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Anisotropic spin model and multiple-Q states in cubic systems
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Multiple-Q states manifest themselves in a variety of noncollinear and noncoplanar magnetic structures de-
pending on the magnetic interactions and lattice structures. In particular, cubic-lattice systems can host a plethora
of multiple-Q states, such as magnetic skyrmion and hedgehog lattices. We here classify momentum-dependent
anisotropic exchange interactions in cubic-lattice systems based on magnetic representation analysis. We
construct an effective spin model for centrosymmetric cubic space groups, Pm3̄m and Pm3̄, and noncentrosym-
metric ones, P4̄3m, P432, and P23: The former include the symmetric anisotropic exchange interaction, while
the latter additionally include the Dzyaloshinskii-Moriya interaction. By performing simulated annealing for
the Pm3̄ model, we demonstrate that the symmetric anisotropic exchange interaction becomes the origin of the
multiple-Q states in the ground state. We also analyze the instability toward the multiple-Q states in the presence
of the momentum-dependent anisotropic exchange interaction under the Pm3̄ symmetry in a complementary
way. Our results will be a reference for not only exploring unknown multiple-Q states but also understanding the
origin of the multiple-Q states observed in both noncentrosymmetric and centrosymmetric cubic magnets like
EuPtSi and SrFeO3.
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I. INTRODUCTION

Frustration arising from competing interactions gives rise
to intriguing noncollinear and noncoplanar magnetic states
[1–7]. Such states are often expressed as a superposition of
multiple spin density waves with different wave vectors, and
are referred to as multiple-Q states [6–12]. The spin at site j,
S j , is generally represented by

S j =
n∑

η=1

(
SQη

eiQη ·R j + S−Qη
e−iQη ·R j

)
, (1)

where SQη
is the Fourier expansion coefficient of the compo-

nent at the wave vector Qη; R j represents the position vector
at site j. When S j is mainly characterized by n = 2 (3) wave
vectors, the state is called the double-Q (triple-Q) state. The
spin configuration in Eq. (1) describes various multiple-Q
states according to the spin components SQη

= (Sx
Qη

, Sy
Qη

, Sz
Qη

)

and the wave vectors Qη = (Qx
η, Qy

η, Qz
η ), which are deter-

mined by the spin interactions and the lattice geometry.
Indeed, a plethora of multiple-Q states have been so far ob-
served in materials with cubic, tetragonal, hexagonal, and
trigonal lattice structures [13]. In the case of cubic symmetry,
the examples are a double-Q state in CeAl2 [14], double-
Q meron-antimeron lattice in Co8Zn9Mn3 [15], triple-Q
skyrmion lattice (SkL) in MnSi [16], triple-Q hedgehog lattice
(HL) in MnGe [17,18], quadraple-Q HL in MnSi1−xGex [19]
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and SrFeO3 [20,21], and triple-Q fractional antiferromagnetic
SkL in MnSc2S4 [22,23].

The stabilization mechanisms for these multiple-Q states in
cubic systems have been theoretically studied based on com-
peting isotropic exchange interactions [8,24–28], anisotropic
exchange interactions [29–40], four-spin (six-spin) interaction
[33–36,41,42], and indirect interactions mediated by itiner-
ant electrons [43–51]. In particular, the mechanism based on
the Dzyaloshinskii-Moriya (DM) interaction [1,52], which
is categorized into antisymmetric anisotropic exchange in-
teractions in noncentrosymmetric lattices, has succeeded in
explaining various experimental results [31]. In this case, the
appearance of the multiple-Q states is naturally accounted for
by Lifshitz invariants in the free energy [2,53]. Meanwhile,
recent studies have revealed that the symmetric anisotropic
exchange interactions, which arise irrespective of the inver-
sion symmetry of the lattice structure, also become the origin
of the multiple-Q states in various lattice systems including
not only hexagonal [54–57], trigonal [58–60], and tetragonal
[61–65] systems but also cubic systems [37,39]. Furthermore,
this type of the interactions can lead to different multiple-Q
instabilities from those by the DM interaction. Thus, it is
desired to systematically investigate the role of the symmetric
anisotropic interactions as well as the antisymmetric ones
in cubic systems in order to further explore exotic three-
dimensional multiple-Q states.

In this study, we classify both symmetric and antisym-
metric exchange interactions according to cubic symmetry
and construct a general anisotropic spin model to examine
multiple-Q instabilities in cubic systems. The obtained model
consists of momentum-dependent anisotropic exchange in-
teractions, which is used as a mean-field spin model for
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insulating magnets or an effective spin model for itinerant
magnets with strong Fermi surface nesting [57,66,67]. Fol-
lowing a symmetry argument in Ref. [57], we present the
model for the centrosymmetric space groups, Pm3̄m and Pm3̄,
and the noncentrosymmetric ones, P4̄3m, P432, and P23 in
Sec. II. As the spin model in each cubic space group has
different anisotropic exchange interactions, different multiple-
Q instabilities are expected. As an example, we show that
double-Q and triple-Q states are stabilized by taking into
account anisotropic exchange interactions under the Pm3̄
symmetry even without an external magnetic field through
simulated annealing in Sec. III and analytical calculations in
Sec. IV. We summarize our results in Sec. V. In the Appendix,
we show the details of the models.

