distribution function in phase space [21],

Z =
∫ π

0

∫ 2π

0

∫ ∞

−∞

∫ ∞

−∞
e−(ηω0

x )
2−(ηω0

y )
2+ξ cos ϑ0

× sin ϑ0dω0
x dω0

y dϕ0dϑ0 = 4π2 sinh ξ

ξη2
(5)

is the partition function, ξ = 2γ Hη2/τ , η =
[vμ0MSτ/(2γ kT )]1/2, ν is the volume of the particle,
μ0 = 4π × 10−7 J A−2 m−1 in SI units, and kT is the thermal
energy.

By using the uniformly convergent expansion of the elliptic
function sn2(s|m) in Fourier series [38] we may represent the
longitudinal component of vector u given by Eq. (A5) as the
Fourier series,

u‖(t ′) = e3 + E (m)(e1 − e3)

K (m)
+ 2π2(e1 − e3)

K2(m)

×
∞∑

n=1

nqn(m)

1 − q2n(m)
cos

πns

K (m)
, (6)
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where

qn(m) = exp [−πK (1 − m)/K (m)], (7)

and K (m) and E (m) are the complete elliptic integrals of the
first and second kind, respectively, and all other values are
defined in Appendix A. Taking into account that u‖(t ′) from
Eq. (6) depends on variables {δ, P, l} (see Appendix A), it
is preferable to use these variables instead of {ϑ0, ω

0
x , ω

0
y }

in Eq. (3). The Jacobian of this transformation is (see Ap-
pendix B)∣∣∣∣∣sin ϑ0

(
∂ϑ0, ∂ω0

x , ∂ω0
y

)
(∂δ, ∂P, ∂l )

∣∣∣∣∣ = 1

η2
√

ξ (e1 − e3)
. (8)

Moreover, integration over ϕ in Eq. (3) gives the factor 2π

as u‖(t ′) is independent of this angle. Thus, the Cun
‖ (t ) can be

written as (t = t ′η)

Cun
‖ (t )=Cun

‖ (0)+
∫ ∞

−ξ+r2
dPe−P+r2

∫ l2

l1

dl
∞∑

n=1

cn(cos wnt −1),

(9)

where

wn = πn
√

ξ (e1 − e3)

2ηK (m)
, (10)

cn = π3n2
√

ξ (e1 − e3)3

2K3(m) sinh ξsinh2[πnK (1 − m)/K (m)]
, (11)

and [28,33]

Cun
‖ (0) = 1 − coth2ξ + ξ−2. (12)

The Fourier-Laplace transform of Cun
‖ (t ) is

C̃un
‖ (z) =

∫ ∞

0
eiztCun

‖ (t )dt

= i

z
Cun

‖ (0) − i

z

∫ ∞

−ξ+r2
dPe−P+r2

×
∫ l2

l1

dl
∞∑

n=1

cnw
2
n

w2
n − z2

. (13)

III. EQUILIBRIUM TRANSVERSE
CORRELATION FUNCTION

For the transverse component u⊥(t ′) of vector u given by
Eq. (A13) we take into account that [38,39]

1 − a sn2(s|m ) = �2(0)
�(s − β )�(s + β )

�2(s)�2(β )
(14)

and

�[a, am( s|m), m] = sn(β|m)

cn(β|m)dn(β|m)

[
u

H ′(β )

H (β )
+ 1

2
ln

(
�(s − β )

�(s + β )

)]
, (15)

where

β = sn−1(
√

a/m|m) = F (arcsin
√

a/m, m). (16)

Thus, Eq. (A13) can now be expressed in terms of the Jacobian theta functions H (β ) and �(β ) as

u⊥(t ′) = (
1 − e2

1

)1/2 �2(0)

2�2(s)

⎧⎨
⎩ei[ϕ0+(s−δ)λ]

∏
j=1,2

�(s + β jε j )

�(β j )

[
�(δ − β jε j )

�(δ + β jε j )

]1/2

+ e−i[ϕ0+(s−δ)λ]
∏
j=1,2

�(s − β jε j )

�(β j )

[
�(δ + β jε j )

�(δ − β jε j )

