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Effect of vertex corrections on the enhancement of Gilbert damping in spin pumping
into a two-dimensional electron gas
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We theoretically consider the effect of vertex correction on spin pumping from a ferromagnetic insulator
(FI) into a two-dimensional electron gas (2DEG) in which the Rashba and Dresselhaus spin-orbit interactions
coexist. The Gilbert damping in the FI is enhanced by elastic spin-flipping or magnon absorption. We show that
the Gilbert damping due to elastic spin-flipping is strongly enhanced by the vertex correction when the ratio of
the two spin-orbit interactions is near a special value at which the spin relaxation time diverges while that due to
magnon absorption shows only small modification. We also show that the shift in the resonant frequency due to
elastic spin-flipping is strongly enhanced in a similar way as the Gilbert damping.
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I. INTRODUCTION

In the field of spintronics [1,2], spin pumping has long
been used as a method of injecting spins into various materials
[3–5]. Spin pumping was first employed to inject spins from
a ferromagnetic metal into an adjacent normal metal (NM)
[6–9]. Subsequently, it was used on ferromagnetic insulator
(FI)/NM junctions [10]. Because spin injection is generally
related to the loss of the magnetization in ferromagnets,
it affects the Gilbert damping measured in ferromagnetic
resonance (FMR) experiments [11]. When we employ spin
injection from the FI, the modulation of the Gilbert damping
reflects the properties of the spin excitation in the adjacent ma-
terials, such as magnetic thin films [12], magnetic impurities
on metal surfaces [13], and superconductors [14–17]. This is
in clear contrast with the Gilbert damping of a bulk FI, which
reflects properties of electrons and phonons [18–20].

An attractive strategy is to combine spin pumping with
spin-related transport phenomena in semiconductor mi-
crostructures [1,21]. A two-dimensional electron gas (2DEG)
in a semiconductor heterostructure is an easily controlled
physical system that has been used in spintronics devices
[22–25]. A 2DEG system has two types of spin-orbit in-
teraction, i.e., Rashba [26,27] and Dresselhaus spin-orbit
interactions [28,29].

In our previous work [30], we theoretically studied spin
pumping into a 2DEG in semiconductor heterostructures with
both Rashba and Dresselhaus spin-orbit interactions, which
can be regarded as a prototype for a 2DEG with a complex
spin-texture near the Fermi surface [see Fig. 1(a)]. In that
study, we formulated the modulation of the Gilbert damp-
ing in the FI by using the second-order perturbation with
respect to the interfacial coupling [15,31–35] and related it
to the dynamic spin susceptibility of the 2DEG. We further

calculated the spin susceptibility and obtained characteristic
features of the Gilbert damping modulation. This modulation
contains two contributions: elastic spin-flipping, which dom-
inates at low resonant frequencies, and magnon absorption,
which dominates at high resonant frequencies. In addition, we
clarified that these contributions have different dependence on
the in-plane azimuth angle θ of the ordered spin in the FI [see
Fig. 1(b)].

When the Rashba and Dresselhaus spin-orbit interactions
have almost equal magnitudes, spin relaxation by nonmag-
netic impurity scattering is strongly suppressed because the
direction of the effective Zeeman field generated by the spin-
orbit interactions is unchanged along the Fermi surface. Due
to this substantial suppression of spin relaxation, there emerge
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FIG. 1. (a) Schematic picture of junction composed of a ferro-
magnetic insulator (FI) and a two-dimensional electron gas (2DEG)
realized in a semiconductor heterostructure. Stot indicates the total
spin of the FI. We consider a uniform spin precession of the FI in-
duced by microwave irradiation. (b) Laboratory coordinates (x, y, z)
and the magnetization-fixed coordinates (x′, y′, z′). The red arrow
indicates the expectation value of the spontaneous spin polarization
of the FI, 〈S〉.
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characteristic physical phenomena such as the persistent spin
helix state [36–39]. In general, the vertex corrections have
to be taken into account to treat various conservation laws,
i.e., the charge, spin, momentum, and energy conservation
laws in calculation of the response functions [40–43]. There-
fore, for better description of realistic systems, we need to
consider vertex correction, which captures effect of impurity
more accurately by reflecting conservation laws. However, the
vertex corrections were neglected in our previous work [30].
This means that our previous calculation should fail when the
Rashba and Dresselhaus spin-orbit interactions compete.

In this study, we consider the same setting, i.e., a junction
composed of an FI and a 2DEG as shown in Fig. 1(a), and
examine effect of the spin conservation law by taking the
vertex correction into account. We theoretically calculate the
modulation of the Gilbert damping and the shift in the FMR
frequency by solving the Bethe-Salpeter equation within the
ladder approximation. We show that the vertex correction sub-
stantially changes the results, in particular, when the strengths
of the Rashba- and Dresselhaus-type spin-orbit interactions
are chosen to be almost equal but slightly different; Specifi-
cally, both the Gilbert damping and the FMR frequency shift
are largely enhanced at low resonant frequencies reflecting
strong suppression of spin relaxation. This remarkable feature
should be able to be observed experimentally. In contrast, the
vertex correction changes their magnitude only slightly at high
resonant frequencies.

Before describing our calculation, we briefly comment on
study of the vertex corrections in a different context. In early
studies of the spin Hall effect, there was a debate on the
existence of intrinsic spin Hall effect [44–46]. By considering
the vertex corrections, the spin Hall conductivity, which is cal-
culated from the correlation function between the current and
spin current, vanishes in the presence of short-range disorder
for simple models even if its strength is infinitesimally small
[47–49]. This seemingly contradictory result stimulated theo-
retical researches on realistic modified models [50,51] as well
as definition of the spin current [52–56]. However, we stress
that the vertex corrections for the dynamic spin susceptibility,
which is calculated from the spin-spin correlation function,
have no such subtle problem [57] because it does not include
the spin current.

The rest of this work is organized as follows. In Sec. II,
we briefly summarize our model of the FI/2DEG junction
and describe a general formulation for the magnon self-energy
following Ref. [30]. In Sec. III, we formulate the vertex
correction that corresponds to the self-energy in the Born
approximation. We show the modulation of the Gilbert damp-
ing and the shift in the FMR frequency in Secs. IV and V,
respectively, and discuss the effect of the vertex correction in
detail. Finally, we summarize our results in Sec. VI. The six
Appendices detail the calculation in Sec. III.

II. FORMULATION

Here, we describe a model for the FI/2DEG junction
shown in Fig. 1(a) and formulate the spin relaxation rate in an
FMR experiment. Because we have already given a detailed
formulation on this model in our previous paper [30], we will
briefly summarize it here.

FIG. 2. Schematic picture of the spin-splitting energy bands of
2DEG for (a) β/α = 0 and (b) β/α = 1. The red and blue arrows
represent spin polarization of each band. In the case of (b), the spin
component in the direction of the azimuth angle 3π/4 is conserved.

A. Two-dimensional electron gas

We consider a 2DEG whose Hamiltonian is given as
HNM = Hkin + Himp, where Hkin and Himp describe the kinetic
energy and the impurity, respectively. The kinetic energy is
given as

Hkin =
∑

k

(c†
k↑ c†

k↓) ĥk

(ck↑
ck↓

)
, (1)

ĥk = ξk Î − heff (k) · σ, (2)

where ckσ is the annihilation operator of conduction electrons
with wave number k = (kx, ky ) and z component of the spin,
σ (=↑,↓), Î is a 2 × 2 identity matrix, σa (a = x, y, z) are
the Pauli matrices, ξk = h̄2k2/2m∗ − μ is the kinetic energy
measured from the chemical potential, and m∗ is an effective
mass. Hereafter, we assume that the Fermi energy is much
larger than the other energy scales such as the spin-orbit
interactions, the temperature, and the ferromagnetic resonance
energy. Then, the low-energy part of the spin susceptibil-
ity depends on the chemical potential μ and the effective
mass m∗ only through the density of states at the Fermi
energy, D(εF).