II. GENERAL ANISOTROPIC SPIN MODEL

We consider a general bilinear exchange interaction in
momentum space, which is given by

ST
q XqS−q, (2)

with

Xq =

⎛
⎜⎝

F xs
q Ezs

q + iDzs
q Eys

q − iDys
q

Ezs
q − iDzs

q F ys
q Exs

q + iDxs
q

Eys
q + iDys

q Exs
q − iDxs

q F zs
q

⎞
⎟⎠. (3)

Here, Sq = (Sxs
q , Sys

q , Szs
q ) is the Fourier transform of the spin,

(xs, ys, zs ) are Cartesian spin coordinates, and T denotes the
transpose of the vector. Xq represents the general interaction
matrix in spin space, which consists of three types of real
coupling constants, Dq = (Dxs

q , Dys
q , Dzs

q ) for DM-type anti-
symmetric interactions, Eq = (Exs

q , Eys
q , Ezs

q ) for off-diagonal
symmetric interactions, and Fq = (F xs

q , F ys
q , F zs

q ) for diago-
nal symmetric interactions. The interaction matrix satisfies
X ∗

q = X−q; Dq = −D−q, Eq = E−q, and Fq = F−q. The real-
space counterparts of Dq and Eq (Fq) are the bond-dependent
antisymmetric DM interaction Sαs

i Sβs
j − Sαs

j Sβs
i and symmetric

anisotropic interactions Sαs
i Sβs

j + Sαs
j Sβs

i on the (i j) bond for
αs, βs = x, y, z, respectively, the latter of which includes the
�-type interaction in the Kitaev model for αs �= βs [68] and
the Ising-type interaction for αs = βs, respectively. In general,
the magnitude and the sign of (Dq, Eq, Fq) are related to
the expression of the real-space interaction via the Fourier
transform, while we treat them as model parameters. In other
words, we adopt an approach in momentum space rather
than that in real space to directly investigate the multiple-Q
instability; the latter has been studied in previous literatures
[29–32,36,39,40]. We neglect the sublattice degree of freedom
in this paper, while its extension is straightforwardly applied
in the same manner as in Ref. [57].

The interaction in Eq. (2) is defined on the “bond” between
the wave vectors ±q, which means that nonzero components
in Xq are determined according to the transformation in terms
of point group symmetries leaving the bond: space inversion
(I), mirror perpendicular to q (m⊥), twofold rotation perpen-
dicular to q (C2⊥), mirror parallel to q (m‖), and n-fold (n =
2, 3, 4, 6) rotation around q (Cn‖). The symmetry rules for
nonzero coupling constants were obtained by using magnetic
representation theory in Ref. [57], which is summarized in

TABLE I. Symmetry rules for nonzero coupling constants given
in Ref. [57]. I , m, and Cn stand for the space inversion, mirror, and
n-fold rotation operations, respectively (see the text in detail). The
direction of xs is set along q. ‖ � (⊥ �), where � denotes plane and
axis, represents nonzero components parallel (perpendicular) to �.
“−” means no symmetry constraint.

Symmetry Dq Eq Fq

I = 0 − −
m⊥ ‖ plane ⊥ plane −
C2⊥ ⊥ axis ‖ axis −
m‖ ⊥ plane ⊥ plane −
C2‖ ‖ axis ‖ axis −
Cn‖ (n � 3) ‖ axis = 0 (F xs , F⊥, F⊥)

Table I. By applying these rules for the cubic space groups,
one can obtain nonzero coupling constants in each wave vec-
tor in the Brillouin zone. These symmetry rules are applicable
to all the wave vectors except for the time-reversal invariant
wave vectors at the Brillouin zone boundary, where Dq = 0
irrespective of the inversion symmetry. We note that there
are additional constraints between the interactions at q and
q′ �= ±q, once the rotational symmetry of the cubic systems
is taken into account. For example, the interaction compo-
nents at q = (q, 0, 0) are related to those at q′ = (0, q, 0) and
q′′ = (0, 0, q) under threefold rotational symmetry around the
[111] axis, as discussed in the Appendix.

When considering the magnetic instability from high tem-
peratures or at low temperatures close to the ground state, it
is enough to consider the dominant interaction channels at
specific wave vectors in momentum space in determining the
optimal spin configuration from the energetic point of view.
Based on this consideration, we construct an anisotropic spin
model consisting of specific wave-vector interactions, which
is given by

H = −
∑

q∈{Q}
ST

q XqS−q. (4)

Here, {Q} = {Q1, Q2, . . . , Qn} is a set of the symmetry-related
wave vectors, and q ∈ {Q} gives the largest eigenvalue of Xq.
The model has, at most, nine independent parameters, since
the interactions at {Q} are related to each other under point
group symmetry. In other words, the interaction parameters
in XQη �=1

are expressed as those in XQ1
. Thus, it is enough to

obtain XQ1
in each space group. We show the results under

five cubic space groups, Pm3̄m, P4̄3m, P432, Pm3̄, and P23 in
Table II. In each space group, we present interaction matrices
with three different high-symmetry {Q}: {Q}� � Q1 ‖ [111]
shown in Fig. 1(a), {Q}� � Q1 ‖ [100] shown in Fig. 1(b),
and {Q}	 � Q1 ‖ [110] shown in Fig. 1(c). We also present
the number of independent coupling constants Nc � 2, which
includes the isotropic interaction F iso

Q1
= (F x

Q1
+ F y

Q1
+ F z

Q1
)/3

appearing irrespective of the space group and wave vec-
tor. The remaining interactions at Qη �=1 are shown in the
Appendix.