]1/2
⎫⎬
⎭, (17)

where ϕ0 = ϕ(0) and

λ = i

[
sgn(k + l )

H ′(β1)

H (β1)
+ sgn(k − l )

H ′(β2)

H (β2)

]
(18)

Here we use the fact that

ε1,2 = − ib1,2sn(β1,2|m)

cn(β1,2|m)dn(β1,2|m)
= sgn(k ± l ). (19)

Taking into account that∫ 2π

0
u⊥(0)u⊥

(
t ′)dϕ0 = 2π

(
1 − e2

1

) �4(0)

4�2(β1)�2(β2)

{
ei[(s−δ)λ] �(s + β1ε1)�(s + β2ε2)

�2(s)

�(δ − β1ε1)�(δ − β2ε2)

�2(δ)

+ e−i[(s−δ)λ] �(s − β1ε1)�(s − β2ε2)

�2(s)

�(δ + β2ε2)�(δ + β1ε1)

�2(δ)

}
(20)
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and on using the uniformly convergent Fourier series [40]

�(u ± β1)�(u ± β2)

�2(u)
= − π3H (β1)H (β2)

4K3(m)
√

m(1 − m)

∞∑
n=−∞

{
n ± iK (m)

π

[H ′(β1 )
H (β1 ) + H ′(β2 )

H (β2 )

]}
exp

[
iπnu
K (m)

]
sinh

(
π

2K (m)

[
2nK (1 − m) ∓ iβ1 ∓ iβ2

]) , (21)

we can calculate the equilibrium average in the manner outlined above. Thus, we obtain the expression for the transverse
equilibrium correlation function and its spectrum,

Cun
⊥ (t ) = Cun

⊥ (0) +
∫ ∞

−ξ+r2
dPe−P+r2

∫ l2

l1

dl
∞∑

n=1

c′
n(cos w′

nt − 1) (22)

and

C̃un
⊥ (z) = i

z
Cun

⊥ (0) − i

z

∫ ∞

−ξ+r2
dPe−P+r2

∫ l2

l1

dl
∞∑

n=1

c′
nw

′2
n

w′2
n − z2

, (23)

where

w′
n = [λ + πn/K (m)]

2η

√
ξ (e1 − e3), (24)

c′
n = − π3

√
ξ (e1 − e3)3[n + λK (m)/π]2

8K3(m) sinh ξsinh2
[

π
2K (m) [2nK (1 − m) − iβ1ε1 − iβ2ε2]

] , (25)

and [28,33]

Cun
⊥ (0) = ξ−1 coth ξ − ξ−2. (26)

IV. ROTATIONAL DIFFUSION IN A DC MAGNETIC
FIELD AND MAGNETIC SUSCEPTIBILITY

The presented correlation functions can be employed to
describe the relaxation dynamics in the processes of magneti-
zation or magnetization reversal. These dynamics correspond
to the process of reaching thermodynamic equilibrium in a
spin system. For example, the small variation of the exter-
nal field from H + �H to H results in a disturbance of the
equilibrium state of the spin system, which changes and the
system relaxes to a new equilibrium state. Magnetic relaxation
determines the width of the lines of FMR and NR. Bloch [34]
introduced the phenomenological approach that the evolution
of the magnetization towards equilibrium was exponential,
however embodying two distinct time constants: T‖ for the
longitudinal component and T⊥ for the transverse component.
The time evolution of a correlation function of microscopic
variables should be consistent with the concept that these vari-
ables, separated by large time scales, should be uncorrelated.
This concept is reflected in the Lorentz diffusion model, in
which the longitudinal and transverse correlation functions are
expressed as [41]

Cg(t ) = Cun
g (t )e−t/Tg + 1

Tg

∫ t

0
Cun

g (t ′)e−t ′/Tgdt ′, (27)

or

Ċg(t ) = Ċun
g (t )e−t/Tg, g =‖,⊥, (28)

where the correlation functions Cun
‖ (t ) and Cun

⊥ (t ) correspond
to the undamped dynamics of the magnetization and are given
by Eqs. (9) and (22). The model is commonly used to describe
orientational relaxation in gases and liquids by taking into
account inertial effects [41].

