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Theory of superdiffusive spin transport in noncollinear magnetic multilayers
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Ultrafast demagnetization induced by femtosecond laser pulses in thin metallic layers is caused by the outflow
of spin-polarized hot-electron currents describable by the superdiffusive transport model. These laser-generated
spin currents can cross the interface into another magnetic layer and give rise to magnetization dynamics in
magnetic spin valves with noncollinear magnetizations. To describe ultrafast transport and spin dynamics in
such nanostructures, we develop here the superdiffusive theory for general noncollinear magnetic multilayers.
Specifically, we introduce an Al/Ni/Ru/Fe/Ru multilayer system with noncollinear Ni and Fe magnetic
moments and analyze how the ultrafast demagnetization and spin-transfer torque depend on the noncollinearity.
We employ ab initio calculations to compute the spin- and energy-dependent transmissions of hot electrons at
the interfaces of the multilayer. Taking into account multiple electron scattering at interfaces and spin mixing
in the spacer layer, we find that the laser-induced demagnetization of the Ni layer and the magnetization change
of the Fe layer strongly depend on the angle between their magnetizations. Similarly, the spin-transfer torques
on the Ni and Fe layers and the total spin momentum absorbed in the Ni and Fe layer are found to vary markedly
with the amount of noncollinearity. These results suggest that by changing the amount of noncollinearity in
magnetic multilayers, one can efficiently control the hot-electron spin transport, which may open a way toward
achieving fast, laser-driven spintronic devices.

DOI: 10.1103/PhysRevB.107.174418

I. INTRODUCTION

Fast and energy-efficient control of the magnetic config-
uration of nanostructures is a fundamental requirement for
practical spintronic devices. Ever since the discovery of the
spin-transfer torque (STT) by Slonczewski [1] and Berger [2]
in 1996, the STT has been seen as a major candidate for
achieving this goal. The main obstacle for widespread appli-
cation of STT is the high current densities that are required
for effectuating the change of magnetization alignment. One
possible way of addressing this problem is to use the so-
called spin-orbit torque [3–5], a torque variant where the
pure spin current penetrating into the magnetic layer is gen-
erated by the spin Hall effect [6] or related effects such as
the Rashba-Edelstein effect originating microscopically from
strong spin-orbit coupling [7].

Another possibility to manipulate spins has emerged from
the line of research which started with the breakthrough
experiment by Beaurepaire et al. [8], who observed ultra-
fast demagnetization of a nickel thin film after exposing it
to a femtosecond laser pulse. The intriguing possibility of
subpicosecond-scale manipulation of the magnetic order in-
spired a number of follow-up studies, both experimental and
theoretical [9]. However, it took more than 10 years until
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research in the field of ultrafast laser-induced magnetiza-
tion processes had been combined with spintronics leading
to discoveries of optical spin-transfer torque [10] and opti-
cal spin-orbit torque [11]. The importance of spin-transfer
effects in the demagnetization of metallic multilayers has
been observed by Malinowski et al. [12]. The demagnetiza-
tion in metallic structures was attributed to the spin transfer
of laser-excited hot electrons moving across the sample.
Since electron velocities and lifetimes in magnetic metals are
strongly spin dependent, electronic motion leads to fast spin
currents contributing to ultrafast demagnetization. Theoreti-
cally, this process has been described by the superdiffusive
spin-dependent transport model of Battiato et al. [13,14], ex-
plained in more detail in Sec. II A. The important role of spin
currents in ultrafast demagnetization is supported by a number
of experimental observations [15–25].

Additional support for the nonthermal hot-electron spin-
current picture comes from Ref. [26], where the effect of
a femtosecond laser pulse has been studied in magnetic tri-
layers, consisting of two ferromagnetic layers separated by
a nonmagnetic spacer. When the magnetizations of the fer-
romagnetic layers are collinearly aligned and one of them
is illuminated by the laser pulse, its ultrafast demagnetiza-
tion is followed by the subsequent transient increase in the
magnetization of the second layer. However, in the antipar-
allel configuration the same procedure leads to a decrease in
the second layer’s magnetization. This effect can be readily
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understood in terms of the hot-electron spin current being
generated in the first layer and carrying the spin polarization
aligned with this layer into the second one. Moreover, the
results were shown to be in good agreement with the su-
perdiffusive transport model. On the other hand, Eschenlohr
et al. [27] have inspected the same kind of trilayer using L-
edge x-ray magnetic spectroscopy and found no enhancement
of magnetization.

The discrepancy between experimental results calls for
further development of the theoretical approach allowing
for even more precise modeling of hot-electron transport in
complex multilayered structures. In the current paper we dis-
cuss the following twofold improvement to the superdiffusive
transport model: (i) the inclusion of a realistic, material-
specific description of the scattering at the interfaces and (ii)
the extension of the formalism to the case of noncollinear
magnetic configurations.

Noncollinear magnetic alignments appear frequently,
adding a novel aspect to ultrafast spin transport in magnetic
nanostructures. For example, a number of recent experiments
studied ultrafast demagnetization in multilayers combining a
ferromagnet and Pt [28–30]. In the case of Co/Pt it is possible
to achieve not only in-plane, but also out-of-plane magnetiza-
tion orientation [30], which makes such system an interesting
candidate for studies of the role of noncollinearity. Several re-
cent experiments probed the ensuing magnetization dynamics
in noncollinear magnetic multilayers [17,18,31–33].

The most significant manifestation of the optically in-
duced spin currents in noncollinear magnetic multilayers or
magnetic textures is the appearance of a STT leading to mag-
netization dynamics. To this end, a number of experiments
focused on magnetic trilayers with noncollinear (usually
perpendicular) magnetizations. These experimental observa-
tions [17,18,32,33] and theoretical models [34] suggest laser
excitation of hot electrons in one magnetic layer can lead in
quick succession to small-angle precession of the moment of
the second magnetic layer, caused by the STT due to the spin
current, even though both magnetic layers are separated and
magnetically decoupled by a nonmagnetic spacer. Interest-
ingly, experiments [32,35] and numerical simulations [36,37]
have revealed that a spin current of hot electrons in non-
collinear spin valves can trigger terahertz spin waves.

The interplay between the laser-induced spin currents
and localized magnetization touches upon a central interest
in ultrafast spintronics, having the potential to fulfill both
requirements mentioned earlier in this section—speed and
efficiency. The first characteristic results from the funda-
mentally different transport regime, distinct from the usual
diffusive/Ohmic one, governing the propagation of the spin
information across the system. The hot electrons propagate
initially in nearly ballistic fashion, which means that their real
velocity (Bloch velocity) is relevant, which is many orders
of magnitude higher than the drift velocity characterizing the
collective motion in diffusive systems. The efficiency follows
from the cascade effect [13,14] where after the absorption of
a single photon, the excited electron can, in subsequent scat-
terings, excite many more, multiplying thereby the number of
particles carrying the spin information [14].