The spin-orbit interaction is described by the effective Zee-
man field,

heff (k) = |k|(−α sin ϕ − β cos ϕ, α cos ϕ + β sin ϕ, 0)

� kF(−α sin ϕ − β cos ϕ, α cos ϕ + β sin ϕ, 0), (3)

where α and β, respectively, denote the amplitudes of the
Rashba- and Dresselhaus-type spin-orbit interactions and the
electron wave number is expressed by polar coordinates
as (kx, ky) = (|k| cos ϕ, |k| sin ϕ). In the second equation of
Eq. (3), we have approximated |k| with the Fermi wave num-
ber kF assuming that the spin-orbit interaction energies, kFα

and kFβ, are much smaller than the Fermi energy.1 When only

1In semiconductor heterostructures, kFα and kFβ are typically
less than 1 meV. For example, kFα was estimated as 0.07 meV
in GaAs/AlGaAs heterostructures [58] using the electron density
n = 5.0 × 1015 m−2 and the effective mass m∗ = 0.067me [59]. In
addition, we obtain the Fermi wave number kF � 1.8 × 108 m−1 and
the Fermi energy εF � 20 meV using the same electron density. We
note that εF 	 kFα holds well.
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the Rashba spin-orbit interaction exists (β = 0), the energy
band is spin-splitted as shown in Fig. 2(a). The spin polariza-
tion of each band depends on the azimuth angle ϕ because
it is determined by the effective Zeeman field heff which is
a function of ϕ as seen in Eq. (3). In the special case of
β/α = 1, the spin polarization always becomes parallel to the
direction of the azimuth angle 3π/4 in the xy plane as shown
in Fig. 2(b). Then, the spin component in this direction is
conserved. This observation indicates that effect of the spin
conservation may become important when the two spin-orbit
interactions compete (α � β).

The Hamiltonian of the impurity potential is given as

Himp = u
∑
i∈imp

∑
σ


†
σ (ri )
σ (ri ), (4)

where 
σ (r) = A−1/2 ∑
k ckσ eik·r, A is the area of the junc-

tion, u is the strength of the impurity potential, and ri is the
position of the impurity site.

The finite-temperature Green’s function for the conduction
electrons is defined by a 2 × 2 matrix ĝ(k, iωm) whose ele-
ments are

gσσ ′ (k, iωm) =
∫ h̄β

0
dτ eiωmτ gσσ ′ (k, τ ), (5)

gσσ ′ (k, τ ) = −h̄−1〈ckσ (τ )c†
kσ ′ 〉, (6)

where ckσ (τ ) = eHNMτ/h̄ckσ e−HNMτ/h̄, HNM = Hkin + Himp,
ωm = π (2m + 1)/h̄β is the fermionic Matsubara frequency,
and β is the inverse temperature. By employing the Born
approximation, the finite-temperature Green’s function can
be expressed as

ĝ(k, iωm) = (ih̄ωm − ξk + i
sgn(ωm)/2)Î − heff · σ∏
ν=±

(
ih̄ωm − E ν

k + i
sgn(ωm)/2
) , (7)

where E±
k = ξk ± |heff (ϕ)| is the spin-dependent electron dis-

persion,


 = 2πniu
2D(εF) (8)

is level broadening, and ni is the impurity concentration (see
Appendix A and Ref. [30] for detailed derivation).

As already mentioned, the case of β/α = 1 is special
because the spin component parallel to the direction of the az-
imuth angle 3π/4 in the xy plane is conserved [see Fig. 2(b)].
By defining the spin component in this direction as

s3π/4
tot ≡ 1

2

∑
k

(c†
k+ck+ − c†

k−ck−), (9)

(
ck+
ck−

)
=

(
1/

√
2 e−i3π/4/

√
2

−ei3π/4/
√

2 1/
√

2

)(
ck↑
ck↓

)
, (10)

we can prove [Hkin + Himp, s3π/4
tot ] = 0. When the value of β/α

is slightly shifted from 1, the spin conservation law is broken
slightly and this leads to a slow spin relaxation. As will be dis-
cussed in Secs. IV and V, this slow spin relaxation, which is a
remnant of the spin conservation at β/α = 1, strongly affects
the spin injection from the FI into the 2DEG. To describe this
feature, we need to consider the vertex correction to take the
conservation law into account in our calculation as explained
in Sec. III.

B. Ferromagnetic insulator

We consider the quantum Heisenberg model for the FI
and employ the spin-wave approximation assuming that the
temperature is much lower than the magnetic transition tem-
perature and the magnitude of the localized spins, S0, is
sufficiently large. We write the expectation value of the local-
ized spins in the FI as 〈S〉, whose direction is (cos θ, sin θ, 0)
as shown in the Fig. 1(b). Using the Holstein-Primakov trans-
formation, the Hamiltonian in the spin-wave approximation is
obtained as

HFI =
∑

k

h̄ωkb†
kbk, (11)

where bk is the magnon annihilation operator with wave
number k, h̄ωk = Dk2 + h̄γ hdc is the energy dispersion of
a magnon, D is the spin stiffness, γ is the gyromagnetic
ratio, and hdc is the externally applied DC magnetic field.
We note that the external DC magnetic field controls the
direction of the ordered spins. We introduce new coordinates
(x′, y′, z′) fixed on the ordered spins by rotating the original
coordinates (x, y, z) as shown in Fig. 1(b). Then, the magnon
annihilation operator is related to the spin ladder operator by
the Holstein-Primakov transformation as Sx′+

k ≡ Sy′
k + iSz′

k =
(2S0)1/2bk. The spin correlation function is defined as

G0(k, iωn) =
∫ h̄β

0
dτ eiωnτ G0(k, τ ), (12)

G0(k, τ ) = −1

h̄

〈
Sx′+

k (τ )Sx′−
k (0)

〉
, (13)

where ωn = 2nπ/h̄β is the bosonic Matsubara frequency. The
spin correlation function is calculated from the Hamiltonian
(11), as

G0(k, iωn) = 2S0/h̄

iωn − ωk − αG|ωn| , (14)

where αG > 0 is a phenomenological dimensionless parame-
ter that describes the strength of the Gilbert damping in the
bulk FI.