We discuss the similarity and difference of XQ1
between

five space groups in each high-symmetry wave vector. In
the case of Q1 ‖ [111] ∈ {Q}� shown in the left column in

174408-2



ANISOTROPIC SPIN MODEL AND MULTIPLE-Q … PHYSICAL REVIEW B 107, 174408 (2023)

TABLE II. Interaction matrix XQ1
and the number of independent components Nc in cubic systems for the high-symmetry wave vectors

shown in Fig. 1: Q1 ‖ [111] ∈ {Q}�, Q1 ‖ [100] ∈ {Q}�, and Q1 ‖ [110] ∈ {Q}	 . The spin coordinates xs, ys, and zs are taken along the x, y,
and z directions, respectively. The checkmark (�) shows the presence of the inversion symmetry I .

Q1 ‖ [111] ∈ {Q}� Q1 ‖ [100] ∈ {Q}� Q1 ‖ [110] ∈ {Q}	

Space group XQ1
Nc XQ1

Nc XQ1
Nc

Pm3̄m (�)

⎛
⎜⎝F x

Q1
Ex

Q1
Ex

Q1

Ex
Q1

F x
Q1

Ex
Q1

Ex
Q1

Ex
Q1

F x
Q1

⎞
⎟⎠ 2

⎛
⎜⎝F x

Q1
0 0

0 F y
Q1

0
0 0 F y

Q1

⎞
⎟⎠ 2

⎛
⎜⎝F x

Q1
Ez

Q1
0

Ez
Q1

F x
Q1

0
0 0 F z

Q1

⎞
⎟⎠ 3

P4̄3m

⎛
⎜⎝

F x
Q1

Ex
Q1

Ex
Q1

Ex
Q1

F x
Q1

Ex
Q1

Ex
Q1

Ex
Q1

F x
Q1

⎞
⎟⎠ 2

⎛
⎜⎝

F x
Q1

0 0

0 F y
Q1

0

0 0 F y
Q1

⎞
⎟⎠ 2

⎛
⎜⎝

F x
Q1

Ez
Q1

iDx
Q1

Ez
Q1

F x
Q1

iDx
Q1

−iDx
Q1

−iDx
Q1

F z
Q1

⎞
⎟⎠ 4

P432

⎛
⎜⎝

F x
Q1

Ex
Q1

+ iDx
Q1

Ex
Q1

− iDx
Q1

Ex
Q1

− iDx
Q1

F x
Q1

Ex
Q1

+ iDx
Q1

Ex
Q1

+ iDx
Q1

Ex
Q1

− iDx
Q1

F x
Q1

⎞
⎟⎠ 3

⎛
⎜⎝

F x
Q1

0 0

0 F y
Q1

iDx
Q1

0 −iDx
Q1

F y
Q1

⎞
⎟⎠ 3

⎛
⎜⎝

F x
Q1

Ez
Q1

−iDx
Q1

Ez
Q1

F x
Q1

iDx
Q1

iDx
Q1

−iDx
Q1

F z
Q1

⎞
⎟⎠ 4

Pm3̄ (�)

⎛
⎜⎝

F x
Q1

Ex
Q1

Ex
Q1

Ex
Q1

F x
Q1

Ex
Q1

Ex
Q1

Ex
Q1

F x
Q1

⎞
⎟⎠ 2

⎛
⎜⎝

F x
Q1

0 0

0 F y
Q1

0

0 0 F z
Q1

⎞
⎟⎠ 3

⎛
⎜⎝

F x
Q1

Ez
Q1

0

Ez
Q1

F y
Q1

0

0 0 F z
Q1

⎞
⎟⎠ 4

P23

⎛
⎜⎝

F x
Q1

Ex
Q1

+ iDx
Q1

Ex
Q1

− iDx
Q1

Ex
Q1

− iDx
Q1

F x
Q1

Ex
Q1

+ iDx
Q1

Ex
Q1

+ iDx
Q1

Ex
Q1

− iDx
Q1

F x
Q1

⎞
⎟⎠ 3

⎛
⎜⎝

F x
Q1

0 0

0 F y
Q1

iDx
Q1

0 −iDx
Q1

F z
Q1

⎞
⎟⎠ 4

⎛
⎜⎝

F x
Q1

Ez
Q1

−iDy
Q1

Ez
Q1

F y
Q1

iDx
Q1

iDy
Q1

−iDx
Q1

F z
Q1

⎞
⎟⎠ 6

Table II, there are at least two independent coupling constants
(Nc � 2) in XQ1

irrespective of the cubic space groups: One
is the isotropic interaction F iso

Q1
and the other is the uniaxially

anisotropic interaction Ex
Q1

along the Q1 direction, the latter of
which arises from the symmetry rule in terms of C3‖. The pos-
itive (negative) anisotropic interaction Ex

Q1
corresponds to the

easy-axis (easy-plane) interaction along the [111] direction,
which favors the spin modulation parallel (perpendicular) to
Q1. In addition, the DM interaction Dx