To describe laser-induced STT and magnetization dy-
namics in magnetic multilayers, we recently developed an

effective model for the STT induced by hot electrons in per-
pendicular noncollinear spin valves [34]. Moreover, by means
of atomistic spin dynamics we have demonstrated the possibil-
ity of generation of terahertz spin waves in a magnetic film due
to the superdiffusive STT exerted by hot electrons [37]. Later
on, to describe arbitrary noncollinear magnetic textures like
a domain wall, we generalized the superdiffusive transport
model by including a spin rotation transformation [38] and
predicted a high-speed shift of the domain wall center due to
a femtosecond laser pulse. The model was also used to predict
optimal spacer thickness to maximize the hot-electron spin
current and an impressive agreement between these theoret-
ical predictions and experiment has been observed [39].

As a further motivation, there is an ongoing effort to
achieve magnetization reorientation into a desired direction by
means of a light pulse. One example is the precession caused
by the Zeeman interaction with the magnetic component of
light, an effect best manifested in the terahertz range [40].
Another case is the laser-induced magnetization due to the
inverse Faraday effect [41]. In both these cases an optical
pulse will cause inevitable excitation of electrons in addition
to the magnetization reorientation, and superdiffusive currents
may thus occur. The resulting demagnetization and STT could
help ease the switching; on the other hand, the loss of mag-
netization could unfortunately dominate over switching. It is
therefore needed to provide the description of superdiffusion-
related effects also for arbitrary angles reached during the
switching process in order to describe the magnetization dy-
namics of such process completely. Interesting discoveries
regarding magnetization dynamics in noncollinear structures
with a chirality were made recently [42]. Noncollinear anti-
ferromagnetic spin structures not restricted to perpendicular
angles were also predicted to feature unusual properties of the
current-induced STT, including a self-generated torque [43].

In the current paper, we study the hot-electron transport
in the magnetic multilayer, namely, the Al/Ni/Ru/Fe/Ru
structure also studied experimentally [16,26,27]. Using the
superdiffusive transport model, we inspect the demagnetiza-
tion as well as spin-transfer torques acting on the magnetic
layers after the hot electrons are excited by a femtosec-
ond laser pulse. In order to properly describe the transport
through the interfaces, we employed the ab initio wave func-
tion matching (WFM) method [44,45] to calculate spin- and
energy-dependent transmissions of hot electrons. Thus, the su-
perdiffusive transport model allows us to account for multiple
reflections of electrons from the interfaces together with bulk
scattering of hot electrons. In the case of noncollinear mag-
netic configuration, spin mixing in the central nonmagnetic
layer has to be taken into account. Since this layer is usually
just a few atomic monolayers thick, we model the nonmag-
netic spacer as a single interface between the magnetic layers
allowing spin mixing of the hot electrons passing through it.
In collinear magnetic configurations [17], we have shown that
our assumption has just a minor effect on the results obtained
by the superdiffusive transport model.

The importance of interface scattering is well established
for the case of conventional Fermi-level spin transport [46,47].
Its effect on the process of ultrafast demagnetization in
a ferromagnet/normal metal bilayer was recently studied
independently, and found to be meaningful, in Ref. [48]
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using an approach similar to that outlined in Secs. II A
and II C.

The paper is organized as follows. In Sec. II A we
present the main features of the spin-dependent superdiffusive
transport model. The system for which the calculations are
performed is described in Sec. II B and the method for calcu-
lating the scattering coefficients for interfaces is discussed in
Sec. II C. In Sec. III we present our calculations of transmis-
sions through the interlayer interfaces. The results for ultrafast
demagnetization and spin-transfer torque in a noncollinear
Ni/Ru/Fe trilayer are described in Secs. IV and V, respec-
tively. We conclude in Sec. VI.

II. THEORY

A. The superdiffusive transport model

Laser pulses in relevant experiments provide photons with
energies around 1.5 eV. Electrons excited by photons to en-
ergies in this range possess properties that differ significantly
from those of electrons near the Fermi level. In the studied
materials predominantly immobile d electrons are present
near the Fermi level, while the excited ones may be rather of
sp character. These sp electrons are characterized by higher
velocities, hence, they behave as itinerant particles moving
through the sample. The change of magnetization of a metallic
layer due to the transport dynamics of these electrons has
been described by the superdiffusive spin-dependent trans-
port model [13,14]. We note that an alternative approach to
describe the collision-rich motion of excited hot electrons in
metallic layers has been developed on the basis of Boltzmann
transport theory [49,50].

The superdiffusive transport model describes two spin
channels, tagged as σ ∈ {↑,↓}, for the electronic transport.
Each spin channel within a specific material is characterized
by the hot-electron velocities, vσ (ε), and lifetimes, τσ (ε),
which depend on the electron energy ε, and, in magnetic
materials, on the spin σ as well. Calculation of these ex-
cited electron properties requires an adequate method; in
our model we utilize results obtained within the GW + T
approach [51,52]. Because of the distinct transport proper-
ties of the two spin channels, the current of hot electrons
gets spin polarized in the magnetic layer. In addition, in the
case of multilayers, spin filtering via multiple spin-dependent

transmissions and reflections at the interfaces further con-
tributes to the spin polarization of the current [53].

The outflow of the spin-polarized current initiated by a
laser pulse results in a loss of local magnetic momentum and
demagnetization. Due to the high velocities of hot electrons,
the demagnetization happens on a timescale of hundreds of
femtoseconds [13]. Initially, the hot electrons’ propagation is
ballistic; however, due to the relaxation processes caused by
electron scattering, it continuously changes its character. In
about 500 fs up to 1 ps it develops into a purely diffusive one.
In the time interval up to 500 fs, the transport proceeds in the
superdiffusive regime [14].

Let us describe briefly the main features of the su-
perdiffusive spin-dependent transport model formulated in
Refs. [13,14], which revolves around the equation of motion
for the hot-electron density nσ (ε, z, t ), with spin σ , energy ε,
and position z,

∂nσ (ε, z, t )

∂t
+ nσ (ε, z, t )

τσ (ε, z)
=

(
− ∂

∂z
φ̂ + Î

)
Seff

σ (ε, z, t ), (1)

where φ̂ is the flux operator which contains the depen-
dence from the electrons’ velocities and describes interlayer
transmissions and reflections. Furthermore, Seff

σ (ε, z, t ) is an
effective source term describing the laser-induced excitation
of spin-polarized hot electrons and scattering events within
the material (see the discussion below).