C. Effect of the FI/2DEG interface

The coupling between the FI and 2DEG can be accounted
for by the Hamiltonian,

Hint =
∑

k

(
TkSx′+

k sx′−
k + T ∗

k sx′+
k Sx′−

k

)
, (15)

where Tk is an exchange interaction at a clean interface, for
which the momentum of spin excitation is conserved. The spin
ladder operators for conduction electrons, sx′±

k , are obtained
using a coordinate rotation as [30]

sx′±
k = 1

2

∑
σ,σ ′

∑
k′

c†
k′σ (σ̂ x′±)σσ ′ck′±kσ ′, (16)

σ̂ x′± = − sin θ σx + cos θ σy ± iσz, (17)

where σ̂ x′± ≡ σ̂y′ ± iσ̂z′ and⎛
⎝σ̂x′

σ̂y′

σ̂z′

⎞
⎠ =

⎛
⎝ cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎞
⎠

⎛
⎝σx

σy

σz

⎞
⎠.
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Assuming that the interfacial exchange interaction is much
smaller than the spin-orbit interactions, kFα and kFβ [60],2

we perform a second-order perturbation theory with respect
to the interfacial exchange interaction Hint . Accordingly, the
spin correlation function of the FI is calculated as

G(k, iωn) = 1

(G0(k, iωn))−1 − �(k, iωn)
, (18)

�(k, iωn) = |Tk|2Aχ (k, iωn), (19)

where �(k, iωn) is the self-energy due to the interfacial ex-
change coupling and χ (k, iωn) is the spin susceptibility for
conduction electrons per unit area, defined as

χ (k, iωn) =
∫ h̄β

0
dτ eiωnτ χ (k, τ ), (20)

χ (k, τ ) = − 1

h̄A
〈
sx′+

k (τ )sx′−
k (0)

〉
, (21)

where sx′±
k (τ ) = eHNMτ/h̄sx′±

k e−HNMτ/h̄. Within the second-
order perturbation, we only need to calculate the spin
susceptibility for pure 2DEG without considering the junction
because the interfacial coupling is already taken into account
in the prefactor of the self-energy in Eq. (19). The uniform
component of the retarded spin correlation function is ob-
tained by analytic continuation iωn → ω + iδ, as

GR(0, ω) = 2S0/h̄

ω − (ω0 + δω0) + i(αG + δαG)ω
, (22)

δω0

ω0
� 2S0|T0|2A

h̄ω0
Re χR(0, ω0), (23)

δαG � −2S0|T0|2A
h̄ω0

Im χR(0, ω0), (24)

where the superscript R indicates the retarded component,
ω0 = ωk=0 (=γ hdc) is the FMR frequency, and δω0 and δαG

are respectively the changes in the FMR frequency and Gilbert
damping due to the FI/2DEG interface. We note that in con-
trast with the bulk Gilbert damping αG, the increase of the
Gilbert damping, δαG, can be related directly to the spin
susceptibility of 2DEG as shown by Eq. (24). In fact, mea-
surement of δαG has been utilized as a qualitative indicator
of spin current through a junction [61,62]. In Eqs. (23) and
(24), we made an approximation by replacing ω with the FMR
frequency ω0 by assuming that the FMR peak is sufficiently
sharp (αG + δαG � 1). Thus, both the FMR frequency shift
and the modulation of the Gilbert damping are determined by
the uniform spin susceptibility of the conduction electrons,
χ (0, ω). In what follows, we include the vertex correction for
calculation of χ (0, ω), which was not taken into account in
our previous work [30].

2Although the interfacial exchange coupling in the present system
has not been examined experimentally, its order can be estimated
from the exchange bias between a ferromagnetic insulator and a
metal [60]. This indicates that the interfacial exchange coupling for
a YIG/semiconductor magnetic junction is much less than 0.1 meV,
justifying our approximation.

(a)

(b)

FIG. 3. Feynman diagrams of (a) the uniform spin susceptibility
and (b) the Bethe-Salpeter equation for the ladder-type vertex func-
tion derived from the Born approximation. The cross with two dashed
lines indicates interaction between an electron and an impurity.

III. VERTEX CORRECTION

We calculate the spin susceptibility in the ladder approx-
imation [42,43] that obeys the Ward-Takahashi relation with
the self-energy in the Born approximation [57]. The Feynman
diagrams for the corresponding spin susceptibility and the
Bethe-Salpeter equation for the vertex function are shown in
Figs. 3(a) and 3(b), respectively. The spin susceptibility of
2DEG is written as

χ (0, iωn) = 1

4βA
∑
k,iωm

Tr[ĝ(k, iωm)
̂(k, iωm, iωn)

× ĝ(k, iωm + iωn)σ̂ x′−], (25)

where the vertex function 
̂(k, iωm, iωn) is a 2 × 2 matrix
whose components are determined by the Bethe-Salpeter
equation [see Fig. 3(b)],


σ ′σ (k, iωm, iωn)

= (σ̂ x′+)σ ′σ + u2ni

A
∑

q

∑
σ1σ2

gσ ′σ2 (q, iωm)

×
σ2σ1 (q, iωm, iωn)gσ1σ (q, iωm + iωn). (26)

Since the right-hand side of this equation is independent of k,
the vertex function can simply be described as 
̂(iωm, iωn).
We express the vertex function with the Pauli matrices as


̂(iωm, iωn) ≡ EÎ + X σ̂x′ + Y σ̂y′ + Zσ̂z′ , (27)

where E , X , Y , and Z will be determined self-consistently
later. The Green’s function for the conduction electrons can
be rewritten as

ĝ(q, iωm) = AÎ + Bσ̂x′ + Cσ̂y′

D
, (28)

A(iωm) = ih̄ωm − ξq + i


2
sgn(ωm), (29)

B = −heff cos(φ − θ ), (30)

C = −heff sin(φ − θ ), (31)

D(iωm) =
∏
ν=±

[
ih̄ωm − E ν

q + i


2
sgn(ωm)

]
, (32)
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where φ is the azimuth angle by which the effective Zeeman
field is written as heff = (heff cos φ, heff sin φ, 0). This heff is
written as heff � kF

√
α2 + β2 + 2αβ sin 2ϕ using the Fermi

wave number kF. By substituting Eqs. (27) and (28) into the
second term of Eq. (26) and by the algebra of Pauli matrices,
we obtain

u2ni

A
∑

q

ĝ(q, iωm)
̂(q, iωm, iωn)ĝ(q, iωm + iωn)

= E ′ Î + X ′σ̂x′ + Y ′σ̂y′ + Z ′σ̂z′ , (33)

where⎛
⎜⎜⎝

E ′
X ′
Y ′
Z ′

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

�0 + �1 0 0 0
0 �0 + �2 �3 0
0 �3 �0 − �2 0
0 0 0 �0 − �1

⎞
⎟⎟⎠

×

⎛
⎜⎜⎝

E
X
Y
Z

⎞
⎟⎟⎠, (34)

and � j (iωm, iωn) ( j = 0, 1, 2, 3) are expressed as

�0(iωm, iωn) = u2ni

A
∑

q

AA′

DD′ , (35)

�1(iωm, iωn) = u2ni

A
∑

q

h2
eff

DD′ , (36)

�2(iωm, iωn) = u2ni

A
∑

q

h2
eff cos 2(φ − θ )

DD′ , (37)

�3(iωm, iωn) = u2ni

A
∑

q

h2
eff sin 2(φ − θ )

DD′ , (38)

using the abbreviated symbols, A = A(iωm), A′ = A(iωm +
iωn), D = D(iωm), and D′ = D(iωm + iωn). Here, we have
used the fact that the contributions of the first-order terms of
B and C become zero after replacing the sum with the integral
with respect to q and performing the azimuth integration. We
can solve for E , X , Y , and Z by combining Eq. (34) and the

Bethe-Salpeter equation (26), which we rewrite as

EÎ + X σ̂x′ + Y σ̂y′ + Zσ̂z′

= σ̂ x′+ + E ′ Î + X ′σ̂x′ + Y ′σ̂y′ + Z ′σ̂z′ , (39)

with σ̂ x′+ = σ̂y′ + iσ̂z′ . The solution is

E = 0, (40)

X = �3

(1 − �0)2 − �2
2−�2

3

, (41)

Y = 1 − �0 − �2

(1 − �0)2 − �2
2 − �2

3

, (42)

Z = i

1 − �0 + �1
. (43)