According to linear response theory [42,43], there is a re-
lationship between the responses to a small change �H in the
external field H, described by equilibrium correlation func-
tions, and the responses to a small probing alternating field
Haceiωt applied additionally to the external field H, since the
components χg(ω) of the magnetic susceptibility tensor can be
expressed in terms of the appropriate equilibrium correlation
functions:

χg(ω) = Cg(0) + iωC̃g(ω), (29)

where Cg(0) = Cun
g (0). The linear response theory assumes

that the perturbation energy of a nanomagnet in an ex-
ternal field is smaller than the thermal energy kT , or
vμ0MS�H/kT < 1 (vμ0MSHac/kT < 1). Here the values
�H = |�H| and Hac = |Hac| (not the absolute value of the
applied uniform external field H = |H|) are important. Thus,
the condition of the linear response is easily satisfied for
nanoparticles having small volumes v at small values of �H
and Hac. Equations (27) and (29) allow us to evaluate the
components of the complex magnetic susceptibility tensor,
viz., χ‖(ω) = χZZ (ω) and χ⊥(ω) = χXX (ω) = χYY (ω) for the
spin system in the dc field H,

χg(ω) = Cun
g (0) + izC̃un

g (z), (30)

where z = ω + i/Tg .

V. RESULTS AND DISCUSSION

The real χ̄ ′
g(ω) = Cun

g (0)χ ′
g(ω)/χg and imaginary

χ̄ ′′
g(ω) = Cun

g (0)χ ′′
g(ω)/χg parts of the susceptibility

tensor components are shown in Figs. 1–6 for various
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FIG. 1. Real χ̄ ′
⊥(ω) = Cun

⊥ (0)χ ′
⊥(ω)/χ⊥ (a) and imaginary

χ̄ ′′
⊥(ω) = Cun

⊥ (0)χ ′′
⊥(ω)/χ⊥ (b) parts of the transverse component

of the susceptibility tensor vs ηω for r = 20, η/T⊥ = 0.02, and
various values of field parameter ξ . Solid lines: Eqs. (23) and (30);
symbols: approximate Eq. (31) with η/T⊥ = 0.02 for FMR and
η/T⊥ = η/T eff

⊥ = 0.05 for NR (inset).

values of the parameters r, ξ , and Tg. Here χg = χ ′
g(0)

and Cun
g (0) are given by Eqs. (12) and (26). The parameter

ξ = vμ0MSH/(kT ) is the energy of a particle of volume v

with a magnetic moment vMS in a uniform external field H,
expressed in units of thermal energy kT. For example, for
cobalt (MS = 1.4 × 106 A/m) nanoparticle (v = 10−24 m3)
in an external field H ∼ 450 A/m (∼5.6 Oe) we have
ξ ≈ 1.9 at T = 30 K. The low frequency band is observed
in the transverse component χ̄ ′′

⊥(ω) and corresponds to
ferromagnetic resonance. An approximate equation for the
transverse component χ⊥(ω) can be obtained by applying
the method of successive approximations based on the
linearization of the ILLG equation [37]. The resultant
equation for χ⊥(ω) with negligible α is [44]

χ⊥(ω) = ωM[ωH − τ (ω + i/T⊥)2]

[ωH − τ (ω + i/T⊥)2]
2 − (ω + i/T⊥)2

, (31)

where ωH = γ H and ωM = γ MS . Here the time constant T⊥
is introduced by the substitution ω → ω + i/T⊥ to take into
account the statistical properties of the spin system, namely,

FIG. 2. Real χ̄ ′
⊥(ω) = Cun

⊥ (0)χ ′
⊥(ω)/χ⊥ (a) and imaginary

χ̄ ′′
⊥(ω) = Cun

⊥ (0)χ ′′
⊥(ω)/χ⊥ (b) parts of the transverse component

of the susceptibility tensor vs ηω for ξ = 5, η/T⊥ = 0.02, and var-
ious values of inverse inertia parameter r. Solid lines: Eqs. (23)
and (30); symbols: approximate Eq. (31).

