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Ab initio statistical mechanics of the Néel transition in hexagonal YMnO3:
Antiferromagnetic domain walls, vortices, and local magnetoelectric coupling
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Hexagonal manganites with coexisting antiferromagnetism and ferroelectricity have driven numerous re-
search activities uncovering their potential in novel electronic devices. An antiferromagnetic order lowers
the translational symmetry of the lattice; the structure of domain walls spatially separating distinctly ordered
antiferromagnetic and structural states is quite rich and needs to be understood fundamentally. Here, we construct
a model Hamiltonian to capture the low energy physics of coupled spins and phonons in hexagonal multifer-
roic YMnO3 derived from first-principles density functional theory and determine its temperature dependent
behavior using Monte Carlo simulations. We demonstrate a weakly first order or close to being second order
Néel transition accompanied by a giant magnetoelastic effect observed experimentally in YMnO3 and show
how it originates from the coupling between the in-plane ordering of spins with symmetry of �3 irreducible
representation and collective atomic displacements with symmetry of �1 irreducible representation. We reveal
the intriguing magnetic structure with the symmetry of �1 irreducible representation at the 180◦ antiferromag-
netic domain wall and predict a linear magnetoelectric coupling which can be confirmed using the piezoresponse
force microscopy. Finally, we show that a stable magnetic vortex forms along a line of intersection of six 60◦

antiferromagnetic domain walls, with energy comparable to that of dislocations in metals.

DOI: 10.1103/PhysRevB.107.174403

I. INTRODUCTION

Ferromagnetic materials have been the subject of great
interest for centuries since the discovery of the first perma-
nent magnet lodestone and its use as a compass [1]. The
formation of lateral magnetic domain walls in ferromag-
nets is crucial for their applications in magnetic memory
devices [2,3]. Magnetic domains are uniformly magnetized
regions with the effective magnetization direction in a spe-
cific direction determined by local magnetic anisotropy [4,5].
Antiferromagnetism is another type of magnetic ordering that
is commonly observed in many magnetic materials. It has
been observed that many of the multiferroics and topological
magnets (magnetic Weyl semimetals) are antiferromagnets
[6–10]. Several exotic states with superconductivity and
colossal magnetoresistance emerge from the antiferromag-
netic state or a competition with it [11–13]. The absence of
stray magnetic field in antiferromagnets makes them poten-
tial candidates for applications in spintronics [14,15]. In this
context, understanding structure and dynamics of antiferro-
magnetic domains and domain walls at the microscopic level
is fundamentally important [16,17]. Atomic spin structure at
the domain walls in antiferromagnets has been investigated
experimentally using spin-polarized scanning tunneling mi-
croscopy and x-ray photoemission microscopy [18,19] and
has received renewed attention [20].

Modification of ferroic orders and their symmetry at
domain walls results in rich physics and new functional
properties which may not be envisaged in single domain bulk
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materials [21–25]. The discovery of electronic conductivity
at the ferroelectric domain walls has opened a new avenue
of research in understanding the mechanism and fabricating
the domain walls based devices [21–25]. The domain walls
in some ferromagnets exhibits topological Hall effects origi-
nating from magnetic skyrmions [26,27]. Recently, an uncon-
ventional anomalous Hall effect has been observed at the anti-
ferromagnetic domain wall due to breaking of the local
cubic symmetry [28]. Uncompensated magnetic moments
at the coupled ferroelectric and antiferromagnetic domain
walls have been experimentally detected in hexagonal
ErMnO3 [29].

Hexagonal rare earth manganites form an important
class of materials with coexisting antiferromagnetic and
structural-ferroelectric ordering [29–32]. Their high symme-
try paraelectric phase undergoes a structural transition at a
fairly high temperature involving unit cell tripling (through
condensation of a zone boundary K3 phonon mode) [30,33].
Ferroelectricity in these materials arises as a consequence of
nonlinear coupling between this zone boundary (trimeriza-
tion) instability and a zone-center polar mode as the secondary
order parameter, making them improper ferroelectrics [33].
Furthermore, magnetic structure in hexagonal manganites is
geometrically frustrated due to the antiferromagnetic coupling
between the spins of Mn3+ ions on a triangular lattice [34].
This favors noncollinear ordering of spins that couples to
phonons and strain [35,36], giving rise to rich physical phe-
nomena such as giant magnetoelastic effect [36].