For practical calculations we adopt the discretized version
of the formalism, described in Ref. [53], with the space di-
vided into computational cells of width δz. Time and energy
are also sampled in finite steps of δt and δε, respectively.

When treating the multilayers, one should include the
possibility of scattering at the interlayer interfaces. It is conve-
nient to formally treat each computational cell as an individual
layer and its boundaries as interfaces characterized by specific
transmission probabilities. Therefore, until the end of the cur-
rent section, the term interface will refer to interfaces between
the computational cells, even though only some of these cor-
respond to actual interfaces between different metallic layers
with nontrivial scattering coefficients.

Following Ref. [53], the solution of Eq. (1) on the discrete
grid, averaged over the cell centered at zi and omitting, for the
sake of brevity, the energy index ε, can be written as

nσ (zi, t + δt ) = e−δt/τσ (zi )nσ (zi, t ) + Seff
σ (zi, t + δt )

+
∑
σ ′

[
−→
T σ,σ ′ (z−

i )
−→
� σ ′ (z−

i , t ) + ←−
T σ,σ ′ (z−

i )
←−
� σ ′ (z−

i , t ) − −→
T σ,σ ′ (z+

i )
−→
� σ ′ (z+

i , t ) − ←−
T σ,σ ′ (z+

i )
←−
� σ ′ (z+

i , t )],

(2)

where z±
i = zi ± δz/2 are the positions of the left and right

interface, respectively, for each cell centered at zi.
−→
� σ (z±

i , t )

and
←−
� σ (z±

i , t ) are the fluxes of right- and left-moving parti-
cles with spin σ going through the interface z±

i of the cell at
time t . Each interface is characterized by energy-dependent
transmissions of electrons moving to the right,

−→
T σσ ′ , and to

the left,
←−
T σσ ′ , with σ and σ ′ indicating spin after and before

the transmission, respectively. Thus, the first term in the sum
represents the incoming fluxes through the left interface of
the cell, while the second term represents the outgoing fluxes
through the left interface. In a similar fashion, the third term
stands for the outgoing fluxes through the right interface,
and the last term expresses the incoming fluxes through the
right interface. The first two terms of Eq. (2) describe the
variation of nσ due to the spin relaxation and effective source,
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respectively. The latter is made of two contributions, i.e.,

Seff
σ (z, t + δt ) = Sext

σ (z, t + δt ) + Sp
σ (z, t + δt ), (3)

where Sext
σ (z, t + δt ) describes the excitation of hot electrons

by the laser pulse, and Sp
σ (z, t + δt ) is the term describing

the effects of scattering, mostly caused by electron-electron
interactions, calculated as

Sp
σ (ε, z, t + δt ) =

∑
σ ′

∫ εmax

εFermi

dε′nσ ′ (ε′, z, t )

× pσ ′,σ (ε′, ε, z, t )(1 − e−δt/τσ ′ (ε′,z,t ) ), (4)

where, in general, pσ ′,σ (ε′, ε, z, t ) is the probability that
an electron at energy level ε′, between the Fermi energy
εFermi and the energy cutoff εmax, and spin σ ′ will move to
energy level ε with spin σ in the next time step, t + δt .

Equation (4) includes the contributions from both the
scattered hot electrons, formally treated as newly excited,
and the ones actually excited as the result of the scattering.
In this way, spin-flip scattering, which is due to spin-orbit
interaction, can be included [14] and was studied previously
for collinear heterostructures [20]. Here, however, our focus
is on spin mixing related to noncollinearity. It is known that
spin-orbit coupling can generate spin currents at interfaces as
well [54], but considering the spin-flip times calculated for
excited electrons in few selected metals [55], we estimate that
the effect of spin-orbit coupling on the dominant hot-electron
transport in the studied system is small. Therefore we have not
taken spin-orbit related spin flips into account.

In order to include multiple transmissions and reflections
in Eq. (2) it is beneficial to calculate the total particle fluxes
in a recursive way. Following [48,53], the fluxes are obtained
from

−→
� σ (z+

i , t ) =
t∑

t0=0

Seff
σ (zi, t0)ψσ (z+

i , t |zi, t0) +
∑
σ ′

[
−→
T σ,σ ′ (z−

i )
−→
� σ ′ (z−

i , t, ) + ←−
R σ,σ ′ (z−

i )
←−
� σ ′ (z−

i , t, )],

←−
� σ (z+

i , t ) =
t∑

t0=0

Seff
σ (zi+1, t0)ψσ (z+

i , t |zi+1, t0) +
∑
σ ′

[
←−
T σ,σ ′ (z+

i+1)
←−
� σ ′ (z+

i+1, t, ) + −→
R σ,σ ′ (z+

i+1)
−→
� σ ′ (z+

i+1, t, )], (5)

where we have introduced the spin-conserving and spin-
flipping reflection probabilities for left- and right-moving
particles,

←−
R σ,σ ′ and

−→
R σ,σ ′ . Moreover, in Eq. (5) we have

introduced the integrated flux, given by ψσ , for which an
analytical expression was given in Ref. [53]. Throughout this
paper, we keep the spatial discretization step δz = 1 nm and
time step δt = 1 fs.

B. Model system

To investigate the influence of noncollinear magneti-
zations, we model a magnetic multilayer, Al (3 nm)/Ni
(5 nm)/Ru (2nm)/Fe (4 nm)/Ru (5 nm), shown schemati-
cally in Fig. 1 [26,27]. The magnetic layers, Ni and Fe, are
separated by a thin nonmagnetic Ru layer. The magnetization
of the Ni magnetic layer is assumed to be aligned with the x
axis, while the magnetization of the Fe layer can in general be
rotated, in the plane of the layer, by an angle θ from the x axis.

We assume that the laser pulse illuminates the sample from
the side of the outer Al layer and that the hot electrons are
excited just in the magnetic Ni layer. Moreover, for simplicity,
the excited electrons are homogeneously distributed through-
out the layer.

A necessary ingredient for solving Eqs. (2)–(5) are
the spin- and energy-dependent transmission probabilities
through the interfaces between the layers. In the next sec-
tion (Sec. II C) we shall describe the method used for
calculating these at the material-specific level.