Q1
appears in noncen-

trosymmetric space groups P432 and P23, which favors the
proper-screw spiral modulation on the plane perpendicular
to Q1. Meanwhile, there is no DM interaction in the other
noncentrosymmetric space group P4̄3m due to the presence of
m‖ on the plane perpendicular to [11̄0]. Thus, the multiple-Q
instability in the P4̄3m system is qualitatively similar to that

FIG. 1. High-symmetry wave vectors in cubic systems: (a)
{Q}� � Q1 = (Q, Q, Q), Q2 = (−Q, −Q, Q), Q3 = (−Q, Q, −Q),
and Q4 = (Q, −Q, −Q), (b) {Q}� � Q1 = (Q, 0, 0), Q2 = (0, Q, 0),
and Q3 = (0, 0, Q), and (c) {Q}	 � Q1 = (Q, Q, 0), Q2 = (0, Q, Q),
Q3 = (Q, 0, Q), Q4 = (Q, −Q, 0), Q5 = (0, Q, −Q), and Q6 =
(−Q, 0, Q). The wave vector Qη is shown by the arrow labeled by
η = 1–6.

in the centrosymmetric Pm3̄m and Pm3̄ systems rather than
the noncentrosymmetric P432 and P23 systems.

The result for Q1 ‖ [100] ∈ {Q}� is shown in the middle
column of Table II. Similarly to the case of Q1 ‖ [111], the
interaction matrices are characterized by at least two inde-
pendent coupling constants (Nc � 2). The difference from the
result for Q1 ‖ [111] appears in the easy-axis direction of
the uniaxially anisotropic interaction; F x

Q1
> F y

Q1
(F x

Q1
< F y

Q1
)

corresponds to the easy-axis (easy-plane) interaction to favor
the spin modulation parallel (perpendicular) to Q1 ‖ [100].
The interaction matrix for Pm3̄m is characterized by these
two components. In addition, the interaction matrix for P4̄3m
also has the same two independent components in spite of the
noncentrosymmetric lattice structure; two symmetry rules in
terms of C2‖ and m‖ on the plane perpendicular to [011̄] axis
impose on no additional component. The DM interaction ap-
pears in the interaction matrix for P432 and P23, which tends
to favor the proper-screw spiral modulation. Furthermore, the
additional symmetric exchange interaction in FQ1

appears for
Pm3̄ and P23. The relation with F x

Q1
�= F y

Q1
�= F z

Q1
is owing

to a triaxial anisotropy in the absence of fourfold rotational
symmetry around the [100] axis.

The result for Q1 ‖ [110] ∈ {Q}	 is presented in the right
column in Table II. Compared to the [111] and [100] di-
rections, the number of independent components increases.
There are at least three independent coupling constants (Nc �
3). The interaction matrix for Pm3̄m (Pm3̄) is characterized
by the triaxially anisotropic interaction with independent F x

Q1
,

F z
Q1

, and Ez
Q1

(F x
Q1

, F y
Q1

, F z
Q1

, and Ez
Q1

). The interaction ma-
trices for P4̄3m and P432 also have the triaxial anisotropy
with F x

Q1
, F z

Q1
, and Ez

Q1
in the symmetric component. Besides,

these space groups exhibit the antisymmetric component Dx
Q1

.
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The DM vector lies on the plane parallel (perpendicular) to
Q1 for P432 (P4̄3m), which tends to favor the proper-screw
(cycloidal) spiral modulation. In contrast to the cases of Q1 ‖
[111] and Q1 ‖ [100], the DM interaction appears in the P4̄3m
system for Q1 ‖ [110], which can become the origin of the
multiple-Q states. The interaction matrix for P23 is expressed
as the triaxial symmetric anisotropic interactions with F x

Q1
,

F y
Q1

, F z
Q1

, and Ez
Q1

and the DM interactions with Dx
Q1

and Dy
Q1

.
In this case, the spiral plane lies on the plane neither parallel
nor perpendicular to Q1.

The anisotropic spin model in Eq. (4) was used to investi-
gate the multiple-Q instabilities in noncentrosymmetric cubic
systems [33–35,37]. In particular, the models in Ref. [37] are
exactly the same as those for P23 in Table II. These previous
studies showed that the DM interaction combined with the
symmetric anisotropic interaction [37], four-spin interaction
[33–35], or magnetic field [35] stabilizes the multiple-Q states
in the ground state, and discuss the origin of the HL in
MnSi1−xGex [17–19] and the SkL in EuPtSi [69–72]. Mean-
while, the multiple-Q instabilities have not been studied in the
anisotropic spin models in centrosymmetric cubic systems,
which we analyze in Sec. III.

Finally, let us comment on related materials. Our effective
model can be applied to materials hosting multiple-Q states
irrespective of magnetic modulation periods. In particular, our
model becomes useful when considering multiple-Q states
with short magnetic periods, such as 1–10 nm, since the effect
of q-dependent anisotropic interactions can be larger beyond
the continuous limit. In this sense, the Pm3̄m model with
{Q}� is related to SrFeO3 [20,21] with space group Pm3̄m,
where the short-periodic double-Q and quadruple-Q states
with the ordering vectors Q ‖ 〈111〉 were observed. Similarly,
MnSi1−xGex with space group P213, which shows the short-
periodic triple-Q state with Q ‖ 〈100〉 (quadraple-Q state with
Q ‖ 〈111〉) for 0.3 � x � 0.6 (0.7 � x � 1) [17–19], is re-
lated to the P23 model with {Q}� ({Q}�) when neglecting
the sublattice structure. EuPtSi [69–72] with space group
P213, which shows the triple-Q SkL with the low-symmetric
wave vectors, is another related material by straightforwardly
extending the result of the high-symmetric wave vectors in
Table II to that of the low-symmetric ones.