Among the hexagonal multiferroics, YMnO3 is an ex-
tensively studied material with the coexistence of fer-
roelectricity (TC = 1270 K) and antiferromagnetism (TN =
75 K) [6,30,33]. It exhibits a spontaneous polarization of
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6.5 μC/cm2 [33] and six structural domains of distinct trimer-
ized states arise below the structural transition temperature
TC , from condensation of a zone-boundary phonon [6,30].
Landau theory with inputs from first principles has been used
effectively to understand the nature of structural and ferroelec-
tric domain walls in hexagonal manganites [6,37]. Boundaries
between the six structurally ordered domains can intersect at
a line forming a topological defect, which has been observed
with conducting force and transmission electron microscopy
[38–40]. Polarization changes sign across a structural do-
main wall in the topological defect state due to the improper
nature of ferroelectricity [6,40]. Recently, stable and sharp
charged ferroelectric domain walls have also been character-
ized experimentally in single crystal of improper ferroelectric
YMnO3 [41,42].

The spin texture across an antiferromagnetic domain wall
below TN and the nature of magnetic transition in YMnO3 are
yet to be investigated. It was inferred from neutron diffrac-
tion experiments [43,44] that the magnetic moments of Mn3+

ions order antiferromagnetically (noncollinear ordering) in the
ab plane according to �3 irreducible representation below
75 K, without reducing the structural symmetry further [36].
Yet Néel transition is accompanied by a distinct anomaly
in the structure, i.e., cell parameters and atomic positions,
which was termed as the giant magnetoelastic effect [36].
The coupling of spins with �1 phonons was believed to be
responsible for the observed giant magnetoelastic effect using
neutron diffraction experiments [36], which was corroborated
by first-principles calculations [45]. It was speculated earlier
[6] that the experimentally observed structural vortices (topo-
logical defects) in LuMnO3 are also magnetic vortices due
to the microscopic coupling between the tilting angle of the
MnO5 bipyramid and the axis of in-plane magnetocrystalline
anisotropy. However, the symmetry of the magnetic ground
state of LuMnO3 is �4, while that of YMnO3 is �3. It is
intriguing and important to understand if and how symmetry
of the magnetic ground state influences the nature of antifer-
romagnetic domains and topological defects.

In this work, we determine the temperature dependent
behavior of antiferromagnetic and structural order parame-
ters relevant to Néel transition in YMnO3 using statistical
mechanical analysis of a first-principles model Hamiltonian.
We highlight the role of spin-phonon coupling in atomic
scale structure of magnetostructural domain walls and develop
an understanding of how antiferromagnetic and structural
domains are locked below TN . We predict a nontrivial lin-
ear magnetoelectric coupling at the 180◦ antiferromagnetic
domain wall which can be utilized in its visualization in ex-
periment. We show that structural vortex state in YMnO3 is
locked to magnetic vortex state below Néel temperature.

II. RESULTS AND DISCUSSION

A. Symmetry of magnetic and structural order parameters

Earlier first-principles calculations [45] on YMnO3 have
corroborated the experimental finding that an antiferromag-
netic state with ordering of spins of Mn3+ in the ab plane
[first magnetic basis vector; see Fig. 1(a)] according to �3 irre-
ducible representation (parent ferroelectric and paramagnetic
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FIG. 1. (a) In-plane magnetic ordering of spins (of Mn atoms)
according to the symmetry of �3 irreducible representation and
(b) in-plane displacements of apical oxygen (O1 and O2) atoms
according to �1 irreducible representation of the ferroelectric and
paramagnetic P63cm1′ phase. a and b (a′ and b′) represent lattice unit
cell vectors of the ferroelectric (paraelectric) structure. A, A′, and A′′

