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Magnetic phase diagram in the three-dimensional triangular-lattice antiferromagnet Sr3CoTa2O9
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We report the results of low-temperature magnetization and specific heat measurements of Sr3CoTa2O9

powder, in which Co2+ ions with effective spin-1/2 form a uniform triangular lattice in the ab plane. It was
found that Sr3CoTa2O9 undergoes successive antiferromagnetic transitions at TN1 = 0.97 K and TN2 = 0.79 K at
zero magnetic field. As the magnetic field increases, both TN1 and TN2 decrease monotonically. The obtained
magnetic field vs temperature phase diagram together with a sharp magnetization anomaly at a saturation
field of μ0Hs = 2.3 T indicates that Sr3CoTa2O9 is described as a spin-1/2 three-dimensional triangular-lattice
antiferromagnet with a weak easy-axis anisotropy. We discuss the characteristics of the magnetic phase diagram,
which approximates the phase diagram for the magnetic field perpendicular to the c axis.
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I. INTRODUCTION

Triangular-lattice antiferromagnets (TLAFs) are one of the
most widely investigated spin models. TLAFs show a variety
of phase transitions in magnetic fields depending on mag-
netic anisotropy, spatial anisotropy, and interlayer exchange
interaction [1–3]. Two-dimensional (2D) classical Heisenberg
TLAFs with the easy-axis anisotropy display a magnetization
plateau at one-third of the saturation magnetization when a
magnetic field is applied along the easy axis [4]. The classical
magnetization plateau vanishes in the absence of anisotropy
at T = 0. For quantum spin, such as spin-1/2, 2D Heisenberg
TLAFs exhibit a 1/3-magnetization-plateau without the help
of the easy-axis anisotropy, where the up-up-down (uud) spin
state is stabilized by quantum fluctuation in a finite magnetic
field range [5–15]. At finite temperatures, not only quantum
fluctuation but also thermal fluctuation stabilizes the uud state
so that the field range of the uud state increases with increas-
ing temperature [16–19].

The interlayer exchange interaction is crucial for the emer-
gence of quantum phases, including the 1/3-magnetization
plateau [20]. Real TLAF compounds have finite interlayer
exchange interactions. When the interlayer exchange inter-
action is ferromagnetic, the macroscopic quantum effect is
robust as observed in CsCuCl3 [21,22], in which the ferro-
magnetic interlayer exchange interaction is approximately six
times larger than the antiferromagnetic intralayer exchange
interaction [7,23,24]. When the interlayer exchange interac-
tion is antiferromagnetic and weak, a cascade of quantum
phase transitions occurs in magnetic fields as observed in
Cs2CuBr4 [25–27] and Ba3CoSb2O9 [28–34]. As the ratio
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of the interlayer exchange interaction to the intralayer ex-
change interaction increases, macroscopic quantum effects are
wiped out, and the system behaves as a classical TLAF [35].
However, the magnetic field vs temperature phase diagram
has not been sufficiently understood even in the case of a
classical TLAF, although a qualitative phase diagram was
discussed phenomenologically [36,37]. Thus it is worthwhile
investigating phase diagrams in TLAFs with various interlayer
exchange interactions.

In this paper, we report the magnetic phase diagram of
a spin-1/2 TLAF Sr3CoTa2O9, which has a trigonal struc-
ture with the space group P3̄m1 as shown in Fig. 1 [38,39].
The crystal structure is the same as those of Ba3CoNb2O9

[38,40] and Ba3CoTa2O9 [38,39]. Magnetic Co2+ ions with
effective spin-1/2 in an octahedral environment [41–43] form
a uniform triangular lattice parallel to the crystallographic ab
plane.

Recently, the magnetic properties of Ba3CoNb2O9 [44–46]
and Ba3CoTa2O9 [47,48] have been investigated by magneti-
zation and specific heat measurements, and neutron scattering
experiments. Both systems exhibit two-step antiferromagnetic
phase transitions at TN1 = 1.39 K and TN2 = 1.13 K for
Ba3CoNb2O9 [45], and TN1 = 0.70 K and TN2 = 0.57 K for
Ba3CoTa2O9 [48] owing to the weak easy-axis anisotropy.
The saturation fields were found to be μ0Hs = 4.0 T for
Ba3CoNb2O9 [44,45] and μ0Hs = 1.4–3.0 T for Ba3CoTa2O9

[47,48]. These saturation fields are much smaller than
μ0Hs � 32 T for Ba3CoSb2O9 [28,30], which approximates
the 2D spin-1/2 Heisenberg TLAF. This finding indicates
that the intralayer exchange interactions in Ba3CoNb2O9 and
Ba3CoTa2O9 are much smaller than that in Ba3CoSb2O9.