By replacing the sum with an integral as ξ ≡ ξq,

1

A
∑

q

(· · · ) � D(εF)
∫ ∞

−∞
dξ

∫ 2π

0

dϕ

2π
(· · · ), (44)

Eqs. (35)–(38) can be rewritten as

� j (iωm, iωn) = θ (−ωm)θ (ωm + ωn)�̃ j (iωn), (45)

�̃ j (iωn) = i


4

∫ 2π

0

dϕ

2π

×
∑

ν,ν ′=±

f j (ν, ν ′, ϕ)

ih̄ωn + (ν − ν ′)heff (ϕ) + i

, (46)

where we have used Eq. (8), θ (x) is a step function, and

f0(ν, ν ′, ϕ) = 1, (47)

f1(ν, ν ′, ϕ) = νν ′, (48)

f2(ν, ν ′, ϕ) = νν ′ cos 2(φ(ϕ) − θ ), (49)

f3(ν, ν ′, ϕ) = νν ′ sin 2(φ(ϕ) − θ ). (50)

For detailed derivation, see Appendix B. Substituting the
Green’s function and the vertex function into Eq. (25), we
obtain

χ (0, iωn) = 1

4βA
∑
k,iωm

2

DD′ [2BCX + (AA′ − B2 + C2)Y − i(AA′ − B2 − C2)Z]. (51)

By summing over k and ωm and by analytical continuation, iωn → ω + iδ, the retarded spin susceptibility is obtained as3

χR(0, ω) = D(εF)h̄ω

2i


[
�̃R

0

(
1 − �̃R

0

) − �̃R
2

(
1 − �̃R

2

) + (
�̃R

3

)2

(
1 − �̃R

0

)2 − (
�̃R

2

)2−(
�̃R

3

)2 + �̃R
0 − �̃R

1

1 − �̃R
0 + �̃R

1

]
− D(εF), (52)

where

�̃R
j = �̃R

j (ω) = �̃ j (iωn → ω + iδ) = i


4�0

∫ 2π

0

dϕ

2π

∑
νν ′

f j (ν, ν ′, ϕ)

h̄ω/�0 + (ν − ν ′)heff/�0 + i
/�0
. (53)

3We note that the uniform spin susceptibility given in Eq. (52) becomes independent of the temperature if the density of state of 2DEG is
assumed to be constant. Although we can derive its temperature-dependent correction by the Sommerfeld expansion, it is small as long as kBT
is much smaller than the Fermi energy.
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A detailed derivation is given in Appendix C. Here, we have introduced a unit of energy, �0 = kFα, for the convenience of
making the physical quantities dimensionless. Using Eqs. (23) and (24), we finally obtain the shift in the FMR frequency and
the modulation of the Gilbert damping as

δω0

ω0
= αG,0 Re F (ω0), (54)

δαG = −αG,0 Im F (ω0), (55)

F (ω) = �0

2π i


[
�̃R

0

(
1 − �̃R

0

) − �̃R
2

(
1 − �̃R

2

) + (
�̃R

3

)2

(
1 − �̃R

0

)2 − (
�̃R

2

)2−(
�̃R

3

)2 + �̃R
0 − �̃R

1

1 − �̃R
0 + �̃R

1

]
− �0

π h̄ω
, (56)

where αG,0 = 2πS0|T0|2AD(εF)/�0 is a dimensionless parameter that describes the coupling strength at the interface. This is
our main result.

The spin susceptibility without the vertex correction can be obtained by taking the first-order term with respect to �̃R
j :

χR(0, ω) � h̄ωD(εF)

2i


[
2�̃R

0 − �̃R
1 − �̃R

2

] − D(εF) = h̄ωD(εF)
∫

dϕ

2π

[
1

h̄ω + i


1 − cos2(φ(ϕ) − θ )

2

+ 1

h̄ω − 2heff (ϕ) + i


1 + cos2(φ(ϕ) − θ )

4
+ 1

h̄ω + 2heff (ϕ) + i


1 + cos2(φ(ϕ) − θ )

4

]
− D(εF). (57)

The imaginary part of χR(0, ω) reproduces the result of
Ref. [30]. Using this expression, the shift in the FMR fre-
quency and the modulation of the Gilbert damping without
the vertex correction are obtained as

δωnv
0

ω0
= αG,0 Re Fnv(ω0), (58)

δαnv
G = −αG,0 Im Fnv(ω0), (59)

Fnv(ω) = �0

2π i


[
2�̃R

0 − �̃R
1 − �̃R

2

] − �0

π h̄ω
, (60)

IV. MODULATION OF THE GILBERT DAMPING

First, we show the result for the modulation of the Gilbert
damping, δαG, for β/α = 0, 1, and 3 and discuss the effect
of the vertex correction by comparing it with the result with-
out the vertex correction in Sec. IV A. Next, we discuss the
strong enhancement of the Gilbert damping near β/α = 1 in
Sec. IV B.

A. Effect of vertex corrections

First, let us discuss the case of β/α = 0, i.e., the case when
only the Rashba spin-orbit interaction exists.4 Figure 4(a)
shows the effective Zeeman field heff along the Fermi surface.
Figures 4(b) and 4(c) show the modulations of the Gilbert
damping without and with the vertex correction. The horizon-
tal axes of Figs. 4(b) and 4(c) denote the resonant frequency
ω0 = γ hdc in the FMR experiment. Note that the modula-
tion of the Gilbert damping, δαG, is independent of θ , i.e.,
the azimuth angle of 〈S〉. The four curves in Figs. 4(b) and

4The result for the case of α/β = 0, i.e., the case when only the
Dresselhaus spin-orbit interaction exists, is the same as the case of
β/α = 0.

4(c) correspond to 
/�0 = 0.1, 0.2, 0.5, and 1.0.5 We find
that these two graphs have a common qualitative feature; the
modulation of the Gilbert damping has two peaks at ω0 = 0
and ω0 = 2�0 and their widths become larger as 
 increases.
The peak at ω0 = 0 corresponds to elastic spin-flipping of
conduction electrons induced by the transverse magnetic field
via the exchange bias of the FI, while the peak at h̄ω0 = 2�0

is induced by spin excitation of conduction electrons due to
magnon absorption [30]. In the case of β/α = 0, the vertex
correction changes the modulation of the Gilbert damping
moderately [compare Figs. 4(c) with 4(b)]. The widths of the
two peaks at ω0 = 0 and ω0 = 2�0 become narrower when
the vertex correction is taken into account (see Appendix D
for the analytic expressions).

The case of β/α = 1 is special because the effective Zee-
man field heff always points in the direction of (−1, 1) or
(1,−1), as shown in Fig. 4(d). The amplitude of heff de-
pends on the angle of the wave number of the conduction
electrons, ϕ,

heff (ϕ) = 2�0| sin(ϕ + π/4)|, (61)

and varies in the range of 0 � 2heff � 4�0. Figures 4(e)
and 4(f) show the modulation of the Gilbert damping with-
out and with the vertex correction for 
/�0 = 0.5. The
five curves correspond to five different angles of 〈S〉, θ =
−π/4,−π/8, 0, π/8, and π/4. The most remarkable feature
revealed by comparing Figs. 4(f) with 4(e) is that the peak
at ω0 = 0 disappears if the vertex correction is taken into
account (see Appendix E for the analytic expressions). In
the subsequent section, we will show that δαG(ω0) has a

5The order of the electron mobility in GaAs/AlGaAs at low tem-
peratures is 105cm2/Vs [63] to 107 cm2/Vs [64]. By using this and
the values in footnote 1, we obtain that 
/�0 is on the order of 10−2

to 1.
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FIG. 4. (Left panels) Effective Zeeman field heff on the Fermi surface. (Middle panels) Modulation of the Gilbert damping, δαnv
G , without

vertex correction. (Right panels) Modulation of the Gilbert damping with vertex correction, δαG. In the middle and right panels, the modulation
of the Gilbert damping is plotted as a function of the FMR frequency, ω0 = γ hdc. The spin-orbit interactions are as follows. (a), (b), (c)
β/α = 0. (d), (e), (f) β/α = 1. (g), (h), (i) β/α = 3. We note that (b), (e), (h) are essentially the same result as Ref. [30].