C. The theory of interface scattering

The material-specific transmissions through interfaces or
multilayers were obtained using the two-step procedure
described in Refs. [45,56]. In the first step the self-consistent

potentials for a system of interest were calculated us-
ing the tight-binding linear muffin-tin orbital (TB-LMTO)
method [57,58] in the atomic-sphere approximation (ASA).
The potentials were then used to calculate the elements of
the scattering matrix, i.e., transmission and reflection coef-
ficients using the wave function matching method [45,56].
The latter step was performed for energies in the interval
[εFermi, εFermi + 1.5 eV] with a step of 0.125 eV. The length
of the interval (1.5 eV ) corresponds to the typical energy of
the photons from the exciting laser in experiments.

Little is known about the crystalline structure and orien-
tation of the experimental structures [26,27]. We assumed

FIG. 1. Model of the studied magnetic multilayer. The laser pulse
excites the multilayer on the Al side. The magnetizations of the Ni
and Fe layers are noncollinear, expressed by the angle θ between
them.
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therefore that all the elements grow in their bulk lattice struc-
tures, i.e., fcc for Al and Ni, bcc for Fe, and hcp for Ru.
Furthermore, we chose the (111) orientation for Al, Ni, and
Fe and (0001) for the Ru layer, thus preserving the maximum
axial symmetry. The main difficulty arising when performing
the calculations is the substantial lattice constant mismatch
between the different layers. In order to take this into account
we modeled the interfaces using lateral supercells of different
sizes. In particular, we used 7 × 7|8 × 8 for the interface be-
tween Al (aAl = 4.05 Å) and Ni (aNi = 3.52 Å), 13 × 13|12 ×
12 for Ni and Ru (aRu = 2.71 Å), and 3 × 3|2 × 2 for Ru
and Fe (aFe = 2.87 Å). The trilayer structure was modeled as
Ni(13 × 13)|Ru(12 × 12)|Fe(8 × 8). The adjustments of the
in-plane lattice constants, necessary to obtain a perfect match
between supercells, were well below 1%. A small tetragonal
distortion was additionally introduced in order to keep the
volume of the unit cells intact. At the interfaces the distance
between the atomic layers was set so as to fulfill the local
space-filling requirement of the ASA approximation, with the
radii of the atomic spheres kept at their bulk values.

The ASA potentials for the supercell calculations were
obtained using a simplified procedure described in Ref. [59].
For each interface, two single unit-cell (1 × 1) calcula-
tions were made with the common lattice constant set first
to the value corresponding to the bulk structure of the material
to the left and then to the right of the interface. The final
interface structure was then constructed using the spheres (and
the associated potentials) with the correct radius for either
side.

With the transmission and/or reflection coefficients calcu-
lated, the energy-dependent Landauer-Büttiker (LB) conduc-
tances can be calculated as

G(σ, ε) = e2

h

1

4π2

∫
2DBZ

∑
νμ

|tσ
νμ(k‖)|2, (6)

where tσ
νμ(k‖) are the scattering coefficients, and the ν and μ

are the indices for the modes at opposite sides of the interface,
characterized by the same lateral component of the wave
vector (k‖), and the two-dimensional Brillouin zone (2DBZ)
is defined by the matching lateral supercells. In Eq. (6)
we implicitly assumed the specular (i.e., k‖-preserving)
scattering. However, since the interface between non-lattice-
matched lattices inherently breaks the lateral translational
symmetry, a certain amount of diffusive scattering is still
possible even with enforced perfect match between supercells
on both sides of the interface. The 2DBZ defined for the
N × N lateral supercell is the folded down version of the
original (N = 1) zone.1 Consequently the set of N2 k‖ points
in the original N = 1 zone is now represented by a single
point in the folded-down version. All the propagating modes
characterized originally by the lateral wave vectors belonging
to the N2 set are now formally treated as having the same k‖
wave vector. When the supercells on the left and right sides
of the interface are matched in external dimensions but differ
in multiplicity (i.e., N1a1 = N2a2 but N1 	= N2, a1(2) being the

1Note that the N = 1 2DBZs are generally different for the non-
latticed-matched materials. This is the case for our Al/Ni/Ru/Fe
multilayer.

left- and right-side lattice constants) the lowering of the
symmetry may enable matching between the modes originally
(i.e., in unfolded 2DBZs) belonging to different k‖ wave
vectors.

The LB conductance through the interface does not depend
on the direction of scattering. The same, however, is not true
for the Sharvin conductances

−→
G Sh(σ, ε) = e2

h

1

4π2

∫
2DBZ

∑
μμ′

δμ′μ = e2

h
NL, (7)

←−
G Sh(σ, ε) = e2

h

1

4π2

∫
2DBZ

∑
ν ′ν

δνν ′ = e2

h
NR, (8)

which amount simply to the number of modes (per unit area)
in the left (NL) or right (NR) lead. Consequently, the averaged
transmission for the right- and left-moving electrons,

−→
T σ = G(σ, ε)

−→
G Sh(σ, ε)

and
←−
T σ = G(σ, ε)

←−
G Sh(σ, ε)

, (9)

respectively, also assume different values. The transmis-
sions obtained both for single interfaces and for the whole
Ni/Ru/Fe trilayer will be discussed in Sec. III.

III. THE TRANSPORT THROUGH INTERFACES

A. Single interfaces

Figure 2 shows the calculated transmissions for hot elec-
trons in the spin-up and spin-down channels as a function
of energy for each single interface in the studied multilayer,
namely, Al/Ni, Ni/Ru, and Ru/Fe. We show separately the
transmissions for electrons moving from the left to the right
(top row) and electrons moving from the right to the left
(bottom row). In all three cases, one can observe a significant
nonlinear dependence of transmission on energy. Moreover, a
strong asymmetry between spin-up and spin-down channels is
obvious for all three interfaces for some energies.

The results for the Al/Ni interface [Figs. 2(a) and 2(b)] are
in agreement with those published recently [48]. The small
differences are easily explainable by the different choices of
interface geometry, i.e., crystallographic orientations of the
respective metals, between Ref. [48] and the present paper.

B. Central nonmagnetic layer

The key part of our model is the treatment of the central
nonmagnetic layer, which separates two magnetic layers, Ni
and Fe. If the magnetizations in the two magnetic layers are
collinear, i.e., parallel or antiparallel, the electronic and spin
transport can be described by the two sets of independent
equations for the spin-up and spin-down channel, making
use of the single-interface transmission parameters shown in
Fig. 2. This case has been studied experimentally and modeled
using the superdiffusive spin-dependent transport theory in
Ref. [26], although without the ab initio calculated scattering
coefficients.