The distinct difference between the exchange interactions
in these systems can be ascribed to the filled outermost
orbitals of nonmagnetic pentavalent ions. Superexchange in-
teractions between neighboring spins in the same triangular

2469-9950/2023/107(17)/174419(11) 174419-1 ©2023 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.174419&domain=pdf&date_stamp=2023-05-12
https://doi.org/10.1103/PhysRevB.107.174419


NISHIZAWA, KURITA, TANAKA, AND GOTO PHYSICAL REVIEW B 107, 174419 (2023)

FIG. 1. (a) Schematic view of the crystal structure of
Sr3CoTa2O9 and related systems. Blue and green indicate single
CoO6 and TaO6 (NbO6) octahedra, respectively. Solid lines denote
the chemical unit cell. (b) Crystal structure viewed along the c axis.
Magnetic Co2+ ions form a uniform triangular lattice in the ab plane.

layer occur through the Co2+–O2−–O2− –Co2+ and Co2+–
O2−–B5+–O2−–Co2+ pathways. The superexchange through
the former pathway should be antiferromagnetic, whereas the
latter path leads to a ferromagnetic superexchange interaction
for B5+ = Nb5+ and Ta5+ with the filled outermost 4p and
5p orbitals owing to the Hund rule in these orbitals [45,49].
We consider that the superexchange interactions via these two
pathways are almost canceled in the case of B5+ = Nb5+ and
Ta5+, resulting in a weakly antiferromagnetic total exchange
interaction. On the other hand, for B5+ = Sb5+ with the filled
outermost 4d orbital, the superexchange interaction through
the Co2+–O2−–Sb5+–O2−–Co2+ pathway becomes antiferro-
magnetic owing to the Pauli principle, and the total exchange
interaction should be strongly antiferromagnetic [45,49]. In
this context, the exchange interaction in a triangular lattice
of Sr3CoTa2O9 is considered to be as small as those in
Ba3CoNb2O9 and Ba3CoTa2O9. However, the magnitudes of
the interlayer exchange interaction relative to the intralayer
exchange interaction in these three systems will be different.
To elucidate the change in the magnetic phase diagram arising
from the difference in the relative magnitude between the
intralayer and interlayer exchange interactions and between
the anisotropy term and the interlayer exchange interaction,
we investigated the low-temperature magnetic properties of
Sr3CoTa2O9 powder.
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FIG. 2. XRD pattern of Sr3CoTa2O9 measured at room tem-
perature. Experimental data, the results of Rietveld fitting, their
difference, and expected reflections are shown by the red symbols,
black line, blue line and vertical green bars, respectively.

II. EXPERIMENTAL DETAILS

A powder sample of Sr3CoTa2O9 was prepared by a
solid-state reaction in accordance with the chemical re-
action 3SrCO3 + CoO + Ta2O5 −→ Sr3CoTa2O9 + 3CO2 in
air. Reagent-grade materials were mixed at stoichiometric
ratios and calcined at 1000 ◦C in the air for one day. After
being pressed into a pellet, Sr3CoTa2O9 was sintered four
times at 1230, 1400, 1500, and 1600 ◦C for one day. With
increasing sintering temperature, the sample color changed
from yellowish-white to reddish-purple, and its quality was
improved [50].

The powder x-ray diffraction (XRD) measurement of
Sr3CoTa2O9 was conducted using a MiniFlex II diffractome-
ter (Rigaku) with Cu Kα radiation at room temperature. The
crystal structure of Sr3CoTa2O9 was refined by Rietveld anal-
ysis using the RIETAN-FP program [51].

Magnetization in the temperature range of 0.5 �T � 300 K
in magnetic fields up to 7 T was measured using a Mag-
netic Property Measurement System (MPMS–XL, Quantum
Design) equipped with an iHelium3 option (IQUANTUM).
Specific heat in the temperature range of 0.34 �T � 300 K
in magnetic fields up to 9 T was measured using a Physical
Property Measurement System (PPMS, Quantum Design) by
the relaxation method. Nuclear magnetic resonance (NMR)
measurements were performed on a powder sample using a
16 T superconducting magnet in the temperature range be-
tween 0.4 and 1.2 K.

III. RESULTS AND DISCUSSION

A. Crystal structure

Although the crystal structure of Sr3CoTa2O9 was re-
ported in Refs. [38,39], details of the structure parameters in
Sr3CoTa2O9 have not been reported. We refined the struc-
ture parameters by Rietveld analysis using RIETAN-FP [51].
The results of the XRD measurement of Sr3CoTa2O9 at
room temperature and the Rietveld analysis are shown in
Fig. 2. The analysis was based on the structural model
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TABLE I. Structure parameters of Sr3CoTa2O9 determined from
XRD measurements at room temperature. x, y, and z are the frac-
tional atomic coordinates and U is equivalent isotropic displacement
parameter.