the evolution of the system towards equilibrium, characterized
by the transverse relaxation time T⊥. In Figs. 1–3 the curves
χ̄ ′

⊥(ω) and χ̄ ′′
⊥(ω) are approximated to good accuracy by

using Eq. (31). However, while the same time constant ηT⊥ =
0.02 was used for the exact calculation [Eqs. (22) and (28)]
and approximation [Eq. (29)] in the FMR region, different
time constants, namely, ηT⊥ = 0.02 for the exact calculation
and ηT⊥ = ηT eff

⊥ = 0.05 for the approximation were used in
the NR region to obtain a correspondence between the exact
calculation and the approximation (see Fig. 1). The reso-
nant frequency of the spectrum χ̄ ′′

⊥(ω) can be estimated as
ηωFMR ∼ ηωH = ξ/(2r). A second resonance band appears
in the spectrum χ̄ ′′

⊥(ω) at ultrahigh frequencies due to the
nutation of the magnetization (nutation resonance). While
FMR (low frequency band in Figs. 1–3) is well studied, NR
(high frequency band in Figs. 1–3) is a rather new subject of
experimental research. In a rough approximation, the NR fre-
quency ωNR is determined by the inertial parameter τ , namely
ωNR ∼ τ−1 (ηωNR ∼ r). Recent experimental studies [1] have
shown that this frequency lies in the THz frequency range
ωNR ∼ 1011 − 1013 Hz. NR was recently detected at THz fre-
quencies in NiFe, CoFeB, and Co ferromagnetic films [1,25].
Detailed theoretical investigations of NR frequencies and their
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FIG. 3. Real χ̄ ′
⊥(ω) = Cun

⊥ (0)χ ′
⊥(ω)/χ⊥ (a) and imaginary

χ̄ ′′
⊥(ω) = Cun

⊥ (0)χ ′′
⊥(ω)/χ⊥ (b) parts of the transverse component

of the susceptibility tensor vs ηω for r = 20, ξ = 5, and various
values of longitudinal relaxation time η/T⊥. Solid lines: Eqs. (23)
and (30); symbols: approximate Eq. (31).

dependence on the parameters of nanoparticles and external
field are given in [23,24]. The increase of r (decrease of
inertia) shifts the resonance curve toward higher frequencies
(see Fig. 2). As shown in Fig. 2 the increase of r leads to a
decrease in the amplitude of the resonance, which disappears
as r → ∞. The parameter η/T⊥ affects the width of the bands
(see Fig. 3). At η/T⊥ > 0.2 one could also see a change in
the resonant frequency. However, we do not consider this case
here, since the resonant frequency is well determined by the
deterministic undamped ILLG equation [23,24], which is the
case for η/T⊥ → 0.

The spectra of the real χ̄ ′
‖(ω) and imaginary χ̄ ′′

‖(ω) parts
of the longitudinal susceptibility are plotted in Figs. 4–6 for
the NR region. According to Eqs. (13) and (30) the complex
susceptibility χ‖(ω) can be presented as a sum of Lorentzian
resonance curves. Hence, the resultant curve can be accurately
described by a single Lorentzian resonance curve, but with ef-
fective resonant frequency ωeff and half width 1/T e f

‖ , namely

χ‖(ω) = ωMωeff

ω2
eff − (ω + i/T e f

‖ )
2 . (32)

The values of effective resonant frequencies ηωeff and half
widths η/T e f

‖ are given in Table I for various curves plotted in

FIG. 4. Real χ̄ ′
‖(ω) = Cun

‖ (0)χ ′
‖(ω)/χ‖ (a) and imaginary

χ̄ ′′
‖(ω) = Cun

‖ (0)χ ′′
‖(ω)/χ‖ (b) parts of the longitudinal component

of the susceptibility tensor vs ηω for r = 20, η/T‖ = 0.1, and various
values of field parameter ξ [Eqs. (13) and (30)].

Figs. 4–6. Formally, Eq. (32) follows from Eq. (31) by substi-
tution ωH → 0, τ−1 → ωeff and T⊥ → T‖ → T e f

‖ . Moreover,

the values ωeff and T e f
‖ can be roughly estimated as ωeff ∼ τ−1

and T eff
‖ ∼ T‖.