III. SIMULATION RESULT

To demonstrate that the anisotropic spin model gives rise
to a variety of multiple-Q states, we numerically analyze the
model at {Q}� on a simple cubic lattice under the space group
Pm3̄, which is given by

H = −2
∑

q∈{Q�}
ST

q XqS−q, (5)

where

XQ1
=

⎛
⎜⎝

F x
Q1

0 0

0 F y
Q1

0

0 0 F z
Q1

⎞
⎟⎠, (6)

XQ2
=

⎛
⎜⎝

F z
Q1

0 0

0 F x
Q1

0

0 0 F y
Q1

⎞
⎟⎠, (7)

FIG. 2. Magnetic phase diagram under (F x
Q1

)2 + (F y
Q1

)2 +
(F z

Q1
)2 = 1 and Fα

Q1
� 0. The dashed green lines represent the region

where the 1Q state is stabilized.

XQ3
=

⎛
⎜⎝

F y
Q1

0 0

0 F z
Q1

0

0 0 F x
Q1

⎞
⎟⎠, (8)

and Q1 = (Q, 0, 0), Q2 = (0, Q, 0), and Q3 = (0, 0, Q) with
Q = π/3; the lattice constant of the cubic lattice is taken as
unity. The interaction matrices at Q2 and Q3 are expressed as
FQ1

due to the threefold rotation around the [111] axis (see the
Appendix). The coefficient 2 in Eq. (5) is introduced to take
into account the interaction at −Qη. We fix the spin length at
each site as unity for simplicity. We note that the model in
Eq. (5) corresponds to that in the Pm3̄m and P4̄3m systems
when F y

Q1
= F z

Q1
.

The ground-state phase diagram is calculated by simulated
annealing combined with the standard Metropolis local up-
dates in real space. In each step, we rotate spin S j at the
single site in real space and evaluate the energy by calculating
SQη

. Starting from a high temperature T0, we gradually reduce
the temperature with a rate Tn+1 = αTn to a final temperature
Tf = 0.01, where Tn is the temperature at the nth step. Typ-
ically, we set T0 = 1–10 and α = 0.999995, and we spend
around 106 Monte Carlo steps for annealing. After reaching
the final temperature, we perform 106 Monte Carlo steps for
thermalization and measurements, respectively. To identify
magnetic phases, we calculate a spin structure factor given by

Sα
s (q) =

〈
1

N

∑
j,k

Sα
j Sα

k eiq·(R j−Rk )

〉
, (9)

where α = x, y, z, N is the system size, S j is the classical spin
at site j (|S j | = 1), R j is the position vector, and 〈· · · 〉 is the
average over the Monte Carlo samples. In the following, we
show the result for N = 123 under periodic boundary condi-
tions. We note that the thermal effect at Tf is negligibly small,
and we regard the obtained spin state as the ground state.

We show the ground-state phase diagram in Fig. 2,
where (F x

Q1
)2 + (F y

Q1
)2 + (F z

Q1
)2 = 1 and Fα

Q1
� 0. The phase
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diagram is threefold symmetric in terms of the point at F x
Q1

=
F y

Q1
= F z

Q1
and twofold symmetric in terms of the lines at

F x
Q1

�= F y
Q1

= F z
Q1

, F y
Q1

�= F z
Q1

= F x
Q1

, and F z
Q1

�= F x
Q1

= F y
Q1

. We
find three phases characterized by the single-Q (1Q), double-
Q′ (2Q′), and triple-Q (3Q) spin configurations in the ground
state depending on the interactions; 2Q′ means the double-
Q structure with different intensities at {Q}�. The 1Q state
has a coplanar structure, while the 2Q′ and 3Q states have
noncoplanar ones. We note that these phases on the line at
F y

Q1
= F z

Q1
are also stabilized in Pm3̄m and P4̄3m systems.

The 1Q state is a spiral state characterized by the single
peak of the spin structure factor at Q1, Q2, or Q3. This state
becomes the ground state when two out of three interaction
parameters are the same and they are greater than or equal
to the remaining parameter denoted as the green dashed lines
in Fig. 2. In the isotropic case, i.e., F x

Q1
= F y

Q1
= F z

Q1
, the

spiral plane is arbitrary and irrespective of Qη. Meanwhile, in
the region for F x

Q1
< F y

Q1
= F z

Q1
, F y

Q1
< F z

Q1
= F x

Q1
, and F z

Q1
<

F x
Q1

= F y
Q1

, the spiral plane is fixed depending on Qη. For ex-
ample, the anisotropic interaction with F x

Q1
< F y

Q1
= F z

Q1
fixes

the spiral plane on the yz plane at Q1, the zx plane at Q2, or the
xy plane at Q3, which are connected by the threefold rotation
around the [111] direction.