in (a) are the local magnetic order parameters defining spin orienta-
tions of Mn atoms in a hexagonal cluster. u, u′, u′′ in (b) are the local
structural order parameters defining apical oxygen displacements
(structural states) with respect to the ferroelectric and paramagnetic
P63cm1′ phase. A’s (u’s) are essentially the spin (lattice) Wannier
functions which form a localized basis that spans the subspace of
the effective Hamiltonian. −A, −A′, and −A′′ magnetic states are
obtained by applying time reversal symmetry operation on the A, A′,
and A′′ states, respectively. Similarly, −u, −u′, and −u′′ structural
states are obtained from u, u′, and u′′ structural states by applying
spatial inversion symmetry. The radial vectors ri, ci (ri = c(i−1)mod6

and c(i−2)mod6, for odd i), and di (ri = di+1 and di+2, for odd i) defined
in (c) are used to determine the local antiferromagnetic order param-
eters A, A′, and A′′ [see Eq. (1) in the text] in a unit cell consisting
of six Mn atoms (i = 1, 2, 3, . . . , 6). Among the three choices of
hexagons in the unit cell [green, purple, and red in Fig. 1(a)], the
green hexagon is used in estimating the local antiferromagnetic order
parameters.

space group: P63cm1′) has the lowest energy. Surprisingly,
the magnetic state with the same symmetry and spins ordered
along the z axis (M; see Fig. S2 in [48]), corresponding to
another magnetic basis vector of �3 irreducible representation
(P63cm1′ space group) has a notably higher energy [45].
A large energy difference (86 meV/f.u.) between these two
isosymmetric states originates mainly from energies associ-
ated with strong in-plane superexchange interaction and easy
plane magnetocrystalline anisotropy [45].

Translational symmetry operations Ra′ and Rb′ (symmetry
elements of the high symmetry paraelectric and paramagnetic
phase P63/mmc1′, T > TC ) transform the antiferromagneti-
cally ordered state A� to A′′

� and A′
� [see Fig. 1(a) and Table I],

respectively. Six energetically equivalent antiferromagnetic
states—(a) A� , −A� , (b) A′

� , −A′
� , and (c) A′′

� , −A′′
� [see

Fig. 1(a)]—emerge from a combination of translational and
time reversal operations on the antiferromagnetic state A� .
On the other hand, the isosymmetric antiferromagnetic state
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TABLE I. Transformations of order parameters of magnetic (A�’s and M ), structural (u�’s), and ferroelectric (Pz ) states under the relevant
symmetry operations. Antiferromagnetic ordering according to �3 irreducible representation of ferroelectric and paramagnetic P63cm1′ space
group is formed by A� = ∑

�R A( �R) ( �R = n�a + m�b denote lattice vectors of the ferroelectric lattice), A′
� = ∑

�R A′( �R), and A′′
� = ∑

�R A′′( �R).
A ( �R), A′ ( �R), and A′′ ( �R) represent the localized basis of antiferromagnetic order parameters [see Fig. 1(a)]. Apical oxygen displacements
according to the symmetry of �1 irreducible representation of the ferroelectric and paramagnetic P63cm1′ space group are defined by u� =∑

�R u( �R), u′
� = ∑

�R u′( �R), and u′′
� = ∑

�R u′′( �R). u ( �R), u′ ( �R), and u′′ ( �R) represent the localized basis of structural order parameters; see
Fig. 1(b). a′ and b′ represent lattice vectors of the paraelectric lattice (P63/mmc1′ space group).

Ra′ Rb′ I τ

Order parameter (Translation) (Translation) (Spatial inversion) (Time reversal)

A� A′′
� A′

� A� −A�

M M M M −M
u� u′′

� u′
� −u� u�

Pz Pz Pz −Pz Pz

M (P63cm1′ space group; see Table I here and Fig. S2 in [48])
remains unaltered under the translational symmetry opera-
tions R′

a and R′
b (see Table I) as it involves antiferromagnetic

ordering of spins along the z axis.
Earlier experimental measurements and first-principles