Atom Site x y z U/Å2

Sr(1) 2d 1/3 2/3 0.6606(4) 0.0085(3)
Sr(2) 1a 0 0 0 0.0085(3)
Co 1b 0 0 1/2 0.0017(2)
Ta 2d 1/3 2/3 0.1755(3) 0.0017(2)
O(1) 3e 1/2 0 0 0.036(2)
O(2) 6i 0.165(1) 0.331(1) 0.321(2) 0.036(2)

Space group P3̄m1
a = 5.6439(2) Å, c = 6.9533(3) Å

Rwp = 7.7%, Re = 11.0%.

with the space group P3̄m1 as in Ba3CoNb2O9 [38,40] and
Ba3CoTa2O9 [38,39]. First, we chose the structure parameters
of Ba3CoTa2O9 [47] as the initial parameters of the Rietveld
analysis, setting the site occupancy to 1 for all atoms. The
structure parameters refined for the space group P3̄m1 using
the XRD data are summarized in Table I. The lattice constants
of Sr3CoTa2O9 are a = 5.6439(2) Å and c = 6.9533(3) Å,
which are smaller than a = 5.7737 Å and c = 7.0852 Å in
Ba3CoNb2O9 [40], and a = 5.7748 Å and c = 7.0908 Å in
Ba3CoTa2O9 [48], because the ionic radius of Sr2+ is smaller
than that of Ba2+. The CoO6 octahedron in Sr3CoTa2O9 dis-
plays a trigonal elongation along the c axis, which gives rise
to the weak easy-axis anisotropy [42].

B. Magnetic susceptibility and magnetization

Figure 3(a) shows the temperature dependence of magne-
tization divided by the field M/H in Sr3CoTa2O9 measured at
several magnetic fields of up to 2 T. No thermal hysteresis is
observed between the zero-field-cooled and field-cooled data.
For μ0H = 0.1 T, two bend anomalies indicative of magnetic
phase transitions are clearly observed at TN1 = 0.97 K and
TN2 = 0.79 K. We assign these transition temperatures to the
temperatures giving the peak of d(M/H )/dT , because these
temperatures coincide with the temperatures giving peaks of
the specific heat shown in the next section. With increas-
ing magnetic field, TN1 and TN2 shift to the low-temperature
side. The transition temperatures TN1 and TN2 obtained at
various magnetic fields are summarized in a magnetic field
vs temperature (H-T ) diagram shown in Fig. 4. Because
the magnetization anomalies at TN1 and TN2 become more
smeared with increasing magnetic field, there is a certain
error in determining these transition temperatures in magnetic
fields.

Figure 3(b) shows the raw magnetization M and its field
derivative dM/d (μ0H ) as functions of μ0H measured at
T = 0.5 and 1.6 K. The saturation anomaly observed at T =
1.6 K is indistinct owing to the finite temperature effect,
whereas that observed at T = 0.5 K is fairly sharp. The satu-
ration field expected at T = 0 K is estimated to be μ0Hs =
2.3 T from the inflection point of the dM/d (μ0H ) curve
at T = 0.5 K. This saturation field is of the same order of
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FIG. 3. (a) Temperature dependence of the magnetic suscepti-
bility M/H of Sr3CoTa2O9 powder measured at various magnetic
fields up to 2 T. Vertical arrows indicate the magnetic phase transition
temperatures TN1 and TN2. (b) Field dependence of raw magnetization
M (left) and its field derivative dM/d (μ0H ) (right) in Sr3CoTa2O9

powder measured at 0.5 and 1.6 K. The dashed line denotes the Van
Vleck paramagnetism. The vertical arrows indicate the critical field
Hc and saturation field Hs expected at T = 0 K.

magnitude as μ0Hs = 4.0 T for Ba3CoNb2O9 [44,45] and
μ0Hs = 1.4–3.0 T for Ba3CoTa2O9 [47,48], but much smaller
than μ0Hs � 32 T for Ba3CoSb2O9 [28,30]. The small
saturation field in Sr3CoTa2O9 demonstrates that its in-
tralayer exchange interaction is much smaller than that in
Ba3CoSb2O9. This distinct difference in intralayer exchange
interaction between Ta (Nb) and Sb systems can be ascribed to
the filled outermost orbitals of nonmagnetic pentavalent ions,
as mentioned in Sec. I.

Above the saturation field Hs, magnetization increases
linearly with increasing field because of the large temperature-
independent Van Vleck paramagnetism characteristic of the
Co2+ ion in the octahedral environment [43]. From the
magnetization slope above Hs, we evaluate the Van Vleck
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FIG. 4. H -T phase diagram for Sr3CoTa2O9 powder obtained
from the present magnetization and specific heat measurements.
Dashed curves are guides to the eye. The inset shows the spin config-
urations expected in the two ordered phases, I and II. Thick red and
blue arrows denote the spin configurations on the two neighboring
triangular layers parallel to the ab plane. Para means the paramag-
netic phase. The magnetic field is assumed to be perpendicular to the
c axis.

paramagnetic susceptibility to be χVV = 2.3 × 10−2 μB/

(Co2+T) = 1.3 × 10−2 emu/mol in Sr3CoTa2O9. By sub-
tracting the Van Vleck term, we obtain the saturation
magnetization to be Ms = 2.08 μB/Co2+, which gives an av-
erage g factor of 4.15. This g factor is significantly greater than
g = 3.0 in Ba3CoNb2O9 [45] and g = 3.1–3.6 in Ba3CoTa2O9

[47,48]. This indicates that the reduction in the orbital moment
of Co2+ due to the mixing of the p orbital of ligand O2−
is significantly small in Sr3CoTa2O9, because the average g
factor for three different field directions without the orbital
reduction is given by gavg ≈ 4.3 [41,42].

