
PHYSICAL REVIEW B 107, 174423 (2023)

Low-frequency spin dynamics of the quasi-two-dimensional S= 1
2 antiferromagnet BaCdVO(PO4)2
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A quasi-two-dimensional quantum magnet with competing ferro- and antiferromagnetic exchange interac-
tions, BaCdVO(PO4)2, is studied using the magnetic resonance technique in a wide frequency range. The
magnetic resonance spectra of the ordered phase confirm the collinear antiferromagnetic spin structure oriented
along the a axis. The frequency-field diagram of antiferromagnetic resonance demonstrates two low-frequency
excitation branches with different energy gaps, indicating a biaxial nature of anisotropy. We observe a critical
softening of the longitudinal resonance mode in a field of 3.8 T, which is the lower boundary of a previously
proposed presaturation phase positioned below the saturation field of 6.5 T. An interpretation of the presaturation
phase as a state with variable magnetization of spin-vacancy defects is proposed. It may be considered an
alternative to the spin-nematic phase initially supposed.
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I. INTRODUCTION

Frustrated spin systems attract interest because their low-
temperature properties are strongly influenced by quantum
fluctuations. The special type of frustration provided by com-
peting ferro- and antiferromagnetic interactions may lead to
the formation of the novel nematic spin ordering near the
saturation field, as found in numerical and analytical calcu-
lations [1–6]. This nematic ordering spontaneously breaks
spin-rotational symmetry but conserves time-reversal symme-
try [7]. The nematic state has no long-range order of spin
components; there is long-range order of spin-spin correla-
tions. The competing ferro- and antiferromagnetic exchanges
are known to be present in, e.g., zigzag spin chains like that of
LiCuVO4 [8] and square lattices with ferromagnetic nearest-
neighbor exchange and antiferromagnetic diagonal exchange
as in crystals of vanadium phosphates [9].

Recent papers [10–13] considered the quasi-two-
dimensional (quasi-2D) S = 1

2 vanadium-phosphate magnet
with competing interactions BaCdVO(PO4)2 as a candidate
for the realization of the nematic phase before saturation.
Indeed, experiments detected an additional phase transition
before saturation. This novel presaturation phase was
presumed to be a quantum spin nematic state as “it is fully
consistent with the expectations for a quantum bond-nematic
state” [11].

A recent theoretical work [14], however, predicted that the
nematic phase should occupy only a very narrow field range
near the saturation field, contrary to the observed presaturation
phase extending to an interval of about 30% of the saturation
field.

In the present work we perform an electron spin resonance
(ESR) investigation of BaCdVO(PO4)2 in both antiferromag-
netically ordered and high-field phases, searching for changes
in excitation spectra at these novel phase transitions and look-
ing for spin-resonance modes of the nematic phase. However,
we did not find new magnetic resonance signals in the field
range between the collapse of the antiferromagnetic order and

full saturation. On the basis of these observations we propose
an alternative scenario for the presaturation phase.

II. CRYSTAL STRUCTURE AND MAGNETIC
PROPERTIES OF BaCdVO(PO4)2

Crystals of BaCdVO(PO4)2 have a layered structure with
V4+ magnetic ions (S = 1

2 ). The lattice is very close to a
quadratic one but has a weak orthorhombic distortion. At
room temperature BaCdVO(PO4)2 belongs to the orthorhom-
bic Pbca space group with lattice parameters a = 8.84 Å,
b = 8.92 Å, and c = 19.37 Å and V4+ layers parallel to the
(ab) planes [10]. There are eight magnetic ions in a crys-
tallographic unit cell, four ions in each layer within a cell.
Below the structural transition at T = 250 K the crystal
symmetry is lowered to the orthorhombic Pca21 space group
[11]. Lattice parameters of the low-temperature phase are
a = 8.8621 Å, b = 8.8911 Å, and c = 18.8581 Å. In contrast
to the high-temperature phase with equivalent V4+ ions there
are two inequivalent V4+ positions in the low-temperature
phase [11]. This results in the alternation of the exchange
interaction network, which enables an exotic four-sublattice
up-up-down-down (UUDD) antiferromagnetic structure of a
collinear type [11]. This structure was, indeed, observed in
Ref. [12]. The on-site ordered moment is directed along the
a axis and strongly reduced to 0.34μB [12]. The magnetic
unit cell is doubled along the b direction with respect to the
crystallographic cell.