theoretical analysis [36,45] have demonstrated that the atomic
displacements in the ferroelectric phase (P63cm1′ space
group) corresponding to �1 irreducible representation [u’s;
see Fig. 1(b) here and Fig. S1(f) in [48]] couple strongly
with spins. u�’s represent atomic displacements [giving struc-
tural states of �1 irreducible representation; see Fig. 1(b)]
taken with respect to their positions in the ferroelectric and
paramagnetic phase (P63cm1′ space group). Group theo-
retical analysis [46] shows that experimental [36] atomic
displacements in YMnO3 corresponding to �1 irreducible rep-
resentation of P63cm1′ space group [involved in structural
distortion at Néel transition; see Fig. 1(b)] are compatible
with the atomic displacements of zone boundary polar K3 (see
Fig. S1(a)-S1(d) in [48], tilting of MnO5 bipyramids, and out
of plane displacements of Y and equatorial O atoms) and non-
polar K1 (see Fig. S3(a)-S3(b) in [48], in-plane displacements
of Mn, and apical O atoms) phonon modes and zone center po-
lar �−

2 phonon mode (out of plane displacements of all atoms)
of the paraelectric and paramagnetic phase (P63/mmc1′ space
group; see Table II). In contrast, atomic displacements of
only K1 mode are shown to be involved in spin reorientation
transition in hexagonal LuFeO3 [47], which is isostructural to
paraelectric hexagonal YMnO3. Our first-principles calcula-
tions of the structure of antiferromagnetic YMnO3 involves
K3 and �−

2 modes with amplitudes comparable to their exper-
imental values [36] (see Table II). However, the amplitude of
the K1 phonon mode is severely underestimated (by a factor
of eight) in our analysis in comparison with experiment (see
Table II here and Sec. E in [48]). This is consistent with
recent findings [49,50] that the first-principles predictions of

positions of Mn atoms in the antiferromagnetic YMnO3 are
close to their experimental positions [36] at room tempera-
ture (i.e., small amplitude of K1 phonon mode). While we
thus associate u�’s (structural states defining localized atomic
displacements according to �1 irreducible representation of
ferroelectric P63cm1′ space group) here primarily to polar
K3 (see Fig. S1(a)-S1(c) in [48]) and �−

2 phonon modes of
paraelectric phase (P63/mmc1′ space group), its discrepancy
with respect to experiment (K1 mode) is an open question and
needs more work.

Translation (by R′
a and R′

b of the paraelectric unit cell) and
spatial inversion operations on u� result in six distinct struc-
tural states ±u� , ±u′

� , and ±u′′
� [see Fig. 1(b)]. The experi-

mentally observed displacements [36] of apical oxygen atoms
in the ferroelectric P63cm1′ phase (�1 irreducible representa-
tion) near Néel transition occur in the same direction [51] (see
Table S1 in [48]) as the apical oxygen displacements leading
to trimerization of the paraelectric unit cell (K3 irreducible
representation of paraelectric P63/mmc1′ space group). As
the K3 and �−

2 polar phonon modes of paraelectric P63/mmc1′
phase couple nonlinearly (u3

K3
u�−

2
), polarization (Pz ) changes

its sign if directions of apical oxygen displacements asso-
ciated with zone boundary K3 phonon mode reverse [6,37].
Thus u�’s and −u�’s structural states (displacements of apical
oxygen atoms according to the symmetry of �1 irreducible
representation of ferroelectric P63cm1′ space group) appear
in the ferroelectric phase with positive and negative values of
polarization (Pz ), respectively [51]. This is in agreement with
experimental findings [51] that the magnitude of ferroelec-
tric polarization increases significantly below TN . Structural
states (u�’s) corresponding to �1 irreducible representation
of ferroelectric P63cm1′ space group transform in a manner
similar to polar K3 and �−

2 phonon modes (polarization Pz )
of the paraelectric P63/mmc1′ space group under the spatial
inversion operation (see Table I). Therefore, the six structural

TABLE II. Projection of atomic displacements according to the symmetry of �1 irreducible representation involved in structural distortions
at the Néel transition, taken with respect to the low temperature ferroelectric and paramagnetic P63cm1′ phase, on the basis vectors of K1, K3,
and �−

2 phonon modes of the high temperature paraelectric, paramagnetic P63/mmc1′ phase. R’s represent atomic positions.