As seen from Fig. 3(b), the magnetization anomaly at
the saturation field Hs observed at T = 0.5 K is consid-
erably sharp despite the sample being in powder form. If
the g factor and/or exchange interaction is anisotropic, as
reported for many Co2+ compounds, the saturation field
depends strongly on the field direction. Consequently, the
magnetization anomaly at Hs for powder samples should be
smeared. The sharp magnetization anomaly at Hs observed
in Sr3CoTa2O9 demonstrates that both the g factor and the
exchange interaction are nearly isotropic, as in the cases of
Ba3CoSb2O9 [30] and Ba3CoNb2O9 [44,45].

The magnetic anisotropy in Sr3CoTa2O9 is deduced to be
of the easy-axis type because the observed two-step mag-
netic ordering is characteristic of TLAFs with the easy-axis
anisotropy [4]. The easy-axis anisotropy is also anticipated
from the trigonally elongated CoO6 octahedron, as shown
in Sec. III A [42]. If the interlayer exchange interaction is
ferromagnetic, the 1/3-plateau will emerge even in classi-
cal TLAFs when a magnetic field is applied parallel to the
easy axis [4]. The classical 1/3-magnetization plateau has
been observed in the quasi-2D large spin TLAFs GdPd2Al3

[52,53] and Rb4Mn (MoO4)3 [54]. As shown in Fig. 3(b),
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FIG. 5. (a) Temperature dependence of magnetic specific heat
divided by temperature Cmag/T in Sr3CoTa2O9 measured at zero
magnetic field. Magnetic phase transitions are observed at TN1 =
0.97 K and TN2 = 0.79 K, as indicated by vertical arrows. The
solid curve represents the magnetic entropy Smag in units of R ln 2.
(b) Cmag/T as a function of T 2. The solid line is a linear fit without a
constant term.

the magnetization curve displays no magnetization plateau at
one-third of the saturation magnetization. This result indicates
that the interlayer exchange interaction is antiferromagnetic
and of the same order of magnitude as the intralayer exchange
interaction because the 1/3-quantum-plateau emerges only for
TLAFs with a relatively small interlayer exchange interaction
[20,33,35].

C. Specific heat

Figure 5(a) shows the temperature dependence of mag-
netic specific heat in Sr3CoTa2O9 divided by the temperature
Cmag/T measured at zero magnetic field. The lattice contribu-
tion of the specific heat Clatt was evaluated by fitting a model
function composed of the linear combination of the Debye
model and Einstein mode to the experimental data between
10 and 32 K, in which range the magnetic contribution is
negligible. With decreasing temperature, Cmag/T increases
gradually below 5 K and exhibits two pronounced peaks
at TN1 = 0.97 K and TN2 = 0.79 K indicative of two-step
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and 9 T for T < 12 K. Solid curves in (b) represent the Schottky
specific heats calculated for μ0H = 3 and 9 T.

magnetic phase transitions. These transition temperatures are
consistent with those identified by the magnetization measure-
ments shown in Fig. 3(a).

We evaluate the magnetic entropy Smag of Sr3CoTa2O9 by
integrating the measured Cmag/T with respect to T below
10 K. With increasing temperature, Smag increases gradually
and reaches almost R ln 2 at 10 K. This demonstrates that an
effective spin–1/2 description is indeed valid for Sr3CoTa2O9

in the low-temperature range of T < 10 K. Below TN2, the
magnetic specific heat is proportional to T 3 with no residual
term as shown in Fig. 5(b), which indicates that spin-wave
dispersions are 3D in the ordered state.

Figure 6(a) shows Cmag/T vs T measured at magnetic
fields of up to 3 T. As the magnetic field increases, the
two peaks corresponding to TN1 and TN2 shift to the low-
temperature side and broaden out. It is considered that the
broadening of peaks in the present powder sample is due to
the fact that the transition temperature depends on the field
direction and its distribution becomes wider with increas-
ing magnetic field. Specific heat anomalies associated with
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around the zero field.

TN1 and TN2 are no longer detectable for μ0H > 2.3 T and
μ0H > 1.8 T, respectively. The transition data are summa-
rized in Fig. 4. The transition points determined from the
temperature dependences of magnetization and specific heat
are consistent with each other.

At μ0H = 3 and 9 T, which are higher than the satura-
tion field of μ0Hs = 2.3 T, single broad peaks are observed
at around Tmax = 1.2 and 6.6 K, respectively, as shown in
Fig. 6(b). The broad peak at Tmax shifts to higher tempera-
tures with increasing magnetic field, whereas the peak height
monotonically decreases. This behavior is characteristic of
the Schottky-specific heat attributable to Zeeman splitting.
The Schottky specific heat of a spin-1/2 system without the
exchange interaction between spins is expressed by

CSch = NkB

(
gμBH

2kBT

)2 1

cosh2(gμBH/2kBT )
, (1)

where N is the number of atoms. Solid lines in Fig. 6(b) are
Schottky-specific heats calculated for μ0H = 3 and 9 T with
g = 4.15. The calculated Tmax is higher than the experimental
Tmax, and the calculated peak height at Tmax is smaller than
the experimental peak height. This indicates that the gap in
the sample is smaller than gμBH because of the exchange
interactions between spins, which produce a gapless ordered
state until saturation. We see that the agreement between the
experimental Cmag and CSch for μ0H = 9 T, which is consider-
ably higher than the saturation field of μ0Hs = 2.3 T, is much
better than that for μ0H = 3 T, which is close to μ0Hs.