VI. CONCLUSION

We have shown how the correlation functions and magnetic
susceptibilities of the spin system in a strong magnetic field
can be exactly calculated by expanding the deterministic mag-
netization trajectories into a Fourier series and averaging the
result over all possible initial conditions applying the station-
ary Boltzmann distribution function. The main result is that
the susceptibility is expressed as the sum of a discrete set of
Lorentz-type curves. Furthermore, we have demonstrated that
the simple analytical Eq. (31), obtained by using the method

TABLE I. Effective parameters used in Figs. 4–6.

Figure 4 5 6

Curve 1 2 3 1 2 3 1 2 3

ωeff 20.21 20.45 20.70 20.21 25.17 30.14 20.31 20.21 20.2
η/T e f

‖ 0.13 0.13 0.13 0.13 0.12 0.115 0.055 0.13 0.5
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FIG. 5. Real χ̄ ′
‖(ω) = Cun

‖ (0)χ ′
‖(ω)/χ‖ (a) and imaginary

χ̄ ′′
‖(ω) = Cun

‖ (0)χ ′′
‖(ω)/χ‖ (b) parts of the longitudinal component

of the susceptibility tensor vs ηω for ξ = 5, η/T‖ = 0.1 and various
values of inverse inertia parameter r [Eqs. (13) and (30)].

of successive approximations based on the linearization of
the ILLG equation [37], describes the main features of the
transverse complex susceptibility in the FMR and NR regions.
Moreover, the simplified Eq. (32) serves as a good approx-
imation for the longitudinal susceptibility in the NR region.
The exact solution is also useful for evaluating the accuracy
of various approximations.
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APPENDIX A: SOLUTION OF UNDAMPED
ILLG EQUATION

The vector Eq. (2) can be transformed to the system
of two scalar differential equations for the polar angle
ϑ (t ) [or for u‖(t ) = cos ϑ (t )] and for the azimuthal angle
ϕ(t ) [22,35,45,46],

du‖
dt ′ = ±√

�(u‖), (A1)

FIG. 6. Real χ̄ ′
‖(ω) = Cun

‖ (0)χ ′
‖(ω)/χ‖ (a) and imaginary

χ̄ ′′
‖(ω) = Cun

‖ (0)χ ′′
‖(ω)/χ‖ (b) parts of the longitudinal component

of the susceptibility tensor vs ηω for r = 20, ξ = 5 and various
values of longitudinal relaxation time η/T‖ [Eqs. (13) and (30)].

dϕ

dt ′ = −1

2

(
l + r

1 + u‖(t ′)
+ l − r

1 − u‖(t ′)

)
, (A2)

where

�(u‖) = (ξu‖ + P)(1 − u2
‖) + 2lru‖ − l2 − r2 (A3)

is the third-order polynomial, r = η/τ and t ′ = t/η. Equa-
tion (A3) also contains two first integrals,

l = η�Z = const, P = η2�2 − ξu‖ = const, (A4)

where �2 = (u̇ · u̇) + τ−2 and � = (�X ,�Y ,�Z ) =
[u̇ × u] + τ−1u. The sign of u̇‖(t ′) is determined by the
initial condition u̇‖(0) = −ϑ̇ (0) sin ϑ (0). It is known from
the theory of elliptic functions [38] that the solution of
Eq. (A1) with the initial condition u‖(0) = cos θ (0) can be
expressed in terms of the Jacobian doubly periodic function
sn(u|m) [39], viz.

u‖(t ′) = e1 − (e1 − e2)sn2(s|m ), (A5)

where

s = t ′

2

√
ξ (e1 − e3) + δ, m = e1 − e2

e1 − e3
, (A6)
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and e1, e2, and e3 are the real roots of the polynomial �(u‖),

e1 = 2p cos(�/3) − P/3ξ, (A7)

e2,3 = −2p cos [(� ± π )/3] − P/3ξ, (A8)

where

p =
√(

P

3ξ

)2

+ 2lr

3ξ
+ 1

3
,

� = arccos

[
1

p3

(
P

3ξ

(
1 − lr

ξ

)
−

(
P

3ξ

)3

− l2 + r2

2ξ

)]
.