Atomic displacement (�1) K1 K3 �−
2

R300 K
ion (Expt. [36]) - R10 K

ion (Expt. [36]) 0.66 0.62 0.52
R300 K

ion (Expt. [36]) - R0 K
ion (LDA+SOC, �3 AFM ordering) 0.08 0.35 0.89
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states, u�’s, of ferroelectric P63cm1′ phase [�1 irreducible
representation; see Fig. 1(b)] correspond to the six trimerized
structural states (see Fig. S1(a)-S1(c) in [48]). Correlations of
u�’s [�1 irreducible representation of ferroelectric P63cm1′
space group; see Fig. 1(b)] with polar K3 (trimerization angle
�; see Fig. S1(a)-S1(c) in [48]) and �−

2 (Pz ) phonon modes of
a paraelectric P63/mmc1′ phase [6,37] are given as (a) � =
0(α+,+Pz ) → u� , (b) � = π (α−,−Pz ) → −u� , (c) � =
2π/3(β+,+Pz ) → u′

� , (d) � = −π/3(β−,−Pz ) → −u′
� , (e)

� = −2π/3(γ +,+Pz ) → u′′
� , and (f) � = π/3(γ −,−Pz ) →

−u′′
� .
Change in the axis of in-plane magnetocrystalline

anisotropy [i.e., change in the antiferromagnetic ordering
from A� to A′

�; see Fig. 1(a)] results from a change in
in-plane displacements of apical oxygen atoms [u� to u′

� ,
�1 irreducible representation of P63cm1′ space group; see
Fig. 1(b)] through the third order spin-phonon coupling [6].
Hence structural states (u� , u′

� , and u′′
� ) are locked to the

antiferromagnetic states (A� , A′
� , and A′′

� ). When A� trans-
forms to A′′

� and A′
� upon translations by Ra′ and Rb′ , u�

correspondingly changes to u′′
� and u′

� (see Table I). These
antiferromagnetic states (A� , A′

� , and A′′
� ) or the basis vectors

of �3 magnetic representation [in Fig. 1(a) here and Fig. S2 in
[48]] are constituted of the localized basis of the primary order
parameters of the Néel transition: A, A′, A′′, and M in the unit
cell, which are especially spin Wannier functions, defined as

A = 1

6

6∑
i=1

(−1)i(r̂i · ŝi ), A′ = 1

6

6∑
i=1

(ĉi · ŝi ),

A′′ = 1

6

6∑
i=1

(d̂i · ŝi), M = 1

6

6∑
i=1

(−1)isi,z, (1)

where r̂i represents a unit vector along the in-plane projec-
tion of the position vector of ith Mn atom [i = 1, . . . , 6;
see Fig. 1(c)] with respect to the center [

∑6
i=1 r̂i = 0; see

Fig. 1(c)] and si,z is the z component of ŝi (spin vector of
ith Mn atom). ĉi and d̂i are sets of radial vectors [

∑6
i=1 ĉi =∑6

i=1 d̂i = 0; see Fig. 1(c)]. The secondary order parameters
relevant to the Néel transition are the atomic displacements
(u� , u′

� , and u′′
� form a localized basis) with the symmetry of

�1 irreducible representation (P63cm1′ space group).

B. Model Hamiltonian

To capture the low energy landscape of primary (A, A′,
A′′, and M ) and secondary (u, u′, and u′′) order parameters
governing the Néel transition, we consider a coupled lattice-
spin Hamiltonian involving terms contributed by spins [45]
and atomic displacements (�1 symmetry):

H = Jp

∑
〈i j〉,P

ŝi · ŝ j + Jip

∑
〈i j〉,IP

ŝi · ŝ j + Kp

∑
i

sin2 θi

+ Ka

∑
i

{
(r̂i · ŝi )

2 +
∑

i

(ĉi · ŝi )
2 +

∑
i

(d̂i · ŝi )
2

}

+ 1

2
Uk

(
u2

� + u′2
� + u′′2

�

)