A simple two-exchange (J1 − J2) model was suggested to
interpret experimental data at the first stage [15,16]. Here J1 is
the nearest-neighbor ferromagnetic exchange along the side of
the square, and J2 is the next-nearest-neighbor antiferromag-
netic coupling along the diagonal of the square [see Fig. 1(a)].
Exchange constants J1 = −3.60 K and J2 = 3.25 K were
estimated with the use of powder samples from the analysis
of the susceptibility data [15]. This model is a ground for
the expectation of a nematic phase just below the saturation
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FIG. 1. Schematic representation of exchange interactions in
V4+ layers of BaCdVO(PO4)2. (a) Simple J1 − J2 square-lattice
model. (b) Model with alternation of exchange couplings along the
crystallographic b axis.

[2,6], but it does not directly correspond to the observed four-
sublattice UUDD structure.

A more realistic model of the exchange network was used
to interpret inelastic neutron scattering data [11,13]. This
model includes eight different exchange paths and is compat-
ible with both the real crystal symmetry and four-sublattice
ordering. The spin-wave spectra in the fully saturated phase
were well reproduced using the following exchange pa-
rameters: Ja

1 = −1.6 K, J ′a
1 = −7.1 K, Jb

1 = −3.6 K, J ′b
1 =

−5.4 K, J+
2 = 4.5 K, J−

2 = 4.2 K, J ′+
2 = 0.5 K, and J ′−

2 =
2.1 K [11,13].

The long-range magnetic order with a doubled period
of a unit cell [propagation vector (0, 1/2, 0)] occurs at the
Néel temperature TN = 1.05 K [10,15]. The neutron scattering
measurements [11,12] show that this magnetic order disap-
pears in a magnetic field Hc1 = 4 T (at the temperature of
0.1 K). Magnetic structures with different propagation vec-
tors were not found in higher fields. At the same time the
magnetization saturation occurs only in a field Hc2 = 6.5 T,
although the total change in the magnetic moment between
Hc1 and Hc2 is only 2.5% [11]. Thus, an unusual feature of
BaCdVO(PO4)2 is the disappearance of the antiferromagnetic
order before full saturation. Specific heat and magnetocaloric
measurements also demonstrate phase transitions for H ‖ a, c
at Hc1, then at an intermediate field H∗, and, finally, at Hc2

[11].

III. EXPERIMENTAL DETAILS

Single-crystalline samples of BaCdVO(PO4)2 investigated
in our experiments are from the same batch as that used in pre-
vious thermodynamic and neutron scattering measurements
[10,11]. They have the form of rectangular plates with the c
axis normal to the plane.

Resonance measurements were carried out with the use of
a homemade transmission-type ESR spectrometer equipped
with a superconducting 12 T magnet and 3He cryostat pro-
viding temperatures down to 0.45 K. Microwave units with
cylindrical, rectangular, and cut-ring copper resonators were
used to record the resonance absorption of microwaves. To
cover a wide frequency range of 2–150 GHz we used Gunn

FIG. 2. Temperature evolution of the ESR line for H ‖ a at f =
4.63 GHz. The star marks the paramagnetic resonance absorption.
The DPPH resonance peak is a g = 2.00 marker. The temperature-
independent decrease of the transmitted signal below 0.12 T is an
apparatus effect.

diodes, back-wave oscillators, and klystrons as microwave
sources. Crystal samples were mounted inside resonators at
the maximum of the microwave magnetic field, polarized
perpendicular to the external field. If necessary, we used par-
allel polarization for records of longitudinal modes. A small
amount of 2,2-diphenyl-1-picrylhydrazyl (DPPH) was placed
near the sample as a standard g = 2.00 marker. For experi-
ments at different frequencies we used samples with masses
from 0.5 to 12 mg. The size of a sample was chosen to be
compatible with a resonator volume and Q factor and to be
small enough to avoid parasitic electrodynamic resonances in
the sample. There was no difference in resonance fields for
different samples used.

Records of ESR absorption lines were made as field de-
pendences of microwave power passed through the resonator
during a sweep of the external magnetic field. Modulation of
the microwave power and lock-in measurement of the trans-
mitted signal were used for noise reduction.