D. NMR

Figure 7 shows the 59Co-NMR field-swept spectra ob-
served under the low magnetic field region below 2.5 T,
measured with the resonance frequency ω/2π = 379 MHz.
The NMR spectra show a horn-shaped powder pattern with
a broad tail toward higher fields. The horn edge locates at
0.2 T, which is almost temperature independent. This type of
spectral shape is known to appear for the powder sample in
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the magnetically ordered state, especially when the hyperfine
field is close to ω/γ , where γ is the gyromagnetic ratio of
59Co nucleus [55]. If this condition is assumed to be fulfilled
in the present case, we can roughly estimate the hyperfine field
at the Co site to be 38(1) T, which is the quite typical value for
Co-based oxide antiferromagnets, supporting the assumption
[56,57]. We consider that the observed horn-shaped pattern
is contributed from the central transition of I = 7/2 59Co
nuclei with an electric quadrupole. The signal from the other
transitions may be broadened due to the electric quadrupole
interaction and become a background in a wide field region.
The finite signal amplitude in the field region lower than 0.2 T
is explained by this contribution. We also refer to the finite sig-
nal amplitude above TN1, where the system is paramagnetic.
This is simply due to the short-range magnetic order, possibly
appearing slightly above TN1. Actually, the anomaly in Cmag

starts from a temperature higher than TN1 by 0.1 K, as shown
in Fig. 6(a).

To extract information on the temperature dependence
from the observed data, we focus attention on two points in the
spectra in Fig. 7. One is the horn edge height at 0.2 T, and the
other is the dip depth from the top of the horn edge toward the
averaged amplitude at around zero field. In Fig. 8, these two,
multiplied by temperature, are plotted against the temperature.
Note that both quantities do not show any marked tempera-
ture dependence below TN2. However, above TN2, they show
slightly different behavior. That is, as increasing temperature,
while the peak height (open symbol in Fig. 8) starts decreasing
at TN2, the dip depth (closed symbol) stays constant at around
TN2 and abruptly decreases at TN1. This difference supports the
scenario of the two-step magnetic phase transition, as argued
in the previous sections.

Here, we discuss the change in the NMR spectrum at TN2.
Generally, in the magnetically ordered state, the shape of the
NMR powder pattern of the central transition line (±1/2), as
long as the electric quadrupole interaction is small, must be
independent of the detail of the spin structure, that is, of the

relative angle of neighboring spins. Thus the observed change
in the peak height (open symbol in Fig. 8) between TN2 and
TN1 can be attributed to the change in the size of the hyperfine
field at TN2, where the spin direction alters appreciably, as il-
lustrated in the inset of Fig. 4. Because the total hyperfine field
at the Co site is the vector sum of onsite contribution and of
supertransferred contribution, its size must change depending
delicately on the relative angle of adjacent spins [58,59].

E. Phase diagram

As shown in Fig. 4, Sr3CoTa2O9 undergoes two magnetic
phase transitions at TN1 = 0.97 K and TN2 = 0.79 K at zero
magnetic field, as similarly observed in Ba3CoNb2O9 [44,45]
and Ba3CoTa2O9 [48]. It has been theoretically demonstrated
that two-step magnetic ordering occurs in TLAFs with the
magnetic anisotropy of the easy-axis type, whereas the order-
ing is in a single-step in the case of the easy-plane anisotropy
[4,36,37,60,61]. The two-step magnetic phase transitions were
observed in many hexagonal ABX3-type TLAFs with the
easy-axis anisotropy, in which triangular layers are coupled
by strong antiferromagnetic exchange interactions along the
c axis [1]. Thus the successive phase transitions observed
in Sr3CoTa2O9 are attributed to the easy-axis anisotropy.
There is no other reasonable description of the two-step mag-
netic ordering because the triangular lattice in Sr3CoTa2O9

is uniform. The origin of the easy-axis anisotropy is not the
single-ion anisotropy of the form D(Sz

i )2 but the anisotropic
exchange interaction of the form �JSz

i Sz
j because the effective

spin is S = 1/2. The anisotropic exchange interaction of the
easy-axis type is compatible with the trigonal elongation of
the CoO6 octahedron along the c axis observed by the present
structural refinement [42].