+ α

U∑
n=1

(
A2

nu� + A′2
n u′

� + A′′2
n u′′

�

)
, (2)

where Jp and Jip are the coefficients of in-plane and interplane
superexchange interaction between nearest neighbor Mn3+

spins, respectively, θi is the angle between spin ŝi and z axis,
Kp and Ka are constants of easy plane (confining spins in the
ab plane) and in-plane easy axis [constrains ŝi’s along r̂i’s and
ĉi’s and d̂i’s in the ab plane; see Fig. 1(c)] magnetocrystalline
anisotropy, respectively, k is the spring constant associated
with the phonon mode of �1 irreducible representation, and
α is the third-order spin-phonon coupling constant. {An} is
the value of the order parameter {A} in the nth unit cell
(n = 1 to U ; U is the total number of unit cells) and i ( j)
vary from 1 to 6U spins. We consider a symmetry allowed
coupling (third order) between uniform order parameters, the
�1 phonon mode (compatible with K3 and �−

2 phonon modes
of the paraelectric P63/mmc1′ phase) and local magnetic
ordering, microscopic coupling [52] that leads to the imbal-
ance in nearest neighbor superexchange interactions. Values
of parameters Jp = 18 meV, Jip = 0.07 meV, KP = −4 meV,
and Ka = −0.3 meV were estimated using energies of sev-
eral noncollinearly ordered antiferromagnetic states simulated
within first-principles density functional theory [45]. While
coupling of u�’s with A�’s and M are allowed by symmetry,
the relevance of coupling between u�’s and M is not signif-
icant as the M state is much higher in energy (86 meV/f.u.
[45]) than the A� state (from the results of first-principles
calculations [45]). Minimizing H [Eq. (2)] with respect to u� ,
u′

� , and u′′
� we get

u�,min = −α

k

∑
n

A2
n,

u′
�,min = −α

k

∑
n

A′2
n ,

u′′
�,min = −α

k

∑
n

A′′2
n .

(3)

Our first-principles DFT calculations predict that atomic
positions in the antiferromagnetically ordered state with the
symmetry of �3 irreducible representation (A� state) are close
to their values in the paramagnetic state (see Table II and
Table S1 in [48]) and suggest a weak spin-phonon coupling
constant. Atomic positions of the paramagnetic and antiferro-
magnetic states reported earlier are very dispersed and there
is no consensus yet particularly on the positions of Mn atoms
(see Table S2 and Sec. E in [48]). We determine the strength
of a third order spin-phonon coupling constant (α) by con-
sidering experimental crystal structures [36] at 300 K (crystal
structure in paramagnetic state) and 10 K (crystal structure
in antiferromagnetically ordered state). Here u�’s represent
the experimental atomic displacements from their positions
in the paramagnetic and ferroelectric P63cm1′ phase (above
TN ) [36]. Our first-principles calculations reveal that the an-
tiferromagnetically ordered state with the symmetry of �3

irreducible representation (A� state) at the 10 K experimental
structure is 40 meV/f.u. higher than that with experimen-
tal crystal structure at 300 K (which is close to the DFT
ground state). Our estimated magnitude of u is around 0.014
Å (see Fig. S4(a)-S4(b) in [48]) which is six times smaller
than its experimental value [36]. These results highlight that
spin-phonon coupling is underest imated in first-principles
local DFT calculations (see Table II here, and Table S2 and
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Fig. S4 in [48]). The estimate of α2

2k (= 6
U meV, where U

is the number of unit cells) is obtained from the third order
spin-phonon coupling constant (α = −0.99 eV/Å) associated
with the experimentally measured atomic displacements with
�1 symmetry (see Fig. S4(b) and Sec. E in [48]). Integrating
out u�’s, the renormalized spin Hamiltonian (HR) is

HR = Jp

∑
〈i j〉,P

ŝi · ŝ j + Jip

∑
〈i j〉,IP

ŝi · ŝ j + Kp

∑
i

sin2 θi

+ Ka

(∑
i

(r̂i · ŝi )
2 +

∑
i

(ĉi · ŝi )
2 +

∑
i

(d̂i · ŝi )
2

)

− α2

2k

⎡
⎣(

U∑
n=1

A2
n

)2

+
(

U∑
n=1

A′2
n

)2

+
(

U∑
n=1

A′′2
n

)2
⎤
⎦.