When one of the three interaction parameters is slightly
greater than the remaining two parameters, the infinitesimal
easy-axis anisotropy continuously changes the 1Q state into
the 2Q′ state, which is characterized by the double peaks of the
spin structure factor with different intensities. The 2Q′ state is
expressed as the superposition of the spiral wave and the sinu-
soidal wave, where the oscillating direction of the sinusoidal
wave is perpendicular to the spiral plane [33,34,37,42,73,74].
For example, the interaction with F x

Q1
> F y

Q1
� F z

Q1
stabilizes

the 2Q′ state with the sinusoidal wave along the x direction
at Q1 and the spiral wave on the yz plane at Q2. Similarly to
the 1Q state, there are three 2Q′ states with the same energy
at each parameter due to the threefold rotation around the
[111] direction. The intensity of the sinusoidal (spiral) wave
increases (decreases) as the easy-axis anisotropy increases.
The 2Q′ state has a noncoplanar magnetic structure, where
the magnetic vortex and antivortex form the square lattice
[73]; the degree of noncoplanar spin textures tends to be
enhanced at larger easy-axis anisotropy or larger intensity of
the sinusoidal wave.

Specifically, we show the spin configuration of the 2Q′
state on the zx plane at y = 0 for FQ1

� (0.729, 0.685, 0) in
Fig. 3(a), which is expressed as the superposition of the spiral
wave of the xy spin components along Q1 and the sinusoidal
wave of the z spin component along Q3. The vortex (red circle)
and antivortex (blue circle) onto the zx plane form the square
lattice, as shown in Fig. 3(a). We calculate the spin scalar
chirality at site i, which is defined as

χ sc
i = Si · (Si+êz × Si+êx ) + Si · (Si−êz × Si−êx ), (10)

where êα is the unit vector along the α direction. χ sc
i takes a

positive value in the (anti)vortex spin structure with Sy
i > 0

(Sy
i < 0), while it takes a negative value in the (anti)vortex

spin structure with Sy
i < 0 (Sy

i > 0). As a result, χ sc
i show the

stripy pattern along the z direction, as shown in Fig. 3(a). We

FIG. 3. Spin configuration for (a) the 2Q′ state and (b) the 3Q
state. The arrow represents the spin and the color of the arrow stands
for (a) the spin scalar chirality χ sc

i [(b) S[111]
i = (Sx

i + Sy
i + Sz

i )/
√

3].
The red and blue spheres in (a) [(b)] show the vortex and antivortex
(hedgehog and antihedgehog), respectively.

note that the total of χ sc
i in the magnetic unit cell is zero but

the Fourier component of χ sc
i at Q3 becomes finite, the latter

of which is characteristic of the 2Q′ state in addition to the
double peak of the spin structure factor.

By further increasing the easy-axis anisotropy, the ground
state becomes the 3Q state characterized by the triple peaks of
the spin structure factor with the same intensity. We show the
spin configuration of the 3Q state obtained by the simulated
annealing in the case of FQ1

= (0, 0, 1) in Fig. 3(b), which is
expressed as the superposition of the three sinusoidal waves
along the x direction at Q2, the y direction at Q3, and the z
direction at Q1 [33,34,37,42].

We also show the positions of the magnetic hedgehog
(red sphere) and antihedgehog (blue sphere), which form the
simple cubic lattice [37]; they are identified by calculating a
topological charge for each unit cube as follows [32,33,75].
For the unit cube consisting of sites i0, i1 = i0 + êx, i2 = i0 +
êy, i3 = i0 + êx + êy, i4 = i0 + êz, i5 = i1 + êz, i6 = i2 + êz,
i7 = i3 + êz, the topological charge Qr is given by

4πQr = −�(i0, i1, i2) − �(i1, i3, i2) + �(i4, i5, i6)

+ �(i5, i7, i6) − �(i0, i2, i4) − �(i2, i6, i4)

+ �(i1, i3, i5) + �(i3, i7, i5) − �(i1, i4, i5)

− �(i1, i0, i4) + �(i3, i6, i7) + �(i2, i6, i3), (11)

where r is the position of the cubic center and �(i, j, k) ∈
[−2π, 2π ] is defined as

tan
�(i, j, k)

2
= Si · (S j × Sk )

1 + Si · S j + S j · Sk + Sk · Si
. (12)

The topological charge Qr takes a value of +1 for the hedge-
hog, −1 for the antihedgehog, and otherwise 0. The total
number of hedgehogs and antihedgehogs, NQ = ∑

r |Qr|, is a
characteristic quantity of the 3Q state in addition to the triple
peak of the spin structure factor.