The scenario of the two-step magnetic ordering is as
follows [4,36,37,60,61]. With decreasing temperature, the z
components of spins order first at TN1 with the ferrimagnetic
structure in a triangular layer. With further decreasing tem-
perature, the xy components of spins order at TN2, such that
the spins form a triangular structure in the plane including the
c axis, as shown in the inset of Fig. 4. The canting angle θ

increases with decreasing temperature. Ordered spins on the
same sites of the neighboring triangular layers should be an-
tiparallel owing to the antiferromagnetic interlayer exchange
interaction. If the interlayer exchange interaction is ferromag-
netic, a weak total net moment will emerge, as observed in
Ba2La2NiTe2O12 [62], because each triangular layer has a
weak net moment along the c axis. However, no total net
moment was observed in the ordered state of Sr3CoTa2O9,
which indicates that net moments of neighboring layers cancel
out due to the antiparallel spin arrangement along the c axis.

The temperature range of the intermediate phase nor-
malized by TN1 at zero magnetic field as (TN1 −TN2)/TN1

is a measure of the magnitude of the easy-axis anisotropy
relative to the intralayer exchange interaction [4,60,61].
In Sr3CoTa2O9, (TN1 −TN2)/TN1 = 0.18. The narrow inter-
mediate phase indicates that the easy-axis anisotropy is
considerably smaller than the intralayer interaction. The
absence of the 1/3-magnetization plateau also indicates
that the interlayer exchange interaction is antiferromagnetic
and its magnitude is comparable to that of the intralayer
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I II

I II
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Spin Flop

(a)

(b)

FIG. 9. Schematic phase diagrams of the 3D TLAF with easy-
axis anisotropy for (a) H ⊥ c and (b) H ‖ c [36,37]. The spin structure
of phase I is illustrated in Figs. 10(a) and 10(b) with θ �= 0. The
spin structure of phase II is given by θ = 0, i.e., for H ⊥ c, the
spin components perpendicular to the magnetic field form a collinear
structure along the c axis. The spin structure of the spin flop phase is
illustrated in Fig. 10(c).

exchange interaction. Thus Sr3CoTa2O9 can be magnetically
described as an antiferromagnetically stacked 3D TLAF with
a small easy-axis anisotropy as Ba3CoNb2O9 [44–46] and
Ba3CoTa2O9 [47,48]. Neutron diffraction experiments deter-
mined the propagation vector below TN2 in Ba3CoNb2O9 as
k = (1/3, 1/3, 1) [44,46], demonstrating the triangular spin
ordering in the ab plane and the antiferromagnetic ordering
along the c axis.

In the present experiment, we used a powder sample
of Sr3CoTa2O9. The transition anomaly for H ⊥ c is more

pronounced than that for H ‖ c, because the probability of
H ⊥ c is twice as large as that of H ‖ c for the powder sample
with the trigonal symmetry. Thus we can deduce that the phase
diagram shown in Fig. 4 approximates the phase diagram for
H ⊥ c in Sr3CoTa2O9. This phase diagram is similar to that
forH ⊥ c in a 3D TLAF with easy-axis anisotropy, as shown in
Fig. 9(a), in which the antiferromagnetic interlayer exchange
interaction is of the same order of magnitude as the intralayer
exchange interaction, as discussed theoretically by Plumer
et al. [36,37].

Phase boundaries for both TN1 and TN2 shift towards the
low-temperature side with increasing magnetic field, as shown
in Fig. 4. We discuss the spin structure, assuming that the mag-
netic field is perpendicular to the c axis for simplification. In
this case, the spin components perpendicular to the magnetic
field form a triangular structure in the low-temperature phase
I, as shown in the inset of Figs. 4 and 10(a). When the antifer-
romagnetic interlayer exchange interaction is comparable to
the intralayer exchange interaction, the spin component par-
allel to the magnetic field increases with increasing magnetic
field, and the canting angle θ decreases to zero at a critical
field Hc. This leads to a transition from phase I to phase II,
in which spin components perpendicular to the magnetic field
form a collinear structure along the c axis [37].

Figure 11 shows H-T phase diagrams of powder samples
of Sr3CoTa2O9 and Ba3CoNb2O9 [45], where the temperature
and magnetic field are normalized by the higher transition
temperature TN1 at zero magnetic field and the saturation
field Hs, respectively. We did not show the normalized phase
diagram of Ba3CoTa2O9 in Fig. 11 because the saturation
fields and phase diagrams reported in Refs. [47,48] are signif-
icantly different. As mentioned previously, the phase diagram
approximates the phase diagram for H ⊥ c. It is notable that
the values of TN2/TN1 at zero magnetic field in these two
systems are almost the same. This indicates that the ratios
of the easy-axis anisotropy to the intralayer exchange inter-
action are almost the same in these systems. However, the
phase boundaries of these systems behave differently in mag-
netic fields, although the phase boundaries shift towards the
low-temperature side, as commonly observed with increasing
magnetic field.