δ-function-like singularity at ω0 = 0 for β/α = 1 due to the
spin conservation law along the direction of heff .

In the case of β/α = 3, the direction of the effective
Zeeman field heff varies along the Fermi surface [Fig. 4(g)].
Figures 4(h) and 4(i) show the modulation of the Gilbert
damping without and with the vertex correction for 
/�0 =
0.5. For β/α = 3, a peak at ω0 = 0 appears even when the
vertex correction is taken into account. The broad structure
in the range of 4�0 � h̄ω0 � 8�0 is caused by the magnon
absorption process where its range reflects the distribution
of the spin-splitting energy 2heff along the Fermi surface.
By comparing Figs. 4(h) and 4(i), we find that the vertex
correction changes the result only moderately as in the case of
β/α = 0; the peak structure at ω0 = 0 becomes sharper when
the vertex correction is taken into account while the broad
structure is slightly enhanced.

B. Strong enhancement of the Gilbert damping

Here, we examine the strong enhancement of the Gilbert
damping for β/α � 1. As explained in Sec. II A, the spin
component in the direction of the azimuth angle 3π/4 in the
xy plane is exactly conserved at β/α = 1 [see also Fig. 4(d)].
When the value of β/α is shifted slightly from 1, the spin
conservation law is broken but the spin relaxation becomes
remarkably slow. To see this effect, we show the modulation
of the Gilbert damping without and with the vertex correction
for β/α = 1.1 in Figs. 5(a) and 5(b), respectively. The five
curves correspond to five different azimuth angles of 〈S〉, and
the energy broadening is set as 
/�0 = 0.5. Figs. 5(a) and
5(b) indicate that the Gilbert damping is strongly enhanced at
ω0 = 0 only when the vertex correction is taken into account.
This is the main result of our work.
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Without vertex corrections With vertex corrections With vertex corrections

FIG. 5. Modulation of the Gilbert damping calculated for β/α = 1.1 (a) without the vertex correction and (b) with the vertex correction.
The horizontal axis is the FMR frequency ω0 and the five curves correspond to five different angles of 〈S〉, i.e., θ = −π/4, −π/8, 0, π/8, and
π/4. (c) Enlarged plot of the modulations of the Gilbert damping as a function of the FMR frequency ω0. The angle of 〈S〉 is fixed as θ = π/4
and the three curves correspond to β/α = 1.03, 1.05, and 1.1. In all the plots, we have chosen 
/�0 = 0.5.

Figure 5(c) plots the modulation of the Gilbert damping
with the vertex correction for 
/�0 = 0.5 and θ = π/4, the
latter of which corresponds to the case of the strongest en-
hancement at ω0 = 0. The three curves correspond to β/α =
1.03, 1.05, and 1.1. As the ratio of β/α approaches 1, the peak
height at ω0 = 0 gets larger. For β/α � 1, δαG is calculated
approximately as

δαG

αG,0
� �0

2π


s

(h̄ω0)2 + 
2
s

sin2
(
θ + π

4

)
, (62)


s ≡ 2




∫ 2π

0

dϕ

2π

(hx + hy)2

1 + (2heff/
)2
, (63)

where 
s gives the peak width in Figs. 5(b) and 5(c) (see
Appendix F for a detailed derivation). For β/α = 1 + δ (δ �
1), 
s is proportional to δ2 and approaches zero in the limit
of δ → 0. This indicates that 
s corresponds to the spin
relaxation rate due to a small breakdown of the spin con-
servation law away from the special point of β/α = 1. Note
that the peak height of δαG at ω0 = 0 diverges at β/α = 1.
This indicates that for β/α = 1, δαG(ω0) has a δ-function-like
singularity at ω0 = 0, which is not drawn in Fig. 4(f).

Figure 6 plots the modulation of the Gilbert damping
for 
/�0 = 0.5 and θ = π/4 as a function of β/α. The
five curves correspond to h̄ω0/�0 = 0, 0.005, 0.01, 0.02, and
0.05, respectively. This figure indicates that when we fix the
resonant frequency ω0 and vary the ratio of β/α, the Gilbert
damping is strongly enhanced when β/α is slightly smaller or
larger than 1. We expect that this enhancement of the Gilbert
damping is strong enough to be observed experimentally. We
note that δαG/αG,0 approaches 0.378 (0.318) for β/α → 0
(β/α → ∞). The inset in Fig. 6 plots maximum values of
δαG/αG,0 when β/α is varied for a fixed value of h̄ω0/�0.
In other words, the vertical axis of the inset corresponds to
the peak height in the main panel for each value of h̄ω0/�0.
We find that the maximum value of δαG/αG,0 diverges as ω0

approaches zero.

V. SHIFT IN THE FMR FREQUENCY

Next, we discuss the shift in the FMR frequency when the
vertex correction is taken into account. The density plots in

Figs. 7(a), 7(b), and 7(c) for β/α = 0, 1, and 3 summarize
the modulation of the Gilbert damping, δαG. These plots have
the same features as in Figs. 4(c), 4(f), and 4(i). Figures 7(d),
7(e), and 7(f) plot the shift in the FMR frequency δω0/ω0 with
density plots for β/α = 0, 1, and 3. By comparing Figs. 7(a),
7(b), and 7(c) with 7(d), 7(e), and 7(f), we find that some of the
qualitative features of the FMR frequency shift are common
to those of the modulation of the Gilbert damping, δαG; (i)
they depend on θ for β/α > 0, while they do not depend
on θ for β/α = 0, (ii) the structure at ω0 = 0 due to elastic
spin-flipping appears, and (iii) the structure within a finite
range of frequencies due to magnon absorption appears. We
can also see a few differences between δαG and δω0/ω0. For
example, δω0/ω0 has a dip-and-peak structure at h̄ω0/�0 = 2
where δαG has only a peak. Related to this feature, δω0/ω0

has a tail that decays more slowly than that for δαG. The
most remarkable difference is that δω0/ω0 diverges at ω0 =
0 for β/α = 1 except for θ = 3π/4, 7π/4, reflecting the

FIG. 6. Modulation of the Gilbert damping as a function of β/α.
The five curves correspond to h̄ω0/�0 = 0, 0.005, 0.01, 0.02, and
0.05. We have taken the vertex correction into account and have
chosen 
/�0 = 0.5. The inset illustrates maximum values of the
modulation of the Gilbert damping, δαG,max, in varying β/α for a
fixed value of h̄ω0/�0.
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FIG. 7. (Upper panels) Modulations of the Gilbert damping, δαG/αG,0 for (a) β/α = 0, (b) β/α = 1, and (c) β/α = 3. (Lower panels)
Shifts in the FMR frequency, δω0/(αG,0ω0), for (d) β/α = 0, (e) β/α = 1, and (f) β/α = 3. The horizontal axes are the FMR frequency,
ω0 = γ hdc, while the vertical axes show the azimuth angle of the spontaneous spin polarization, θ , in the FI. In all the plots, we have considered
vertex corrections and have chosen 
/�0 = 0.5. In (a), (c), (e) there are regions in which the values exceed the upper limits of the color bar
located in the right side of each plot; the maximum value is about 0.45 in (a), 0.65 in (c), and about 10 in (e) (see also Fig. 8). In addition,
(b) cannot express a δ-function-like singularity at ω0 = 0 (see the main text).