IV. EXPERIMENTAL RESULTS

The temperature evolution of ESR lines for three principal
field orientations, H ‖ a, b, c, is presented in Figs. 2–4. At
temperatures above 2 K we observe a single ESR absorption
line. In the whole frequency range its resonance field corre-
sponds to a temperature-independent g tensor with principal
values ga = gb = 1.97 ± 0.01 and gc = 1.91 ± 0.01, which
are in agreement with susceptibility data in Ref. [10].

The absorption spectrum significantly changes after cross-
ing the transition temperature TN = 1.05 K. ESR lines
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FIG. 3. Top: temperature evolution of the ESR line for H ‖ b at
f = 20.62 GHz; the star marks the paramagnetic resonance absorp-
tion, and the solid square is at the low-temperature antiferromagnetic
resonance field. The DPPH resonance field is a g = 2.00 marker.
Bottom: temperature dependence of the ESR field.

measured at H ‖ b, c demonstrate broadening and shifting to
lower fields upon cooling (see Figs. 3 and 4). In contrast to
H ‖ b, c, for H ‖ a, two new ESR lines appear below TN , and
the low-frequency resonance fields are shifted towards higher
fields (see Fig. 2). The zero-temperature limit for resonance
positions is almost reached at around 0.5 K since the evolution
is already slow at this temperature. The corresponding temper-
ature dependence of the ESR field at H ‖ b is illustrated in the
bottom panel of Fig. 3.

Weak absorption, marked by stars in Figs. 2–10, continues
to be observable below TN at the paramagnetic resonance
field for all field orientations. The resonance field of this
absorption and its integral intensity were determined by fitting
the absorption curves with Lorentzians. The intensity of this
mode grows with cooling following Curie’s law 1/T , and
its position is temperature independent and corresponds to
a paramagnetic resonance field HPM = 2π h̄ f /(gαμB), where
f is the microwave frequency. Therefore, this resonance is
probably due to a small number of paramagnetic impurities or
defects in the crystal. The concentration of these defects may

FIG. 4. Temperature evolution of the ESR line for H ‖ c at f =
20.82 GHz. The star marks the paramagnetic resonance absorption.
The DPPH resonance field is a g = 2.00 marker.

be estimated from the integral intensity of the low-temperature
paramagnetic resonance lines presented in Fig. 4 to be about
0.03 of the total number of V4+ ions. The ESR signal of the
sample in the paramagnetic phase at a temperature of 8 K
was used as a reference for a known number of magnetic ions
obeying Curie’s law. The Curie-Weiss temperature is known
to be small in absolute value, �CW = −0.9 K [10].

Frequency-field diagrams together with examples of ESR
lines for different frequencies taken at 0.5 K for H ‖ a, b, c in
the low-field range are shown in Figs. 5–7. Resonance fields
were determined as fields of maximum microwave absorption;
they are marked on the panels with ESR lines in Figs. 5–9
by symbols. The error in the resonance field does not exceed
the size of a symbol. The same symbols are used in the
frequency-field diagrams in Figs. 5–9; their size exceeds the
error in resonance field.

All frequency-field diagrams show two modes of resonance
absorption with different zero-field energy gaps, �1 and �2

(�1 < �2). With increasing magnetic field applied parallel to
the a axis we observe a branch with the zero-field gap �2

initially rising and then demonstrating a vertical frequency
drop at Hsf = 0.46 T (spin-flop field according to Ref. [10]). A
branch with the zero-field gap �1 has a gradually falling fre-
quency which may be extrapolated to zero at Hsf . In the field
above Hsf we observe, again, the ascending branch starting
from zero frequency at Hsf , as shown by the frequency-field
dependence in Fig. 5.

For H ‖ c the �1 mode has a monotonically increasing
field dependence of the resonance frequency, while at H ‖ b
the �2 mode increases. At the same time, for H ‖ a and H ‖ b
we observe that the �1 mode, which has a constant frequency
in low field, begins to fall above 1.5 T and demonstrates
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FIG. 5. Top: the frequency-field diagram for H ‖ a. Solid sym-
bols correspond to T = 0.5 K; open symbols correspond to T = 4 K.
The dashed line corresponds to a paramagnetic resonance with ga =
1.97. Solid lines are theoretical curves (1) and (2). Bottom: examples
of ESR lines at H ‖ a, T = 0.5 K. Stars label modes of parasitic
paramagnetic absorption. Other solid symbols indicate the positions
of resonance modes marked in the frequency-field diagram.

complete softening at 3.8 T (see Figs. 8 and 9). This field
corresponds well to the value of Hc1 at T = 0.5 K. It is worth
noting that this softening was studied in a special experiment
with polarization of the microwave magnetic field along the
external field. This was necessary because the experimen-
tal polarization dependence of the absorption for this mode
shows the oscillating component of the magnetic moment
along the external field, while at a conventional ESR precess-
ing magnetization is perpendicular to the external field [17].