)b()a(

60°

60°
60°

(c)

FIG. 10. Configurations of the sublattice spins for (a) H ⊥ c, (b) H ‖ c and H < Hc, and (c) H ‖ c and H > Hc (spin flop phase). Si (i = 1, 2,
and 3) and S j ( j = 4, 5, and 6) are sublattice spins on odd-numbered and even-numbered triangular layers, respectively. The z axis is taken to
be parallel to the c axis. In (a), the magnetic field is parallel to the x axis, and θ is an angle between the yz components of S2 (or S3) and the c
axis.
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FIG. 11. H -T phase diagrams in powder samples of Sr3CoTa2O9

and Ba3CoNb2O9 [45], where temperature and magnetic field are
normalized by the higher transition temperature TN1 at zero magnetic
field and saturation field Hs, respectively. Solid curves are guides to
the eye.

To the author’s knowledge, there is no detailed discussion
of the phase transition between phases I and II for H ⊥ c at
T = 0 in the 3D TLAF with the easy-axis anisotropy. Here,
we discuss the phase transitions within the framework of the
mean-field theory based on the six-sublattice model. We write
the Hamiltonian in the magnetic field as

H =
∑
〈i, j〉

[
J (Si · S j ) + �JSz

i Sz
j

]

+
∑
〈l,m〉

[
J ′(Sl · Sm) + �J ′Sz

l Sz
m

] −
∑

i

Si · H, (2)

where the first and second terms are the anisotropic exchange
interactions in the triangular layer and between layers, re-
spectively. For simplification, we put gμB = 1. Details of the
calculations are shown in Appendix. With increasing mag-
netic field for H ⊥ c, angles φ and ψ increase, and angle θ

decreases [see Fig. 10(a)]. The angle θ becomes zero at the
critical Hc, which is expressed as

Hc =
√

(6J + 3�J − 2�J ′)2 − 9(J + �J )2

(6J + 3�J − 2�J ′)2(1 + α)2 − 9(J + �J )2

×{9J + 4J ′ + 2α(3J + 2J ′)}S, (3)

with

α = (9J + 6�J − 2�J ′)(3�J + 2�J ′)
4J ′(6J + 3�J − 2�J ′)

. (4)

The phase transition at Hc is the first order. We consider that an
anomaly near 1.7 T in dM/dH shown in Fig. 3(b) corresponds
to the critical field Hc.

Phase II above Hc is characterized by θ = 0, φ �= 90◦, and
ψ �= 90◦. The spin components perpendicular to the magnetic
field form a collinear structure along the c axis. With increas-
ing magnetic field, angles φ and ψ increase and both become

90◦ at the saturation field Hs, which is given by

Hs = (9J + 4J ′ + 3�J + 2�J ′)S. (5)

The normalized magnetic-field range of phase II �hII =
(Hs–Hc)/Hs increases with increasing �J/J and de-
creases with increasing J ′/J . In the 2D limit of J ′ → 0,
�J ′ → 0, and α → ∞, �hII is expressed as �hII =
1 − 2J

√
J (3J + 2�J )/{(2J+�J )(3J + �J )}. On the other

hand, when J ′ � J,�J and �J ′ as in many hexagonal ABX3

type TLAFs [1,63,64], α → 0 and �hII → 0. Extrapolating
phase boundaries shown in Fig. 11 to T = 0, we see that
�hII for Sr3CoTa2O9 is smaller than that for Ba3CoNb2O9.
Because the ratios of the easy-axis anisotropy to the intralayer
exchange interaction are expected to be almost the same in
these systems from almost the same TN2/TN1, we deduce that
J ′/J is greater in Sr3CoTa2O9 than in Ba3CoNb2O9.

IV. SUMMARY

We have reported the results of magnetization and specific
heat measurements of Sr3CoTa2O9 powder, in which Co2+

ions with effective spin-1/2 form a uniform triangular lattice
parallel to the ab plane. It was found that the high sintering
temperature of 1600 ◦C is necessary to obtain high-quality
samples. The lattice parameters were refined by Rietveld anal-
ysis, as shown in Table I.

Sr3CoTa2O9 exhibits two magnetic phase transitions at
TN1 = 0.97 K and TN2 = 0.79 K at zero magnetic field, which
arise from the competition between the intralayer exchange
interaction and the weak easy-axis magnetic anisotropy. The
magnetization saturates at μ0Hs = 2.3 T. From the saturation
magnetization, the g factor was evaluated to be g = 4.15 on
average. The magnetization curve displays no magnetization
plateau at one-third of the saturation magnetization char-
acteristic of quasi-2D quantum TLAFs. This indicates that
the interlayer exchange interaction is antiferromagnetic and
of the same order of magnitude as the intralayer exchange
interaction.

We obtained the H-T phase diagram of Sr3CoTa2O9 pow-
der from magnetization and specific heat measurements in
magnetic fields, which is considered to approximate that for
H ⊥ c. This phase diagram is in accordance with that for
a TLAF with a strong interlayer exchange interaction and
a small easy-axis anisotropy [36,37]. Thus Sr3CoTa2O9 is
characterized as a 3D spin-1/2 TLAF with a weak easy-axis
anisotropy similar to Ba3CoNb2O9 [44,45]. Based on the
mean-field theory, we discussed phase transitions in the mag-
netic field for H ⊥ c at T = 0. We showed the critical field Hc

at which the spin structure projected on a plane perpendicular
to the magnetic field changes from the triangular structure
(phase I) to the collinear structure along the c axis (phase II).
We observed a magnetization anomaly at Hc � 1.7 T sugges-
tive of the transition between phases I and II.