δ-function-like singularity of δαG at ω0 = 0. These features
are reasonable because δω0/ω0 and δαG, which are deter-
mined by the real and imaginary parts of the retarded spin
susceptibility, are related to each other through the Kramers-
Kronig conversion.

The main panel of Fig. 8 shows the frequency shift δω0/ω0

for β/α = 1.1 as a function of the resonant frequency ω0. The
five curves correspond to θ = −π/4,−π/8, 0, π/8, and π/4.
Although the frequency shift appears to diverge in the limit of
ω0 → 0 in the scale of the main panel, it actually grows to a
finite value and then goes to zero as ω0 approaches zero (see

FIG. 8. Shift in FMR frequency, δω0/(αG,0ω0), as a function of
the resonance frequency ω0 for β/α = 1.1. The inset shows the same
quantities in the low-frequency range of 0 � h̄ω0/�0 � 0.05 with a
larger scale on the vertical axis. We have taken the vertex correction
into account and have chosen 
/�0 = 0.5.

the inset of Fig. 8). For β/α = 1 + δ (δ � 1), the frequency
shift is calculated approximately as

δω0

αG,0ω0
� �0

2π

h̄ω0

(h̄ω0)2 + 
2
s

sin2
(
θ + π

4

)
, (64)

where 
s is the spin relaxation rate defined in Eq. (63) (see
Appendix F for the detailed derivation). We expect that this
strong enhancement of the frequency shift near β/α = 1 can
be observed experimentally.

VI. SUMMARY

We theoretically investigated spin pumping into a two-
dimensional electron gas (2DEG) with a textured effective
Zeeman field caused by Rashba- and Dresselhaus-type spin-
orbit interactions. We expressed the change in the peak
position and the linewidth in a ferromagnetic resonance
(FMR) experiment that is induced by the 2DEG within a
second-order perturbation with respect to the interfacial ex-
change coupling by taking the vertex correction into account.
The FMR frequency and linewidth are modulated by elastic
spin-flipping or magnon absorption. We found that, for almost
all of the parameters, the vertex correction modifies the mod-
ulation of the Gilbert damping only moderately and does not
change the qualitative features obtained in our previous paper
[30]. However, we found that the Gilbert damping at low fre-
quencies, which is caused by elastic spin-flipping, is strongly
enhanced when the Rashba- and Dresselhaus-type spin-orbit
interactions are chosen to be almost equal but slightly dif-
ferent. Even in this situation, the Gilbert damping at high
frequencies, which is caused by magnon absorption, shows
small modification. This strong enhancement of the Gilbert
damping at low frequencies appears only when the vertex
correction is taken into account and is considered to originate
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from the slow spin relaxation related to the spin conservation
law that holds when the two spin-orbit interactions completely
match. A similar enhancement was found for the frequency
shift of the FMR due to elastic spin-flipping. We expect that
this remarkable enhancement can be observed experimentally.

Our work provides a theoretical foundation for spin
pumping into two-dimensional electrons with a spin-textured
Zeeman field on the Fermi surface. Although we have treated
a specific model for two-dimensional electron systems with
both the Rashba and Dresselhaus spin-orbit interactions, our
formulation and results will be helpful for describing spin
pumping into general two-dimensional electron systems such
as surface/interface states [65–67] and atomic layer com-
pounds [68,69].
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APPENDIX A: CALCULATION OF GREEN’S FUNCTION

In our work, Green’s function of conduction electrons is
calculated by taking effect of impurity scattering into account.
In general, the finite-temperature Green’s function ĝ(k, iωm)
after the impurity average is described by the Dyson equa-
tion with the impurity self-energy 
̂(k, ωm) as

ĝ(k, iωm) = 1

ĝ0(k, iωm)−1 − 
̂(k, iωm)
, (A1)

where ĝ0(k, iωm)−1 is Green’s function of electrons in the
absence of impurities. In our work, we employ the Born
approximation in which the self-energy is approximated by
second-order perturbation with respect to an impurity poten-
tial. In the Born approximation, the self-energy is given as


̂(k, iωm) = niu
2
∫

d2k
(2π )2

ĝ0(k, iωm), (A2)

where ni is the impurity concentration. The corresponding
Feynman diagram of the Dyson equation is shown in Fig. 9.
By straightforward calculation, Eq. (7) can be derived. For a
detailed derivation, see Ref. [30].

APPENDIX B: DERIVATION OF EQS. (45)–(50)

Equations (35)–(38) can be rewritten with 
 =
2πniu2D(εF) as

�0(iωm, iωn) = i


4

∫ 2π

0

dϕ

2π

∑
ν,ν ′

Iνν ′ , (B1)

�1(iωm, iωn) = i


4

∫ 2π

0

dϕ

2π

∑
ν,ν ′

νν ′Iνν ′ , (B2)

�2(iωm, iωn) = i


4

∫ 2π

0

dϕ

2π
cos 2(ϕ − θ )

∑
ν,ν ′

νν ′Iνν ′ , (B3)

FIG. 9. The Feynman diagram for Green’s function within the
Born approximation.

�3(iωm, iωn) = i


4

∫ 2π

0

dϕ

2π
sin 2(ϕ − θ )

∑
ν,ν ′

νν ′Iνν ′ , (B4)

where

Iνν ′ =
∫ ∞

−∞

dξ

2π i

1

ih̄ωm − ξ − νheff + i(
/2)sgn(ωm)

× 1

ih̄(ωm + ωn) − ξ − ν ′heff + i(
/2)sgn(ωm + ωn)
.

(B5)

We note that one needs to calculate this integral only for ωn >

0 to obtain the retarded component by analytic continuation.
Then, we can easily prove by the residue integral that Iνν ′ =
0 for ωm > 0 and ωm + ωn > 0 (ωm < 0 and ωm + ωn < 0)
because both of the two poles in the integrand are located only
in the upper (lower) half of the complex plane of ξ . For ωm <

0 and ωm + ωn > 0, the integral is evaluated by the residue
integral as

Iνν ′ = 1

ih̄ωn + (ν − ν ′)heff + i

. (B6)

By combining these results, Eqs. (45)–(50) can be derived.

APPENDIX C: DERIVATION OF EQ. (52)

In this Appendix, we give a detailed derivation of Eq. (52)
from Eq. (51). First, we modify Eq. (51) as

χ (0, iωn) = 1

8A
∑

k

∑
ν,ν ′

[νν ′ sin 2(φ − θ ) Iνν ′,1

+{1 − νν ′ cos 2(φ − θ )}Iνν ′,2

− i(1 − νν ′)Iνν ′,3], (C1)

where

Iνν ′, j ≡ 1

β

∑
iωm

Xj

ih̄ωm − E ν
k + i
/2 sgn(ωm)

× 1

ih̄ωm + ih̄ωn − E ν ′
k + i
/2 sgn(ωm + ωn)

,

(C2)

and (X1, X2, X3) = (X,Y, Z ). A standard procedure based on
the residue integral enables us to express the sum Iνν ′, j for
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(a) (b)

FIG. 10. Schematic picture of the change in the contour integral.
(a) The original contour. (b) The modified contour.