The top panel of Fig. 10 demonstrates the frequency-field
diagram obtained at 0.5 K for H ‖ c in the field range includ-

FIG. 6. Top: the frequency-field diagram for H ‖ b. Solid sym-
bols correspond to T = 0.5 K; open symbols correspond to T =
4 K. The dashed line corresponds to a paramagnetic resonance with
gb = 1.97. Solid lines are theoretical curves (3). Bottom: examples
of ESR lines measured for H ‖ b at T = 0.5 K. Stars label parasitic
paramagnetic modes. Other solid symbols indicate the positions of
resonance modes marked in the frequency-field diagram.

ing the presaturation phase Hc1 < H < Hc2 for the upper part
of the frequency range. The bottom panel presents examples
of absorption curves. At fields Hc1 < H < Hc2 only a single
resonance mode with Larmor frequency was observed.

V. DISCUSSION

The low-frequency dynamics of a collinear multisublattice
antiferromagnet may be described in a general form by the
macroscopic theory in Ref. [18]. It considers, in particular,
an arbitrary collinear antiferromagnetic structure with any
number of sublattices and is suitable for the four-sublattice
case of BaCdVO(PO4)2. This theory is, however, restricted
to low-frequency dynamics with frequencies far below the ex-
change range and to fields far below saturation, where the spin
structure is not strongly distorted by the magnetic field. This
approach results in the same spectra of spin oscillations that
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FIG. 7. Top: the frequency-field diagram for H ‖ c. Solid sym-
bols correspond to T = 0.5 K; open symbols correspond to
T = 2 − 4 K. The dashed line corresponds to a paramagnetic reso-
nance with gc = 1.91. Solid lines are theoretical curves (4). Bottom:
examples of ESR lines measured for H ‖ c at T = 0.5 K. Stars
label parasitic paramagnetic modes. Other solid symbols indicate the
positions of resonance modes marked in the frequency-field diagram.

were obtained using the mean-field theory for a well-known
particular case of a two-sublattice collinear antiferromagnet
(see, e.g., Ref. [19]). However, one should note that the high-
frequency modes of the exchange-frequency range are not
suitable for calculating by macroscopic theory [18]. Thus,
macroscopic theory results in only two of four expected reso-
nance modes of the UUDD structure.

For a collinear antiferromagnet with a biaxial type of
anisotropy the macroscopic approach was developed in, e.g.,
[20]. For magnetic field applied along the a axis, below the
spin-flop transition field Hsf , the macroscopic theory gives

f 2
1,2 = (γaH )2 + �2

1 + �2
2

2

∓
√

2
(
�2

1 + �2
2

)
(γaH )2 +

(
�2

2 − �2
1

)2

4
, (1)

FIG. 8. Top: the frequency-field diagram for H ‖ a in a wide
magnetic field range. Solid symbols correspond to T = 0.5 K; open
symbols correspond to T = 4 K. The dashed line corresponds to a
paramagnetic resonance with ga = 1.97. Solid lines are theoretical
curves (1) and (2). The dotted line is a guide to the eye. Bottom: ESR
lines for H ‖ a at T = 0.5 K within the subgap frequency range.
Solid symbols indicate positions of the soft mode marked in the
frequency-field diagram.

where γa = gaμB/2π h̄ and �1,2 are the energy gaps ex-
pressed in terms of macroscopic anisotropy constants and
macroscopic susceptibility. The spin-flop transition field is
expressed as Hsf = �1/γa.