It was found from the H-T phase diagrams of Sr3CoTa2O9

and Ba3CoNb2O9 normalized by TN1 and Hs that the values
of TN2/TN1 are almost the same in these two systems. This
indicates that the magnitudes of the easy-axis anisotropy rel-
ative to the intralayer exchange interaction are almost the
same in these two systems. However, the normalized mag-
netic field range of phase II, �hII, extrapolated to T = 0, is
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smaller in Sr3CoTa2O9 than in Ba3CoNb2O9. This indicates
that the ratio of the interlayer exchange interaction J ′ to the
intralayer exchange interaction J is larger in Sr3CoTa2O9 than
in Ba3CoNb2O9. To elucidate the details of the phase diagram
and magnetic parameters, experiments using single crystals
should be carried out.

ACKNOWLEDGMENTS

We thank M. Watanabe for experimental support. This
work was supported by Grants-in-Aid for Scientific Research
(A) (No. 17H01142) and (C) (No. 19K03711) from Japan
Society for the Promotion of Science.

APPENDIX: PHASE TRANSITIONS FOR H ⊥ c

Here, we derive the critical field Hc and saturation field Hs at T = 0 for H ⊥ c using the mean-field theory and a six-sublattice
model shown in Fig. 10. We follow the calculation process described in Refs. [63,64]. The energy per magnetic unit cell is given
as

E = 3J (S1 · S2 + S2 · S3 + S3 · S1 + S4 · S5 + S5 · S6 + S6 · S4) + 3�J
(
Sz

1Sz
2 + Sz

2Sz
3 + Sz

3Sz
1 + Sz

4Sz
5 + Sz

5Sz
6 + Sz

6Sz
4

)
+ 2J ′(S1 · S4 + S2 · S5 + S3 · S6) + 2�J ′(Sz

1Sz
4 + Sz

2Sz
5 + Sz

3Sz
6

) −
6∑

i=1

Si · H. (A1)

Using angles θ, φ, and ψ shown in Fig. 10(a), sublattice spins Si (i = 1, 2, . . . , 6) are expressed as

S1 = S(sin φ, 0, cos φ), S2 = S(sin ψ,− sin θ cos ψ,− cos θ cos ψ ), S3 = S(sin ψ, sin θ cos ψ,− cos θ cos ψ ),
S4 = S(sin φ, 0,− cos φ), S5 = S(sin ψ, sin θ cos ψ, cos θ cos ψ ), S6 = S(sin ψ,− sin θ cos ψ, cos θ cos ψ ).

}
(A2)

Substituting Eq. (A2) into Eq. (A1), we have

E = − 6J (−1 + 2 sin2 θ cos2 ψ − 2 sin φ sin ψ + 2 cos θ cos φ cos ψ )S2 − 6�J (2 cos θ cos φ cos ψ − cos2 θ cos2 ψ )S2

− 2J ′(cos 2φ + 2 cos 2ψ )S2 − 2�J ′(cos2 φ + 2 cos2 θ cos2 ψ )S2 − 2H (sin φ + 2 sin ψ )S. (A3)

Equilibrium conditions are given by ∂E/∂θ = 0, ∂E/∂φ = 0, and ∂E/∂ψ = 0, which lead to

{(6J + 3�J − 2�J ′) cos θ cos ψ − 3(J + �J ) cos φ} sin θ cos ψ = 0, (A4)

H cos φ − 6JS cos φ sin ψ − 6(J + �J )S cos θ sin φ cos ψ − 2(2J ′ + �J ′)S sin φ cos φ = 0, (A5)

and

H cos ψ − 3(2J + �J )S sin2 θ sin ψ cos ψ − 3JS sin φ cos ψ + 3�JS sin ψ cos ψ − 3(J + �J )S cos θ cos φ sin ψ

− 2J ′S sin 2ψ − 2�J ′S cos2 θ sin ψ cos ψ = 0. (A6)

In phase I, where θ �= 0, the angle θ is expressed as

cos θ = 3(J + �J )

6J + 3�J − 2�J ′
cos φ

cos ψ
. (A7)

From Eqs. (A5)– (A7), we have

sin φ = H

{9J + 4J ′ + 2α(3J + 2J ′)}S , (A8)

sin ψ = (1 + α)H

{9J + 4J ′ + 2α(3J + 2J ′)}S , (A9)

where α is given by Eq. (4). The angle θ in Eq. (A7) becomes
zero at the critical field Hc. From this condition, we obtain the
critical field expressed as Eq. (3).

In phase II, θ = 0, φ �= 90◦, and ψ �= 90◦. Angles φ and
ψ become 90◦ at the saturation field Hs. When a condition
(cos ψ/ cos φ) → 1/2 is satisfied at Hs, Eqs. (A5) and (A6)
are equivalent. From this condition, we obtain the saturation
field given by Eq. (5).
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