In the case of a noncollinear magnetic configuration, the
spin channels are mixed.2 Consequently, the spin currents in
the Ru spacer now possess the component perpendicular to

2Note that we do not take into account explicit spin-flip scattering
at the interfaces.
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FIG. 2. The spin-dependent transmissions of hot electrons as a function of energy, calculated using ab initio methods for each single
interface in the Al/Ni/Ru/Fe/Ru multilayer. The top row shows transmissions for electrons moving from the left to the right, while the bottom
row shows transmissions for electrons moving from the right to the left.

the magnetizations of magnetic layers. This in turn leads to
spin torques acting on the moments of both Ni and Fe layers.
In our model, we assume that the central nonmagnetic layer
is thin enough (∼1−2 nm, as in experiment [26]) so that the
interface scattering dominates over the contribution from the
bulk of the layer.

In order to assess the importance of the multiple internal
reflections in the central layer, we shall first consider a sim-
plified model where these are ignored and only the first-order
contribution to the total transmission probability is taken into
account.

For the electrons moving to the right, we define the diago-
nal transmission through the single interface as

−→
T (i) =

(−→
T (i)

↑ 0

0
−→
T (i)

↓

)
(10)

with i = 1, 2 corresponding to the Ni/Ru and Ru/Fe inter-
faces, respectively.

Ignoring the internal reflections in the central layer, we
can express the total transmission of the spacer and internal
interfaces as

−→
T = −→

T (1)R(θ )
−→
T (2), (11)

where R(θ ) is the spin rotation matrix due to noncollinear
magnetic configurations of Ni and Fe, defined as

R(θ ) =
(

cos2(θ/2) sin2(θ/2)

sin2(θ/2) cos2(θ/2)

)
, (12)

with θ being the angle between their magnetizations. The
transmissions introduced in Eqs. (9) and (10) are probabilities,
therefore the formula for total transmission explicitly assumes
the loss of coherence between the two interfaces.

Finally, we obtain

−→
T =

(−→
T ↑↑ cos2(θ/2)

−→
T ↑↓ sin2(θ/2)

−→
T ↓↑ sin2(θ/2)

−→
T ↓↓ cos2(θ/2)

)
, (13)

where
−→
T ↑↑ = −→

T (1)
↑

−→
T (2)

↑ , (14a)

−→
T ↑↓ = −→

T (1)
↑

−→
T (2)

↓ , (14b)

−→
T ↓↑ = −→

T (1)
↓

−→
T (2)

↑ , (14c)

−→
T ↓↓ = −→

T (1)
↓

−→
T (2)

↓ . (14d)

Assuming electrons moving from the left to the right, we
can express the currents in the right magnetic layer as(−→

j R
↑−→

j R
↓

)
= −→

T

(−→
j L

↑−→
j L

↓

)
, (15)

where −→
j L

σ and −→
j R

σ are the majority and minority spin-
channel currents in the left and right magnetic layer,
respectively. Note that the σ in the present context should
be read as relative to the local magnetization, i.e., it denotes
the local majority or minority character rather than the global
orientation of electron spin.

Working out Eq. (15) we can write

−→
j R

↑ = −→
T ↑↑ cos2(θ/2)−→j L

↑ + −→
T ↑↓ sin2(θ/2)−→j L

↓, (16a)

−→
j R

↓ = −→
T ↓↑ sin2(θ/2)−→j L

↑ + −→
T ↓↓ cos2(θ/2)−→j L

↓. (16b)

The spin reflections and transmissions have to obey
−→
R ↑ + −→

T ↑↑ cos2(θ/2) + −→
T ↓↑ sin2(θ/2) = 1, (17a)

−→
R ↓ + −→

T ↓↓ cos2(θ/2) + −→
T ↑↓ sin2(θ/2) = 1, (17b)

where
−→
R ↑ and

−→
R ↓ are reflections for electrons without a

change of their spin. Spin-flip reflections from the interfaces
are not taken into account. Thus, the reflected currents on the
left-hand side (moving to the left) read

←−
j L

↑ = [1 − T↑↑ cos2(θ/2) − T↓↑ sin2(θ/2)]−→j L
↑, (18a)

←−
j L

↓ = [1 − T↓↓ cos2(θ/2) − T↑↓ sin2(θ/2)] −→
j L

↓. (18b)
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FIG. 3. Angular dependence of the total transmission through the nonmagnetic spacer assuming multiple scattering in the central Ru layer
calculated for 12 energy levels above the Fermi energy, En = (0.125 eV)n. Panels (a)–(d) show transmissions for electrons moving from the left
to the right, whiles panels (e)–(h) correspond to transmissions of electrons moving from the right to the left. The diagonal elements T↑↑, shown
in (a) and (e), and T↓↓, shown in (d) and (h), describe spin-conserving transmissions for the spin-up and the spin-down channel, respectively.
The off-diagonal elements, T↑↓, shown in (b) and (f), and T↓↑, shown in (c) and (g), denote the spin-flip transmissions of electrons changing
their spin from down to up and up to down, respectively.

Analogically, by interchanging the electrons’ directions,
one can rewrite Eqs. (10)–(18) for the currents moving in the
opposite direction.

C. Multiple scattering

The full treatment of the hot electron transiting through the
Ni/Ru/Fe trilayer requires taking into account the multiple
internal reflections within the Ru spacer. The total transmis-
sion matrix for electrons moving from the left to the right is
defined as

−→
T = −→

T (2)R(θ )

[ ∞∑
n=0

(
←−
R (1)R(θ )

−→
R (2)R(θ ))n

]
−→
T (1), (19)

where

←−
R (1) = I − ←−

T (1) =
(←−

R (1)
↑ 0

0
←−
R (1)

↓

)
(20)

is the reflection matrix of the first interface (Ni/Ru) for elec-
trons moving to the left, where I is the 2 × 2 unit matrix, and

−→
R (2) = I − −→

T (2) =
(−→

R (2)
↑ 0

0
−→
R (2)

↓

)
(21)

is the reflection matrix of the second interface (Ru/Fe) for
electrons moving to the right. It can be easily seen that the
simplified transmission given by Eq. (11) is the first term of
the series which constitutes the full transmission in Eq. (19).
Even though formula (19) now incorporates the possibility
of multiple internal reflections, it still assumes, just like the
simplified version, the lack of coherence.