The constant of integration δ is found from the equation

cos ϑ (0) = e1 − (e1 − e2)sn2(δ|m ) (A9)

and is given by

δ = sn−1(
√

[e1 − cos ϑ (0)]/(e1 − e2)|m ), (A10)

where x= sn−1(y|m) is the inverse of the Jacobian function
y = sn(x|m).

The parameter P lies in the interval [r2 − ξ,∞], whereas l
lies in the interval [l1, l2], which can be determined from the
following equation:

�(um) = − r2 − 2

3ξ
Plr − l2 + 2P

3

(
1 − P2

9ξ 2

)

+ 2

27ξ 2
(P2 + 6ξ lr + 3ξ 2)

3/2 = 0, (A11)

where

um = 1

3ξ
(
√

P2 + 6ξ lr + 3ξ 2 − P) (A12)

is the value of u at which the function φ(u) from Eq. (A3)
reaches a maximum in the interval [−1,1]. The standard solu-
tion of Eq. (A11) yields four roots, li, i = 1, 2, 3, 4 [35,47].
We must choose from the roots those satisfying Eq. (A11) and
yielding the values of l1 and l2.

Integration of Eq. (A2) and substitution of the result into

the equation u⊥(t ′) =
√

1−u2
‖(t ′) cos ϕ(t ′) then yields

u⊥(t ′) =
⎧⎨
⎩(

1 − e2
1

) ∏
j=1,2

[1 − a jsn2(s|m )]

⎫⎬
⎭

1/2

× cos

⎧⎨
⎩ϕ(0) +

∑
j=1,2

b j{�[a j, am(s, m)|m]

−�[aj, am(δ, m)|m]}
⎫⎬
⎭, (A13)

where a1,2 = e1−e2
e1±1 , b1,2 = − l±r

(1±e1 )
√

ξ (e1−e3 )
, and s is defined

by Eq. (A6). Here �(a, φ, m) is the incomplete elliptic inte-
gral of the third kind [39], a1 and b1 correspond to the sign
“+,” and 0 < a1 < 1, −∞ < a2 < 0.

APPENDIX B: JACOBIAN OF THE TRANSFORMATION

We first use the following transformation: {ϑ0, ω
0
x , ω

0
y } →

{u, P, l}, which is given by the following equations:

u0 = cos ϑ0, (B1)

l = r cos ϑ0 − ηω0
y sin ϑ0, (B2)

P = (
ηω0

x

)2 + (
ηω0

y

)2 + r2 − ξ cos ϑ0. (B3)

The Jacobian of this transformation is

J =
∣∣∣∣∣
(
∂ϑ0, ∂ω0

y , ∂ω0
x

)
(∂u0, ∂l, ∂P)

∣∣∣∣∣ =

∣∣∣∣∣∣∣
∂u0ϑ0 0 0

∂u0ω
0
y ∂lω

0
y 0

∂u0ω
0
x ∂lω

0
x ∂Pω0

x

∣∣∣∣∣∣∣
= ∣∣∂u0ϑ0 ∂lω

0
y ∂Pω0

x

∣∣. (B4)

We have from Eqs. (B1)–(B3)

∂u0ϑ0 = − 1√
1 − u2

0

, (B5)

∂lω
0
y = − 1

η

√
1 − u2

0

, (B6)

∂Pω0
x =

√
1 − u2

0

2η
√

�(u0)
. (B7)

By substituting Eqs. (B5)–(B7) into Eq. (B4) we obtain

J
√

1 − u2
0 = 1

2η2
√

�(u0)
. (B8)

Next, by considering integration over u0 as an internal
integral (at given P and l), we apply the substitution u0 =
e1 − (e1 − e2)sn2(δ|m) [see Eq. (A5)]. Taking into account
that

du0 = ∂u0

∂δ
dδ = 2√

ξ (e1 − e3)

∂u‖
∂t ′

∣∣∣∣
t ′=0

dδ= 2
√

�(u0)√
ξ (e1 − e3)

dδ,

(B9)

we obtain Eq. (8).
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