IV. ANALYTICAL CALCULATION

We discuss the instability from the 1Q state to the 2Q′
and 3Q states based on analytical calculations by focusing
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on the role of the easy-axis anisotropy. In the following, we
consider the region with the easy-axis anisotropy along the x
direction at Q1 (F x

Q1
> F y

Q1
� F z

Q1
) and compare the energies

of the 1Q, 2Q′, and 3Q states without loss of generality. The
spin configuration of the 1Q state with the ordering wave
vector Q2 is given by

S1Q
i = ey cos Q2i − ez sin Q2i, (13)

where Q2i = Q2 · Ri. The energy per site is given by

E1Q = H
N

= −1

2

(
F x

Q1
+ F y

Q1

)
. (14)

Next, the spin configuration of the 2Q′ state is represented
by introducing the sinusoidal wave with the ordering wave
vector Q1 to the 1Q state, which is given by [73]

S2Q′
i =

√
1 − b2 sin2 Q1i(ey cos Q2i − ez sin Q2i )

+ exb2 sin Q1i, (15)

where the variational parameter b means the amplitude of
the sinusoidal wave at Q1; the spiral plane is modified to
be elliptical at b �= 0 with keeping |S2Q′

i | = 1 at any site.
The dominant Fourier components for this configuration are
given by

S2Q′
Q1

= i

√
N

2
bex, (16)

S2Q′
Q2

=
√

N

2
C0(ey − iez ), (17)

where C0 = 1 − b2/4 − 3b4/64 + O(b6). We obtain the en-
ergy per site as

E2Q′ � E1Q − b2

2
F x

Q1
+ b2

4

(
F x

Q1
+ F y

Q1

)(
1 + b2

4

)
. (18)

The 2Q′ state has the lower energy than the 1Q state when b
satisfies

b2 < 16
F x

Q1
− F y

Q1

F x
Q1

+ F y
Q1

. (19)

The result means that the 2Q′ state with infinitesimal b has the
lower energy than the 1Q state for F x

Q1
> F y

Q1
� F z

Q1
. In other

words, the modification of the spiral shape by the easy-axis
anisotropy F x

Q1
gives rise to the instability toward the 2Q′ state

even without the magnetic field and thermal effect.
The spin configuration of the 3Q state is given by super-

posing the three sinusoidal waves, which is given by

S3Q
i = 1

Ni
(ex cos Q1i + ey cos Q2i + ez cos Q3i ), (20)

where we introduce the normalized factor Ni =√∑3
η=1 cos2 Qηi. This configuration is characterized by

∣∣S3Q
Qη

∣∣ �
√

N

6
(1 − δ), (21)

where the variational parameter δ > 0 originates from the
normalized factor Ni and thus it is small. The energy per site
is given by

E3Q � E1Q − F x
Q1

(1 − δ)2 + 1
2

(
F x

Q1
+ F y

Q1

)
. (22)

Thus, the 3Q state with δ 
 1 becomes more stable than the
1Q state when

F x
Q1

>
F y

Q1

2(1 − δ)2 − 1
= F y

Q1
(1 + 4δ) + O(δ2), (23)

which shows that the large F x
Q1

induces the instability toward
the 3Q state in the ground state.

We note that the above discussion can be applied to the
situation where the ordering wave vectors lie inside the first
Brillouin zone so that the spiral state happens. Such a situation
changes by considering the ordering wave vector belonging
to the time-reversal invariant momenta on the Brillouin zone
boundary; no above multiple-Q instability occurs, as reported
in Ref. [40]. Their difference is understood from the effect of
the symmetric anisotropic interactions, which tend to induce
the sinusoidal/elliptical modulations of the spiral plane in the
former case, while retain the spin configuration as it is in the
latter case. Since the sinusoidal/elliptical modulations cost
the energy of the single-Q state, the multiple-Q instability can
be induced in the former situation.

V. SUMMARY

We present the anisotropic spin model with both
the momentum-dependent DM interaction and symmetric
anisotropic interaction in cubic systems. We clarify the
nonzero anisotropic interactions at three high-symmetry wave
vectors in the Pm3̄m, Pm3̄, P4̄3m, P432, and P23 cu-
bic space groups based on the symmetry rules. The results
show that the anisotropic interactions largely depend on
not only the space group but also the wave vector, which
implies that a plethora of multiple-Q states appear by the
anisotropic interactions in cubic systems. To demonstrate it,
we investigate the ground-state phase diagram for the cen-
trosymmetric Pm3̄ system by simulated annealing. We reveal
that the symmetric anisotropic interactions stabilize the non-
coplanar double-Q and triple-Q states, which are regarded
as the vortex-antivortex square lattice and the hedgehog-
antihedgehog cubic lattice, respectively. Our results make
it possible to systematically investigate the multiple-Q in-
stability in centrosymmetric and noncentrosymmetric cubic
systems based on the anisotropic interactions. Such systematic
studies will be a good reference for seeking new noncollinear
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and noncoplanar magnetic materials and understanding their
origin.
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APPENDIX: INTERACTIONS AT THE OTHER
HIGH-SYMMETRY WAVE VECTORS

We show the interaction matrices for Pm3̄m, P4̄3m, P432,
Pm3̄, and P23 at Q2–Q4 in {Q}�, at Q2–Q3 in {Q}�, and
at Q2–Q6 in {Q}	 shown in Fig. 1, whose components
are represented by XQ1

in Table II. To explicitly obtain
nonzero components in the matrices, we use the following
point group symmetries: the twofold rotation around [100]
(C2[100]), twofold rotation around [010] (C2[010]), twofold
rotation around [001] (C2[001]), threefold counterclockwise ro-
tation around [111] (C+

3[111]), and threefold clockwise rotation
around [111] (C−

3[111]).