Similarly, we can define the total transmission matrix for
electrons moving from the right to the left as

←−
T = ←−

T (1)R(θ )

[ ∞∑
n=0

(
−→
R (2)R(θ )

←−
R (1)R(θ ))n

]
←−
T (2). (22)

In the parallel magnetic configuration, for θ = 0, the above
equations lead to

−→
T σ = −→

T (1)
σ

−→
T (2)

σ

[ ∞∑
n=0

(←−
R (1)

σ

−→
R (2)

σ

)n

]
, (23a)

←−
T σ = ←−

T (1)
σ

←−
T (2)

σ

[ ∞∑
n=0

(←−
R (1)

σ

−→
R (2)

σ

)n

]
, (23b)

for both σ ∈ {↑,↓}, which have as solutions

−→
T σ =

−→
T (1)

σ

−→
T (2)

σ

1 − ←−
R (1)

σ

−→
R (2)

σ

, (24a)

←−
T σ =

←−
T (1)

σ

←−
T (2)

σ

1 − ←−
R (1)

σ

−→
R (2)

σ

. (24b)

Thus, considering internal multiple reflections in the
nonmagnetic spacer might substantially increase the total
transmissions. Moreover, the angular dependence of the trans-
missions might depart from the simple sinelike dependence.
Figure 3 shows the angular dependence of the transmis-
sion probabilities calculated for different energies, En =
(0.125 eV)n with n = 1, 2, . . . , 12, above the Fermi level.

Figures 3(a)–3(d) show transmissions for electrons moving
from the left to the right, while Figs. 3(e)–3(h) contain trans-
missions for electrons moving from the right to the left. In
both cases we show the diagonal elements of the transmission
matrices, T↑↑ and T↓↓, which correspond to spin-conserving
transmissions through the spacer for the spin-up and the spin-
down channel, respectively. The off-diagonal elements of the
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FIG. 4. Comparison of the energy dependence of electron trans-
missions through the nonmagnetic spacer of Ni/Ru/Fe, calculated
using three different models: quantum coherent transport (squares),
Eq. (11) without considering multiple internal reflections in the Ru
layer (circles), and Eq. (19) considering internal multiple reflections
of electrons on the Ru interfaces (triangles). Panels (a) and (b) show
transmissions of electrons in the spin-up channel, while panels
(c) and (d) show transmissions of electrons in the spin-down channel.
In panels (a) and (c) we plot transmissions of electrons moving from
the left to the right (Ni → Fe); in panels (b) and (d) transmissions
for electrons moving from the right to the left (Ni ← Fe) are plotted.

transmission matrix, T↑↓ and T↓↑, correspond to the spin-
flip transmissions, which mix the spin channels. Obviously,
the spin-conserving transmissions reach their maximum for
θ = 0, i.e., in the parallel magnetic configuration, when
the spin-flip terms reach zero. Oppositely, for θ = π , i.e.,
in the antiparallel magnetic configuration, the electrons pass-
ing the nonmagnetic spacer are injected into the opposite spin
channel. Thus, the spin-flip transmissions are maximal, while
the spin-conserving transmissions disappear.

The above described model for the transmissions of elec-
trons through the noncollinear system combines the results of
ab initio calculations with the classical formula for noncoher-
ent multiple reflections. To test the model we shall compare
the transmissions obtained from (11) and (19) with the re-
sults of explicit calculations, by using the method outlined in
Sec. II C, of spin-dependent transmission through the Ni/Ru
(2 nm)/Fe trilayer, where Ni and Fe form the semi-infinite
electrodes.

A comparison of all three models of the Ni/Ru/Fe trans-
missions is shown in Fig. 4. Comparing the semiclassical
transport model with and without internal reflections, one
can notice a significant increase of transmissions when re-
flections are included. Furthermore, it can be seen that the
semiclassical approach including internal multiple reflections
is in reasonably good agreement with the fully quantum-
mechanical approach. Therefore, in the next sections we shall
adapt the semiclassical approach including multiple internal
reflections to model the spin-dependent transport through the
thin nonmagnetic spacer.

Having established the way to calculate transmissions for a
noncollinear system, we can now proceed with the solution of
Eq. (2). From this equation we obtain the time dependence of
the spin density as well as spin fluxes for each energy and spin
channel in each point of the discretized trilayer. This allows us
to inspect the laser-induced demagnetization in the magnetic
layers and to define the spin-transfer torques acting on the
magnetizations. The results will be discussed in the following
sections.

IV. DEMAGNETIZATION

In this section we focus on the effect of laser-induced
ultrafast demagnetization in the studied trilayer. We start with
the collinear magnetic configurations. Since this case can be
described within the original model of superdiffusive hot-
electrons transport [53], the comparison of the results with the
model used in this paper will serve as a test of the validity of
our approach, in particular the assumption of the negligible
spacer thickness. In the latter part of this section, we will
focus on the angular dependence of the demagnetization in
both magnetic layers.

In our calculations we assumed that the original nonther-
mal excitation is caused by the Gaussian laser pulse with
the halfwidth tp = 35 fs. In the experimental study by Rudolf
et al., Al and Ni layers together absorb more than 58% of
the incident light, which was about 2.5 times as much as
the Fe layer [26]. Thus, for simplicity, we assumed that the
excited electrons are homogeneously distributed throughout
the Ni layer and nowhere else. The energy distribution of
the excited population was set to be constant over the in-
terval [εFermi, εFermi + 1.5 eV]. In the calculations the energy
dependence over this range was discretized on a grid with
ε = 0.125 eV, known from previous experience to be suf-
ficiently precise. We assumed that the areal electron density
excited by the laser pulse is 0.1 electron per energy/spin level
in each computational cell of the Ni layer. This value roughly
corresponds to an energy density absorbed in the 5 nm Ni
layer of ∼4.7 mJ/cm2 (cf. [60]). Since the numbers of excited
electrons scale linearly with the excitation density, they can be
simply recalculated for any laser intensity.

A. Collinear magnetic configurations

Figure 5 shows the time evolution of the magnetization
in the Ni and Fe magnetic layer in the studied multilayer
due to the laser pulse, calculated for the collinear magnetic
configurations, parallel (P) and antiparallel (AP). The re-
sults for varying thickness of the Ru spacer, given by x,
are plotted using the lines of different type and color. The
x = 0.0 nm case was calculated using the multiple-reflections
formulas (19) and (22) and the values of interface transmis-
sions from Figs. 2(a)–2(f). The finite thickness cases were
calculated using the standard, collinear version of the su-
perdiffusive transport model of Ref. [53] which is applicable
in this case. Note that the multiple reflections within the spacer
are naturally included in this version of the formalism. We
further note that (diffusive) remagnetization processes [61] are
not included in the simulations.
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FIG. 5. Time dependence of the magnetization of the Fe and
Ni layer in the Al(3)/Ni(5)/Ru(x)/Fe(5)/Ru multilayer due to the
laser pulse, (a) in the parallel magnetic configuration, and (b) in the
antiparallel magnetic configuration. The time dependence of the laser
fluence is given by the red filled area.