ωn > 0 as a complex integral on the contour C shown in
Fig. 10(a). This contour can be modified into a sum of the
four contours, Cl (l = 1, 2, 3, 4), shown in Fig. 10(b). Accord-
ingly, Iνν ′, j is written as

Iνν ′, j =
4∑

l=1

ICl
νν ′, j, (C3)

ICl
νν ′, j = −

∫
Cl

dz

2π i

f (z)Xj (z, iωn)

z − E ν
k + i
/2 sgn(Im z)

× 1

z + ih̄ωn − E ν ′
k + i
/2 sgn(Im z + ωn)

, (C4)

where f (z) = 1/(eβz + 1) is the Fermi distribution function.
The sum of the contributions from the two contours, C2 and
C3, is calculated as

IC2
νν ′, j + IC3

νν ′, j

= −X̃ j (iωn)
∫

dE

2π i
f (E )

×
[
− 1

E − E ν
k − i
/2

1

E + ih̄ωn − E ν ′
k + i
/2

+ 1

E − ih̄ωn − E ν
k − i
/2

1

E − E ν ′
k + i
/2

]
. (C5)

Here, we have used the fact that Xj (z, iωn) is independent
of z for 0 < Im z < ωn from Eq. (45) and have defined its
value as X̃ j (iωn) ( j = 1, 2, 3). From Eqs. (41)–(43), X̃ j (iωn)
are calculated as

X̃1(iωn) = �̃3(iωn)

(1 − �̃0(iωn))2 − �̃2(iωn)2−�̃3(iωn)2
, (C6)

X̃2(iωn) = 1 − �̃0(iωn) − �̃2(iωn)

(1 − �̃0(iωn))2 − �̃2(iωn)2−�̃3(iωn)2
, (C7)

X̃3(iωn) = i

1 − �̃0(iωn) + �̃1(iωn)
. (C8)

By changing the integral variable to E ′ = E − E ν
k in the first

term and to E ′ = −(E − E ν ′
k ) in the second term in Eq. (C5),

we obtain

IC2
νν ′, j + IC3

νν ′, j = −X̃ j (iωn)
∫

dE ′

2π i

1

E ′ − i
/2

×
[

f
( − E ′ + E ν ′

k

) − f
(
E ′ + E ν

k

)
E ′ + ih̄ωn + E ν

k − E ν ′
k + i
/2

]
. (C9)

Using formula (44), we replace the sum over k in Eq. (C1)
by the integral with respect to ξ and ϕ. We can perform the
ξ -integral by using

−
∫ ∞

−∞
dξ

[
f
(
E ′+E ν

k

)− f
(−E ′+E ν ′

k

)] = 2E ′ + E ν
k − E ν ′

k .

(C10)

Then, by performing the E ′-integral, we obtain∫ ∞

−∞
dξ

(
IC2

νν ′, j + IC3
νν ′, j

) = ih̄ωnX̃ j (iωn)

E ν
k − E ν ′

k + ih̄ωn + i

. (C11)

Next, let us consider the contribution from C1 and C4. On
these two contours, Xj (z, iωn) is independent of z and its
value is defined by X̃ ′

j (iωn) ( j = 1, 2, 3). Because � j (z, iωn)
( j = 0, 1, 2, 3) becomes zero for Im z < 0 or ωn < Im z from
Eq. (45), X̃ ′

j (iωn) are given as

X̃ ′
1(iωn) = 0, X̃ ′

2(iωn) = 1, X̃ ′
3(iωn) = i. (C12)

A similar calculation to that of C2 and C3 yields∫ ∞

−∞
dξ

(
IC1

νν ′, j + IC4
νν ′, j

) = −X̃ ′
j (iωn). (C13)

By substituting these results into Eq. (C1), we obtain

χ (0, iωn) = D(εF)

8

∑
ν,ν ′

∫ 2π

0

dϕ

2π
{νν ′ sin 2(φ − θ ) x̃1(iωn)

+ [1 − νν ′ cos 2(φ − θ )][−1 + x̃2(iωn)]

− i(1 − νν ′)[−i + x̃3(iωn)]}, (C14)

where

x̃ j (iωn) = ih̄ωnX̃ j (iωn)

E ν
k − E ν ′

k + ih̄ωn + i

. (C15)

Finally, Eq. (52) is derived by substituting the expressions for
X̃ j (iωn) and by analytic continuation iωn → ω + iδ.

APPENDIX D: ANALYTIC EXPRESSION FOR β/α = 0

In this Appendix, we derive analytic expressions of the
modulation of the Gilbert damping when β/α = 0, only the
Rashba spin-orbit interaction exists, to see the quantitative ef-
fect of taking the vertex correction into account. For β/α = 0,
the spin-splitting energy 2heff = 2�0 is constant along the
Fermi surface, and �̃R

j (ω) ( j = 0, 1, 2, 3) is simplified as

�̃R
0 (ω) = i


4�0

∑
νν ′

1

h̄ω/�0 + (ν − ν ′) + i
/�0
, (D1)

�̃R
1 (ω) = i


4�0

∑
νν ′

νν ′

h̄ω/�0 + (ν − ν ′) + i
/�0
, (D2)

�̃R
2 (ω) = �̃R

3 (ω) = 0. (D3)

174414-11



M. YAMA, M. MATSUO, AND T. KATO PHYSICAL REVIEW B 107, 174414 (2023)

FIG. 11. (Upper panels) Change of the Gilbert damping due to the vertex correction, δαG − δαnv
G , for (a) β/α = 0, (b) β/α = 1, and

(c) β/α = 3. (Lower panels) Change of the FMR frequency due to the vertex correction, δω0 − δωnv
0 , for (d) β/α = 0, (e) β/α = 1, and (f)

β/α = 3. The horizontal axes are the FMR frequency, ω0 = γ hdc, whereas the vertical axes are the azimuth angle of the spontaneous spin
polarization, θ , in the FI. In all the plots, we have set 
/�0 = 0.5.

Then, we obtain the modulation of the Gilbert damping with
the vertex corrections,

δαG

αG,0
� �0

2π

Re

[
�̃R

0 (ω0)

1 − �̃R
0 (ω0)

+ �̃R
0 (ω0) − �̃R

1 (ω0)

1 − �̃R
0 (ω0) + �̃R

1 (ω0)

]
.

(D4)

The modulation of the Gilbert damping without the vertex
correction is obtained by considering only the first-order term
with respect to �̃R

j (ω0),

δαnv
G

αG,0
� �0

2π

Re

[
2�̃R

0 (ω0) − �̃R
1 (ω0)

]
. (D5)

When 
 � �0, the contribution of ν = ν ′ is dominant for the
peak at ω0 = 0 and the modulation of the Gilbert damping can
be analytically calculated as

δαG

αG,0
� �0

4π
· 
/2

(h̄ω0)2 + (
/2)2
, (D6)

δαnv
G

αG,0
� �0

4π
· 


(h̄ω0)2 + 
2
. (D7)

This indicates that the peak width is halved by taking the
vertex correction into account, which is consistent with the
results shown in Figs. 4(b) and 4(c).