(4)

We note that the local antiferromagnetic (A�’s) order pa-
rameters are linearly dependent: A� = −A′

�-A′′
� [see Figs. 1(a)

and 1(b) and Eq. (1)]. In contrast, the trimerized structural
state [see Figs. 1(b) and S1a-c] [α+ (� = 0), +Pz] cannot
be expressed as a linear combination of [γ − (� = π/3),
−Pz] and [β− (� = −π/3), −Pz] trimerized structural states
since the sign of polarization (Pz ) changes in the last two.
Similarly the structural state u� [α+ (� = 0), +Pz] cannot
be expressed in terms of −u′′

� [γ − (� = π/3), −Pz] and
-u′

� [β− (� = −π/3), −Pz] since the parent ferroelectric
structures corresponding to u� and −u′

� have opposite sign
of polarization. We set the spin-phonon coupling parameter
α2

2k to 6
U (U is the total number of ferroelectric unit cells)

when the first component of the last term (one structural state)
in Eq. (4) is considered (Secs. II C and II D). In a homoge-
neously ordered magnetic state A� , an additional component
of energy contributed by A′

� and A′′
� (A� = −A′

� − A′′
�; A = 1,

A′ = −0.5, and A′′ = −0.5) arises if all three components of
the last term in Eq. (4) are considered. We then renormal-
ize the spin-phonon coupling parameter α2

2k to 5.3
U to account

for the additional energy contribution [all three components
of the last term in Eq. (4), Secs. II E and II F].

We perform heating-up and cooling-down classical Monte
Carlo simulations of the renormalized spin Hamiltonian with
periodic boundary conditions.

C. Néel phase transition

We first discuss results of Monte Carlo simulations of
the model Hamiltonian that considers [first components of
the fourth and fifth terms in addition to the first three
terms in Eq. (4)] only one structural state u� [see Eq. (2)].
We determine antiferromagnetic and structural order param-
eters A, M, and u [in the green hexagon of Figs. 1(a)
and 1(b)] at each temperature using Eq. (1) and Eq. (3).
Order parameter M [see Eq. (1)] involving antiferromag-
netic ordering of spins along the z axis remains close to
zero at low temperatures [see Fig. 2(a)] since the spins
are confined mostly to the xy plane (see Fig. S5 in
[48]). Our estimate of TN is 92 K, which is in reason-
able agreement with its experimental [43] value of 75 K.
Aniferromagnetic order parameter A below TN induces a
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FIG. 2. Temperature dependent variations in (a) antiferromag-
netic order parameters (A and M ), (b) structural change of �1

symmetry (u), (c) specific heat (CV ), and (d) magnetic suscepti-
bilities. Results of heating and cooling simulations are represented
with solid (filled symbols) and dashed lines (hollow symbols), re-
spectively. Values of antiferromagnetic order parameters A′ and A′′

(arising from linear dependency; see Sec. II B) are restricted to
|A′| = |A′′| = |A|

2 at all temperatures.

nonzero value of the secondary structural order parameter
u [using Eq. (3)]. Thus it corroborates that spin-phonon
coupling (α) constitutes the microscopic mechanism of the
experimentally observed giant magnetoelastic effect below
T < TN [36]. Specific heat (CV ) and magnetic susceptibil-
ity (χ ) exhibit peaks near TN [see Figs. 2(c) and 2(d)],
further confirming the existence of the Néel transition. The
absence of thermal hysteresis in order parameters, tempera-
ture dependence of CV , and magnetic susceptibility near TN