Comparing the results for x = 0 with the finite-width
spacer model, one can see a qualitative agreement of both
models. Importantly, in accord with the previous calculations
and experiments [26] we observe an enhancement of the Fe
magnetization in the P configuration. In the AP configuration
the magnetizations decrease in both layers. As the spacer
width increases, the demagnetization of the Ni layer increases.
This is because in the model with x = 0, electrons moving
towards the Fe layer have to overcome the total reflectivity
of both iterfaces (Ni/Ru and Ru/Fe). In the model with finite
thickness the electrons can flow into the Ru layer. Since the
transmission of Ni/Ru interface [Fig. 2(b)] is much higher
than that of the effective Ni/Fe interface [Fig. 2(g)], the
demagnetization is higher when x > 0. Moreover, with in-
creasing x, the demagnetization approaches a constant value,
which is a sign of a finite spin diffusion length in the Ru
layer. Similarly, in the P configuration the laser-induced mag-
netization enhancement in the Fe layer becomes smaller as
x increases, because some electrons relax in the Ru layer, or
are reflected from the Ru/Fe interface. Oppositely, in the AP
configuration one can observe a smaller demagnetization in
the Fe layer for the same reason.

We can conclude that the zero-width model does reproduce
correctly the trends observed in calculations with a finite
spacer thickness. What’s more, the numerical results do not
deviate too strongly from those corresponding to experimental
thicknesses, i.e., x ∼ 1–2 nm.
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FIG. 6. Time dependence of the magnetization in (a) the nickel
and (b) the iron layer caused by the femtosecond laser pulse, calcu-
lated in the collinear and noncollinear magnetic configurations given
by the angle θ . The time dependence of the laser fluence is given by
the red filled area.

B. Noncollinear magnetic configurations

Next we shall focus on the noncollinear magnetic config-
urations. Figure 6 shows the demagnetization of Ni and Fe
layers calculated for different angles between their magnetiza-
tion directions. The calculations were done in the zero-width
spacer limit. First, we can notice that the magnetic configura-
tion of the Fe layer, given by angle θ , has almost no influence
on the demagnetization of the Ni layer. This is because Ni
is demagnetized directly by the laser pulse. The electrons
reflected from the spacer or secondary electrons generated in
the multilayer have just a minor effect on the total demagneti-
zation of Ni. In contrast, the magnetization of the Fe layer is
strongly affected by the magnetic configuration. As the angle
θ changes from 0 to π , we can see a direct crossover from
magnetization enhancement in the Fe layer, to magnetization
reduction. In Fig. 7 we plot the total angular dependence of the
demagnetization as a function of θ . To this end, we calculated
the magnetization of the Ni and Fe layers after 2 ps, when all
the spin currents in the system have become zero. While the Fe
magnetization monotonously decreases with θ , the magnetiza-
tion in the Ni layer shows a global minimum, which, although
shallow, corresponds to a maximum demagnetization for a
certain noncollinear configuration as shown in Fig. 7.

V. SPIN-TRANSFER TORQUE

Lastly, we inspect the spin-transfer torque acting on both
magnetic layers. To define the STT action in the Fe magnetic
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FIG. 7. The magnetization of (a) the nickel layer and (b) the iron
layer as a function of angle θ between the magnetizations, calculated
at 2 ps after irradiation with a femtosecond laser pulse.

layer, we need to calculate the spin current of the electrons
moving from the left to the right at the left- and right-hand
sides of the Ru spacer. In other words, we need to calculate
the spin current heading from Ni to the Ru spacer and the
one incoming into the Fe layer. The spin current is calculated
as [62]

−→
J s(t ) = h̄

2

Nε∑
i=1

[
−→
j↑ (εi, t ) − −→

j↓ (εi, t )] m̂Ni, (25)

where Nε = 12 is the number of the hot electrons energy
levels used in the simulation, and m̂Ni is a unit vector along the
Ni magnetization. Likewise, the spin current on the right-hand
side is given by

−→
J′

s (t ) = h̄

2

Nε∑
i=1

[
−→
j′↑ (εi, t ) − −→

j′↓ (εi, t )] m̂Fe, (26)

where m̂Fe is a unit vector along the Fe magnetization.
Note that the form of Eqs. (25) and (26) describes only
the longitudinal spin currents with implicit assumption that
the transversal components are entirely absorbed in the inter-
face zone (cf. [63]). The total spin-transfer torque acting on
the Fe magnetization is thus [64]

τFe = −[Js(t ) − J′
s(t )]. (27)

The STT τFe cannot influence the magnitude of the magneti-
zation. Thus, we are interested only in the STT component,
which lies in the plane defined by the vectors m̂Ni and m̂Fe,

FIG. 8. Time dependence of the spin-transfer torque acting on
(a) the Ni and (b) the Fe magnetization, excited by a femtosecond
laser pulse per area of a2 with a being the crystal lattice constant.
The STT is calculated for different magnetic configurations given by
the angle between the magnetizations, θ . The STT is given in units
of (h̄/2) fs−1. The red filled area corresponds to the time dependence
of the laser pulse.

which can change the angles between the two magnetizations,

τθ Fe(t ) = τFe · êθ , (28)

where êθ = (cos θ, 0,− sin θ ). Analogically, one can define
the STT acting on the Ni magnetic layer, taking into account
hot electrons moving from the Fe magnetic layer through
the Ru spacer. Figure 8 depicts the time dependence of the
spin-transfer torque action in the magnetic layers at different
magnetic configurations given by the mutual angle, θ . As
expected, there is no spin-transfer torque in the collinear mag-
netic configurations. Let us start with the analysis of the STT
action on the Fe magnetizations, shown in Fig. 8(b). Both its
onset and maximum correlate closely with the same features
of the laser pulse itself, with the delay being practically nonex-
istent for the onset and only about 20 fs for the maximum.
This suggests that the torque acting in the Fe layer is primarily
generated by the hot electrons, which were excited directly by
the laser pulse in the Ni layer. Afterwards it starts to decrease,
which is a consequence of hot electrons’ relaxation and decay
of the spin currents. The spin-transfer torque in the Fe layer
disappears after ∼300 fs. Moreover, we can see that the torque
in the Fe layer appears to be roughly symmetric with respect
to θ = π/2.