In a similar way, we can evaluate the modulation of the
Gilbert damping near the peak at ω0 = 2�0/h̄ as

δαG

αG,0
� �0

4π
·
[

1

2

3
/4

(h̄ω0 − 2�0)2 + (3
/4)2

+ 
/2

(h̄ω0 − 2�0)2 + (
/2)2

]
, (D8)

δαnv
G

αG,0
� �0

4π
· 3
/2

(h̄ω0 − 2�0)2 + 
2
. (D9)

As well, for the peak at ω0 = 2�0/h̄, the peak width becomes
smaller when the vertex correction is taken into account. This
observation is consistent with the results shown in Figs. 4(b)
and 4(c). For a finite value of 
, a sum of Eqs. (D6) and (D8)
[Eqs. (D7) and (D9)] gives a better analytic form which fits
the numerical result with (without) the vertex correction. Note
that δαG and δαnv

G depend on the impurity potential strength,
u, and impurity concentration, ni, through 
 = 2πniu2D(εF)
[see Eq. (8)]. As shown in Eqs. (D6)–(D9), the peak widths
of the Lorentzian functions in δαG and δαnv

G are determined
by 
 [see Figs. 4(b) and 4(c)]. It is remarkable that the peak
width in δαG is reduced from 
 to 
/2 by taking the ver-
tex correction into account. To summarize the effect of the
vertex correction, we show δαG − δαnv

G and δω0 − δωnv
0 in

Figs. 11(a) and 11(d), respectively. We find that the vertex cor-
rection modifies mainly the peak width around h̄ω0/�0 = 0
and 2, in consistent with the above analytic expressions.

Finally, we note that the same analytical expressions for
δαG and δαnv

G can be obtained for the case of α/β = 0, i.e.,
when only the Dresselhaus spin-orbit interaction exists. We
also note that for general values of β/α, δαG, and δαnv

G depend
on 
 in a more complicated way.

APPENDIX E: ANALYTIC EXPRESSION FOR β/α = 1

In this Appendix, we derive analytic expressions of the
modulation of the Gilbert damping when β/α = 1. In this
case, the effective Zeeman field is parallel to the (−1, 1, 0)
direction and its amplitude is given as

heff (ϕ) = 2�0| sin(ϕ + π/4)|. (E1)

Then, �̃R
j (ω) ( j = 0, 1, 2, 3) becomes

�̃R
0 (ω) = i


4�0

∑
νν ′

Jνν ′ , (E2)
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�̃R
1 (ω) = i


4�0

∑
νν ′

νν ′Jνν ′ , (E3)

�̃R
2 (ω) = − sin 2θ �̃R

1 (ω), (E4)

�̃R
3 (ω) = − cos 2θ �̃R

1 (ω), (E5)

where

Jνν ′ (ω) ≡
∫ 2π

0

dϕ

2π

�0

h̄ω + (ν − ν ′)heff (ϕ) + i

. (E6)

In the case of θ = π/4, the modulation of the Gilbert
damping with the vertex correction is expressed as

δαG

αG,0
= �0

2π

Re

[
−2 + 1

1 − �̃R
0 (ω0) + �̃R

1 (ω0)

+ 1

1 − �̃R
0 (ω0) − �̃R

1 (ω0)

]
. (E7)

The third term of the above equation is calculated as

1

1 − �̃R
0 (ω0) − �̃R

1 (ω0)
= 1

1 − i

h̄ω0+i


= h̄ω0 + i


h̄ω0
. (E8)

This indicates that the expansion with respect to �̃R
j cannot

be allowed for ω0 � 
. This is why the modulation without
the vertex correction, which is obtained by taking from the
first-order term of �̃R

j in Eq. (E7) as

δαnv
G

αG,0
= �0

2π

Re

[
2�̃R

0 (ω0)
]
, (E9)

gives a different result near ω0 � 0. Actually, for θ = π/4,
δαG and δαnv

G are calculated as

δαG

αG,0
= �0

2π

Re

[
i 


2�0
(J+− + J−+)

1 − i 

2�0

(J+− + J−+)

]
, (E10)

δαnv
G

αG,0
= 1

4π
Re [i(J+− + J−+ + J++ + J−−)]. (E11)

Note that Eq. (E10) is not valid for ω0 = 0. As indicated from
the absence of J++ and J−−, the graph of δαG(ω0) has no
peak at zero frequency even though δαnv

G (ω0) has a peak there.
This observation is consistent with Figs. 4(e) and 4(f).

In the case of θ = −π/4, the modulations of the Gilbert
damping with and without the vertex correction are

δαG

αG,0
= �0

π

Re

[
i 


2�0
(J+− + J−+)

1 − i 

2�0

(J+− + J−+)

]
, (E12)

δαnv
G

αG,0
= 1

2π
Re [i(J+− + J−+)]. (E13)

Note that δαnv
G is obtained by taking the first-order term in

Eq. (E12). As indicated by the absence of the terms, J++ and
J−−, neither δαG nor δαnv

G has any structure around ω0 = 0.
It can be checked that these two expressions give almost the
same result when 
 � �0, which is consistent with Figs. 4(e)
and 4(f). Note as well that δαG is just doubled compared with
the result for θ = π/4 in Eq. (E10).

To summarize the effect of the vertex correction, we
show δαG − δαnv

G and δω0 − δωnv
0 in Figs. 11(b) and 11(e),

respectively. We find that the vertex correction modifies
mainly the peak width around h̄ω0/�0 = 0. In addition, the
broad peak in the range of 0 < h̄ω0 < 2�0 is enhanced or
suppressed depending on the azimuth angle of the ordered
spin. These features are consistent with the above analytic
expressions. We note that similar features are observed for
β/α = 3 as seen in Figs. 11(c) and 11(f).

APPENDIX F: APPROXIMATE EXPRESSIONS
NEAR β/α = 1

In this Appendix, we derive the approximate expressions
Eqs. (62) and (64) for β/α = 1 + δ (δ � 1) and ω � 0. For
β/α = 1 + δ (δ � 1), we can use the approximation,

cos 2(φ − θ ) � sin 2θ

(
−1 + (hx + hy)2

h2
eff

)
, (F1)

sin 2(φ − θ ) � cos 2θ

(
−1 + (hx + hy)2

h2
eff

)
. (F2)

Then, we obtain

�̃R
2 � X sin 2θ, (F3)

�̃R
3 � X cos 2θ, (F4)

X ≡ i


4

∫ 2π

0

dϕ

2π

∑
νν ′

νν ′(−1 + (hx+hy )2

h2
eff

)
h̄ω + (ν − ν ′)heff + i


(F5)

in the low-frequency region. Here, the contribution of the sec-
ond term of the bracket in Eq. (56) does not have a singularity
at ω0 = 0 because �̃R

0 and �̃R
1 do not depend on the effective

Zeeman field heff . Therefore, the singularity comes from the
first term of the bracket in Eq. (56) and we can approximate
F (ω) as

F (ω) � �0

2π i


�̃R
0

(
1 − �̃R

0

) − �̃R
2

(
1 − �̃R

2

) + (
�̃R

3

)2

(
1 − �̃R

0

)2 − (
�̃R

2

)2−(
�̃R

3

)2

= �0

2π i


[
−1 + (1 − sin 2θ )/2

1 − �̃R
0 − X

+ (1 + sin 2θ )/2

1 − �̃R
0 + X

]
.

(F6)

Finally, using the equation,

1 − �̃R
0 + X = 
s



− i

h̄ω



+ O(ω2), (F7)

we find that the third term in the bracket in Eq. (F6) is diver-
gent at ω = 0 in the limit of δ → 0 since the denominator
vanishes. By substituting Eq. (F7) into Eq. (F6), the most
singular part is calculated as

F (ω) � �0

2π i

sin2(θ + π/4)


s + ih̄ω
. (F8)

Using Eqs. (54) and (55), it is straightforward to obtain
Eqs. (62) and (64).
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