1. {Q}�

The wave vectors Q2, Q3, and Q4 shown in Fig. 1(a) are
connected to Q1 as Q2 = C2[001]Q1, Q3 = C2[010]Q1, and Q4 =
C2[100]Q1. Then, XQ2

, XQ3
, and XQ4

for P432 and P23 are given
by

XQ2
=

⎛
⎜⎝

F x
Q1

Ex
Q1

+ iDx
Q1

−Ex
Q1

+ iDx
Q1

Ex
Q1

− iDx
Q1

F x
Q1

−Ex
Q1

− iDx
Q1

−Ex
Q1

− iDx
Q1

−Ex
Q1

+ iDx
Q1

F x
Q1

⎞
⎟⎠,

(A1)

XQ3
=

⎛
⎜⎝

F x
Q1

−Ex
Q1

− iDx
Q1

Ex
Q1

− iDx
Q1

−Ex
Q1

+ iDx
Q1

F x
Q1

−Ex
Q1

− iDx
Q1

Ex
Q1

+ iDx
Q1

−Ex
Q1

+ iDx
Q1

F x
Q1

⎞
⎟⎠,

(A2)

XQ4
=

⎛
⎜⎝

F x
Q1

−Ex
Q1

− iDx
Q1

−Ex
Q1

+ iDx
Q1

−Ex
Q1

+ iDx
Q1

F x
Q1

Ex
Q1

+ iDx
Q1

−Ex
Q1

− iDx
Q1

Ex
Q1

− iDx
Q1

F x
Q1

⎞
⎟⎠.

(A3)

XQ2
, XQ3

, and XQ4
for Pm3̄m, P4̄3m, and Pm3̄ are given by

setting Dx
Q1

= 0 in Eqs. (A1)–(A3), respectively.

2. {Q}�

The wave vectors Q2 and Q3 shown in Fig. 1(b) are con-
nected to Q1 as Q2 = C+

3[111]Q1 and Q3 = C−
3[111]Q1. Then, XQ2

and XQ3
for P23 are given by

XQ2
=

⎛
⎜⎝

F z
Q1

0 −iDx
Q1

0 F x
Q1

0

iDx
Q1

0 F y
Q1

⎞
⎟⎠, (A4)

XQ3
=

⎛
⎜⎝

F y
Q1

iDx
Q1

0

−iDx
Q1

F z
Q1

0

0 0 F x
Q1

⎞
⎟⎠. (A5)

XQ2
and XQ3

for Pm3̄m and P4̄3m are given by setting F y
Q1

=
F z

Q1
and Dx

Q1
= 0 in Eqs. (A4) and (A5), respectively. XQ2

and
XQ3

for P432 are given by setting F y
Q1

= F z
Q1

in Eqs. (A4) and
(A5), respectively. XQ2

and XQ3
for Pm3̄ are given by setting

Dx
Q1

= 0 in Eqs. (A4) and (A5), respectively.

3. {Q}�

The wave vectors Q2, Q3, Q4, Q5, and Q6 shown in Fig. 1(c)
are connected to Q1 as Q2 = C+

3[111]Q1, Q3 = C−
3[111]Q1, Q4 =

C2[100]Q1, Q5 = C+
3[111]C2[100]Q1, and Q6 = C−

3[111]C2[100]Q1.
Then, XQ2

, XQ3
, XQ4

, XQ5
, and XQ6

for P23 are given by

XQ2
=

⎛
⎜⎝

F z
Q1

iDy
Q1

−iDx
Q1

−iDy
Q1

F x
Q1

Ez
Q1

iDx
Q1

Ez
Q1

F y
Q1

⎞
⎟⎠, (A6)

XQ3
=

⎛
⎜⎝

F y
Q1

iDx
Q1

Ez
Q1

−iDx
Q1

F z
Q1

iDy
Q1

Ez
Q1

−iDy
Q1

F x
Q1

⎞
⎟⎠, (A7)

XQ4
=

⎛
⎜⎝

F x
Q1

−Ez
Q1

iDy
Q1

−Ez
Q1

F y
Q1

iDx
Q1

−iDy
Q1

−iDx
Q1

F z
Q1

⎞
⎟⎠, (A8)

XQ5
=

⎛
⎜⎝

F z
Q1

−iDy
Q1

−iDx
Q1

iDy
Q1

F x
Q1

−Ez
Q1

iDx
Q1

−Ez
Q1

F y
Q1

⎞
⎟⎠, (A9)

XQ6
=

⎛
⎜⎝

F y
Q1

iDx
Q1

−Ez
Q1

−iDx
Q1

F z
Q1

−iDy
Q1

−Ez
Q1

iDy
Q1

F x
Q1

⎞
⎟⎠. (A10)

XQ2
–XQ6

for Pm3̄m are given by setting F x
Q1

= F y
Q1

and Dx
Q1

=
Dy

Q1
= 0 in Eqs. (A6)–(A10), respectively. XQ2

–XQ6
for P4̄3m

are given by setting F x
Q1

= F y
Q1

and Dx
Q1

= −Dy
Q1

in Eqs. (A6)–
(A10), respectively. XQ2

–XQ6
for P432 are given by setting

F x
Q1

= F y
Q1

and Dx
Q1

= Dy
Q1

in Eqs. (A6)–(A10), respectively.
XQ2

–XQ6
for Pm3̄ are given by setting Dx

Q1
= Dy

Q1
= 0 in

Eqs. (A6)–(A10), respectively.
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