Let us focus now on the action of the torque on the moment
of the Ni layer, shown in Fig. 8(a). The STT acting in this
layer is mostly generated by the left-moving electrons coming
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FIG. 9. Angular dependence of the total angular momentum due
to hot electron-induced STT absorbed in (a) the Ni, and (b) the Fe
magnetic layer per area of a2 with a being the crystal lattice constant.
Lθ is given in the units of h̄/2.

from the direction of the Fe layer. These are the hot electrons
reflected from the interfaces or the secondary ones excited in
the Fe layer. Therefore, the STT magnitude in the Ni layer is
about ten times smaller than that in Fe. One can also notice a
later onset and longer time required for reaching the maximum
value of the STT than in the Fe layer. The origin of the elec-
trons that generate a torque in Ni is recognized in its angular
dependence, too. In contrast to the STT in Fe, the torque
in the Ni layer shows a significant asymmetry with respect
to θ = π/2. More importantly, when the angle θ becomes
closer to the AP magnetic configuration, the STT changes its
direction (sign) after some time, which can be seen for curves
calculated for θ = 0.8π .

As we can see from Fig. 8, the variation of the STT due
to laser-induced hot-electron transport is by far faster than
the expected magnetization response, which is usually in the
gigahertz regime. Therefore, we argue that the total layer
magnetization will respond to the total momentum absorbed
in the layer rather than the time-dependent STT. Therefore, in
Fig. 9 we show the angular dependence of the total momentum
absorbed in the magnetic layer defined as

Lθ (θ ) =
∫ ∞

−∞
dt τθ (θ, t ). (29)

As expected, Lθ in the Fe layer is a sinelike function with
its maximum close to θ = π/2. On the other hand, Lθ in the
Ni layer, which is about ten times smaller than that in the Fe

layer, shows a strongly asymmetric behavior and changes its
sign in certain noncollinear magnetic configurations.

VI. DISCUSSION AND CONCLUSIONS

We presented results of our analysis of laser-induced trans-
port in magnetic multilayers consisting of Al/Ni/Ru/Fe/Ru
layers. The effect of the interfaces was included in the
superdiffusive transport model via the spin- and energy-
dependent averaged reflection and transmission probabilities.
These were calculated, for all interfaces separately at first,
using the combination of the ab initio TB-LMTO and
WFM [44,45] methods. The central part of the multilayer,
Ni/Ru/Fe, was treated as a single, effective interface. In this
case the parameters were obtained using a semiclassical for-
mula for adding transmissions through two single interfaces.
To test the validity of the semiclasssical approximation we
have compared the results for collinear magnetic configura-
tion with those obtained directly from the TB-LMTO/WFM
method. We have found that the results of the fully quantum-
mechanical calculations can be successfully approximated
using the semiclassical formula, as long as multiple internal
reflections are taken into account.

In order to treat noncollinear magnetic configurations, we
have extended the standard model of superdiffusive spin-
dependent transport [53]. We approximated the central, thin
nonmagnetic Ru spacer, separating two magnetic layers, Ni
and Fe, as a single, effective interface with its transport
properties parametrized by the reflection and transmission
probabilities. The averaged scattering probabilities were cal-
culated in a way allowing for including both the impact of
multiple (noncoherent) scattering at internal interfaces and
the mixing of the spin channels present for the noncollinear
configurations.

The accuracy of our treatment of the central nonmagnetic
layer has been tested in collinear magnetic configurations
by comparing the demagnetization in the magnetic layers
calculated in the current approximation (with zero spacer
thickness) to that calculated using a model with finite spacer
thickness [53]. There is a qualitative agreement between both
models; however, quantitatively we observe differences. Our
approach provides a slightly smaller demagnetization of the
Ni layer. On the other hand, one observes a stronger effect in
the Fe magnetic layer. These effects can be explained by the
omission of the bulk part of the Ru layer in our model. More
specifically, in the nonzero-thickness-spacer model, the effect
in the Fe layer is reduced due to electron scattering in the Ru
spacer during the superdiffusive transport. This effect is not
included in the transport parameters in the current model with
zero-thickness Ru spacer.

Our calculations reproduced the main features of ultrafast
demagnetization observed in experiment [26], i.e., ultrafast
demagnetization of the Ni and Fe layer in the parallel mag-
netic configuration, and ultrafast increase of the magnetization
in the Fe layer in the antiparallel one. In addition to this, we
have shown that there is a smooth transition between negative
and positive change of magnetization in the Fe layer as the
angle between Ni and Fe magnetization vectors varies from
0 to π . On the other hand, for the studied multilayer, the
demagnetization of the Ni magnetic layer does not seem to
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be meaningfully affected by the magnetic configuration. Con-
sequently, for a certain noncollinear magnetic configuration,
one can observe demagnetization in the Ni magnetic layer, but
effectively no total change of magnetization in the Fe layer.

We also studied the spin-transfer torque acting in both
magnetic layers. When hot electrons were excited just in Ni,
the spin current flows mainly from Ni towards the Fe layer and
leads to a spin-transfer torque acting on the Fe magnetization.
Our simulations have shown that the total transverse angular
momentum (time-integrated spin-transfer torque) passing the
nonmagnetic spacer depends on the angle between magneti-
zations as a sinelike function, which resembles the regular
(“cold”) spin-transfer torque in magnetic spin valves [1,64].
We also observed a spin current flowing from Fe towards
the Ni layer. This spin current consists of electrons reflected
from the Ru/Fe interface and also of hot electrons excited
secondarily in the Fe layer. Interestingly, the STT changes
sign when the angle between the magnetization of Fe and
Ni layers exceeds θ ≈ 0.6π . The reason for this behavior
is that for these values of θ the reflected electrons become
polarized mostly in the direction of the Fe magnetization.
Consequently, the angular dependence of the total transverse
angular momentum passing from Fe to the Ni layer becomes
zero at certain noncollinear configurations and then changes
its sign for increased angles.

In summary, the model presented in this paper fills the
gap in the current research of the laser-induced spin transport
in multilayered nanostructures. On the one hand, we pro-
vided a systematic study of the effect of a thin nonmagnetic

spacer, including its interfaces, on the laser-pulse-induced
demagnetization in the magnetic layers. The proper treatment
of the interfaces might have a crucial role in explanation
of the contrasting results of some recent experimental stud-
ies [26,27]. On the other hand, our study goes beyond
the standard examination of laser-induced transport in the
collinear magnetic configurations, and allows one to study
nonequilibrium electronic spin transport in noncollinear mag-
netic heterostructures, which might open new ways toward
laser-driven magnetization switching in spintronic devices.
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