Above the spin-flop transition field the frequencies are
given by

f1 =
√

�2
2 − �2

1, f2 =
√

(γaH )2 − �2
1. (2)

For H ‖ b the macroscopic theory (see, e.g., [20]) gives

f1 = �1, f2 =
√

(γbH )2 + �2
2, (3)

whereas for H ‖ c–

f1 =
√

(γcH )2 + �2
1, f2 = �2, (4)

where γb = gbμB/2π h̄ and γc = gcμB/2π h̄.
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FIG. 9. Top: the frequency-field diagram for H ‖ b in a wide
magnetic field range. Solid symbols correspond to T = 0.5 K; open
symbols correspond to T = 4 K. The dashed line represents the
paramagnetic resonance with gb = 1.97, Solid lines are theoretical
curves (3). The dotted line is plotted according to relation (5) with
�0 = 12.8 GHz and Hsat = 3.81 T. Error bars on the lower branch
correspond to the width at the half height for resonance lines pre-
sented in the bottom panel. Bottom: ESR lines measured for H ‖ b
at T = 0.5 K within the subgap frequency range. Solid symbols
indicate positions of the soft mode marked in the frequency-field
diagram.

Here we empirically use the magnetic field terms with the
anisotropic factors γα instead of the isotropic γ in the initial
theories [18,19]. This empiric change in parameters results in
a 1.5% correction of the resonance frequency at H ‖ b, c and
a 4% correction at H ‖ a.

The problem of the g factor anisotropy for antiferromag-
netic resonance frequencies was recently studied using the
spin-wave formalism [21]. In a related case, this consideration
justifies the use of the values of ga, gb, and gc instead of the
isotropic value g = 2 for the symmetric orientations of the
external field.

By fitting the experimental frequency-field dependences
for H ‖ b and H ‖ c with relations (3) and (4) in the field

FIG. 10. Top: the frequency-field diagram for H ‖ c within the
wide frequency and magnetic field range. Solid symbols correspond
to T = 0.5 K; open symbols correspond to T = 2–4 K. The dashed
line represents the paramagnetic resonance with gc = 1.91. Solid
lines are theoretical curves (4). Bottom: examples of ESR lines mea-
sured for H ‖ c at T = 0.5 K. Solid symbols indicate the positions
of resonance modes marked in the frequency-field diagram.

range below 1.5 T we obtain the values of zero-field gaps
�1 = 12.8 ± 0.5 GHz and �2 = 17.3 ± 0.5 GHz. Results of
the fitting are shown in Figs. 6 and 7. The frequency-field
dependence calculated for H ‖ a according to Eqs. (1) and
(2) is plotted in the top panel of Fig. 5. The gα values were
measured by paramagnetic resonance measurements at high
temperature. Both rising and falling branches as well as a
change in the spectrum at the spin-flop transition correspond
well to the theoretical predictions.

Thus, the low-frequency, low-field part of the spectrum
of magnetic resonance is fully consistent with the low-
temperature dynamics of a collinear antiferromagnet with
biaxial anisotropy [19,20]. It allows us to identify the a axis as
an easy axis because a characteristic vertical drop in the fre-
quency indicates a spin-flop transition. The b axis is identified
as a hard axis of the spin ordering because here we observe
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an ascending branch starting at the larger zero-field gap �2,
in accordance with theory.

At a further increase of field the agreement with macro-
scopic theory naturally gets worse (see Figs. 8 and 9) because
the exchange spin structure becomes strongly distorted by the
magnetic field. The frequency of a resonance mode which is
approximately constant below a field of 1 T becomes smaller
and finally drops to zero at a magnetic field of 3.8 T. In
a conventional two-sublattice collinear antiferromagnet this
mode approaches zero frequency exactly at the field of par-
allel orientation of antiferromagnetic sublattices, i.e., at the
disappearance of the antiferromagnetic order parameter for
a two-sublattice model [22]. The result of this calculation
may be parametrized in the form given in Ref. [20] (see also
Ref. [21]):

f = �0

√
1 −

(
H

Hsat

)2

. (5)

This frequency-field dependence is presented in the top
panel of Fig. 9 by the dotted curve without fitting parameters.
The value �0 = 12.8 GHz is taken from the fit of the low-field
data presented in Figs. 6 and 7. Here we take for Hsat the value
of Hc1 = 3.81 T measured for T = 0.5 K in Ref. [11].

Our measurements show that for H ‖ b and H ‖ a the an-
tiferromagnetic mode with the zero-field gap �1 reaches zero
frequency at Hc1. In addition, in the field interval between Hc1

and Hc2 there are no resonances between the lowest frequency
of our measurements (1.95 GHz) and the paramagnetic reso-
nance frequency fPM = gbμBH/2π h̄.

To interpret these results we should compare the scenarios
for an immediate transition from an antiferromagnetic phase
to the saturated phase and a transition to a presaturation
nematic phase. At the immediate transition from the antiferro-
magnetic phase to saturated phase, the frequency of the lowest
mode reaches zero, and the mode disappears. This scenario
is confirmed by the mentioned mean-field calculation for a
two-sublattice collinear antiferromagnet [22], as well as by
the spin-wave calculation and experiment in Ref. [21]. Most
likely, the four-sublattice collinear system of BaCdVO(PO4)2

will also follow this way, taking into account that the low-
field evolution coincides perfectly with two-sublattice model.
This scenario, in which the saturation field is Hc1 = 3.8 T, is
illustrated in Fig. 11 by solid line 1. If the saturation field is
Hc2 = 6.5 T, this kind of evolution should follow line 4. In
principle, there may be a nonzero frequency at the saturation
field (not presented in Fig. 11). Anyway, this mode should dis-
appear above the saturation field because a quasi-Goldstone
mode, occurring at spontaneously broken symmetry, disap-
pears when high symmetry is restored. The last conclusion
is illustrated, e.g., by a spin-wave calculation of the resonance
frequencies of a saturated system with several different an-
tiferromagnetic exchange bonds and four magnetic ions in a
unit cell of Cs2CuCl4 [23]: there are only a Larmor mode and
a high-frequency mode of the exchange frequency.

The theory of a spin-nematic state [7] predicts that the
macroscopic properties of the spin nematic are the same as
those of a conventional antiferromagnet. The macroscopic
description of the low-frequency long-wave spin dynamics
of the spin nematic coincides with that of a conventional

FIG. 11. Possible scenarios for the softening of the spin-flip
mode at H ‖ b. All curves represent qualitative behavior of the reso-
nance mode in the frequency-field diagram. Curve 1 is plotted under
the assumption of Hsat = Hc1, without the formation of a nematic
phase. Curve 2 is plotted under the assumption of the formation
of a spin-nematic phase between Hc1 and Hc2 with Hsat = Hc2; the
nematic correlations are supposed to be conserved in the antiferro-
magnetic phase. Curve 3 illustrates the transition to a nematic phase
with a correlator which is absent in the antiferromagnetic phase.
Curve 4 is plotted under the assumption of antiferromagnetic order-
ing of spins until Hsat = Hc2. The frequency of the spin-flip mode
detected experimentally at H ‖ b and T = 0.5 K is marked by solid
circles. Curve 2′ corresponds to a nematic phase with a magnetic
resonance frequency below the experimental frequency range.

antiferromagnet with the same type of anisotropy. As a result,
the magnetic resonance spectra of a spin nematic should be
similar to that of an antiferromagnet, differing only by the
values of the numerical parameters, i.e., of the zero-field gaps.
This general conclusion in Ref. [7] is confirmed by immediate
calculations of excitation frequencies for a nematic state in
a J1 − J2 model [24] and for the extended model shown in
Fig. 1(b) [25]. Parameters were adopted for BaCdVO(PO4)2.
These calculations result in two branches of spin excitations.
In an isotropic exchange approximation the first branch has
a Larmor frequency at q = 0, while the second longitudinal
mode is a Goldstone-type oscillation that is gapless at q = 0
and has a linear dispersion. Naturally, it should acquire a gap
under the action of anisotropy. Thus, the nematic spectrum
was shown to be analogous to the spectrum of an antiferro-
magnet on the same lattice. One should note that the nematic
order parameter Qαβ

i j should be nonzero also in the antiferro-
magnetic phase. For example, a simple nematic correlator [7]

Qαβ
i j = 〈

Sα
i Sβ

j

〉 − 1
3δαβ〈SiSj〉, (6)

with i and j indexing lattice sites and α and β being coordinate
axes, exists for a two-sublattice antiferromagnet.

Let us discuss the anticipated behavior of the resonance
frequency of the lowest mode at the proposed transition from
an antiferromagnetic phase to a nematic phase. The identity of
the macroscopic description of magnetic resonance in nematic
and antiferromagnet states implies that a quasi-Goldstone
mode should exist in both phases. That is why, if a nematic
exists, we should see either conservation of nonzero frequency
at the crossing of the critical field Hc1 (line 2 in Fig. 11)
or the vanishing and restoration of the frequency (line 3).
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Nevertheless, experimentally, we observe the above scenario
presented by line 1. This means that we see no traces of a
nematic phase between Hc1 and Hc2.

Our observations correspond to a conventional immedi-
ate transition from an antiferromagnetic phase to a saturated
phase in a field Hc1. The nematic phase is consistent with
our observations only if the resonance frequency of its quasi-
Goldstone mode is lower than the limit of our experimental
range, 1.92 GHz, as presented by line 2′ in Fig. 11.

A possible reason for the absence of the nematic phase may
be, e.g., anisotropy. Anisotropy may reduce fluctuations and
thus make a long-range antiferromagnetic order preferable to
a nematic one. The anisotropy was omitted in the theoretical
analysis of a nematic phase [2,14,24,25]. The observation of
zero-field gaps in the antiferromagnetic resonance spectrum
with significant values (�1 = 0.61 K, �2 = 0.82 K) indicates
essential anisotropy. A crude estimation of the parameter D
of the anisotropy energy may be obtained via the mean-field
relation

� �
√

DJ〈S〉, (7)

where J is the effective exchange interaction (we take J = 5 K
as a value for antiferromagnetic exchanges J2± and J ′2±) and
〈S〉 = 0.17 according to Ref. [12]. The estimation gives D � 5
K; this large value does not correspond to the usual condition
for the validity of formula (7), D 
 J . Nevertheless, this defi-
nitely indicates that the anisotropy is large and may influence
the ground state, preventing the formation of a nematic phase.

An alternative to the spin-nematic hypothesis for incom-
plete saturation between Hc1 and Hc2 may presumably be
associated with a small number of defects, e.g., spin vacan-
cies. The magnetic moments in the vicinity of a spin vacancy
may not be saturated in high fields and may, in principle,
provide the peculiarities in specific heat and magnetocaloric
measurements observed in Refs. [10,11,13]. For this scenario
the true saturation field of a pure sample without defects
should be Hc1, at which softening of the �1 mode is ex-
pected. This hypothesis is consistent with our observations
as well as with a rather tiny value of the magnetization
growth (about 2.5% [11]) in the rather wide interval between
Hc1 and Hc2. The problem of magnetic saturation of defects
of the antiferromagnetic structure with competing exchanges
was highlighted in Ref. [8]. In this work the possibility of
the formation of a spin-nematic state in magnetic field near
saturation was discussed for the frustrated spin-chain anti-
ferromagnet LiCuVO4. The authors concluded that defects
result in a higher saturation field relative to the saturation field

of a pure sample and may lead to additional features in the
magnetization curve.

In summary, two scenarios are possible according to our
observations. Most likely, there is a regular saturation of the
antiferromagnetic spin structure in a field of 3.8 T without
realization of the nematic phase. At the same time we cannot
fully exclude the case of a nematic state with an unexpectedly
low resonance mode in the field range between Hc1 and Hc2.

It is worth noting that the present observation of the soft-
ening of the lowest antiferromagnetic resonance mode does
not have exactly the same sense as the observation of the van-
ishing of the magnetic Bragg peak in neutron scattering [11].
The Bragg peak should vanish in the case of the transition
both to a nematic phase and to a saturated phase, while the
antiferromagnetic resonance frequency should vanish only at
the transition to the saturated phase. Thus, the observed simul-
taneous softening of the antiferromagnetic resonance mode
and vanishing of a neutron Bragg peak means that the field
Hc1 is most likely the field of a transition to a saturated phase.

VI. CONCLUSIONS

A detailed ESR study of the frustrated quantum magnet
BaCdVO(PO4)2 was performed. We observed low-frequency
spin-resonance modes with two distinct zero-field gaps. The
measured spectra were quantitatively described by a model
including the biaxial anisotropy. Approaching the saturation
field, we uncovered the softening of one of these modes. It
occurs exactly at the vanishing of antiferromagnetic order, as
observed in Refs. [11,12]. The interpretation of this presatu-
ration phase as the spin nematic one reported in Refs. [10–13]
is inconsistent with the vanishing of the magnetic resonance
frequency before saturation and may be argued by the alterna-
tive model including defects. The observed energy gaps �1 =
12.8 GHz and �2 = 17.3 GHz indicate a significant anisotropy
energy of about 1 K per spin which should be involved in
the theoretical analysis of the possible nematic phase. The
presaturation nematic phase may not be excluded if it has an
extremely low energy gap.
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