[see Figs. 2(a), 2(c) and 2(d)] obtained from heating-up and
cooling-down simulations suggest the second-order nature of
the Néel transition. The in-plane components of magnetic
susceptibility remain larger at all temperatures compared to its
out-of-plane component, in agreement with experiment [53].
This anisotropy in in-plane and out-of-plane magnetic suscep-
tibilities emerges from the magnetocrystalline anisotropy and
spin-phonon coupling terms which elucidate the experimen-
tally observed anisotropy in magnetic susceptibility [53]. Our
estimate of the Curie Weiss temperature (θCW ) from the high
temperature behavior of the in-plane component of inverse
susceptibility (well above TN ; see Fig. S6 in [48]) is ∼ −
720 K, which is comparable to its experimental estimate [53].
We find similar results when the full Hamiltonian [see Eq. (4)]
with multiple structural and magnetic domains (see Fig. S7
in [48]) is considered in our simulations. Magnetic states
with symmetry of �2 and �3 irreducible representations both
appear at low temperature in the absence of spin-phonon cou-
pling [third order coupling; last term in Eq. (2) here and see
Figs. S8(a) and S9(a)-S9(c) in [48]]. Spin-phonon coupling
[see Eq. (2)] effectively lowers the energy of the magnetic
state corresponding to �3 irreducible representation relative to
the competing magnetic state corresponding to �2 irreducible
representation [see Figs. 2(a) here and S8(a)-S8(b) in [48]].
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Relatively small magnitude of u (0.014 Å at 10 K) es-
timated from Monte Carlo simulations is attributed to the
underestimation of spin-phonon coupling in first-principles
calculations (see Sec. II A, Table II here, and Sec. E in
[48]) and also the deficiency of DFT calculations of the K1

component of the structure of the antiferromagnetic ground
state. The third order spin-phonon coupling [see Eq. (2) and
Eq. (4)] manifests itself in long range coupling between spins
and hence a first-order transition is expected. When we in-
crease the spin-phonon coupling parameter ten times ( α2

4k =
60
U meV), we find notably large atomic displacements, though
still underestimated by a half relative to its experimental value
(0.09 Å). We observe a first-order Néel transition at a higher
temperature (∼120 K) when the spin-phonon coupling is sig-
nificantly enhanced (see Fig. S8(a)-S8(c) in [48]). Therefore,
we conclude that the Néel transition in YMnO3 is weakly first
order or close to being second order in nature. Additionally
quantum spin fluctuations play an important role in frustrated
magnetic systems [54] and the signature of spin fluctuations
has been observed in neutron diffraction measurements in
hexagonal YMnO3 [55]. Dynamical mean field theoretical
methods, which treat dynamical electronic correlations, have
recently been shown to predict crystal structures of strongly
correlated materials (transition metal oxides) more accurately
compared to methods like local DFT that include static elec-
tronic correlations [56]. Density functional theory does not
incorporate the effects of quantum spin fluctuations [57,58]
and dynamical electronic correlations [56], which probably
have a contribution to the third order spin-phonon coupling
constant (not captured in our first-principles simulations, i.e.,
the position of the Mn atom is close to its value in the param-
agnetic state), and it will encourage further studies in future.

D. 180◦ antiferromagnetic domain walls

We now discuss spatially inhomogeneous ordering into an-
tiferromagnetic domains and the spin texture at the magnetic
domain walls at low temperature (T < TN ). The antiferro-
magnetic states A� [see Fig. 3(a)] and −A� are symmetry
equivalent and are related by time reversal symmetry. To
determine the ordering of spins at the 180◦ magnetic do-
main wall (spins effectively rotate by 180◦ across a domain
wall separating A� and −A� ), we simulated the model
Hamiltonian [Eq. (4)] restricting to a single structural state (u�

and corresponding antiferromagnetic states A� and −A� ) with
a periodic system of 40 × 40 × 8 unit cells (76 800 spins).
We obtain a configuration (through heating-up Monte Carlo
simulation with initial state having a stripe domain pattern
formed of two antiferromagnetic states A� and −A� in the
ab plane) with stripes of domains of antiferromagnetic order-
ings (A� and −A� ) at 4 K [see Fig. 3(a)]. The width of the
simulated 180◦ antiferromagnetic domain wall is about 24–
30 Å (four–five unit cells thick), which is comparable to that
of a calculated antiferromagnetic domain wall (40–90 Å) in
hexagonal LuMnO3 [6]. The width of 180◦ antiferromagnetic
domain wall (24–30 Å) in YMnO3 is comparable to the widths
of ferroelectric domain walls in BaTiO3 (30 Å thick 90◦ do-
main wall [59]) and PbZr0.2Ti0.8O3 (70 Å thick 180◦ domain
wall [24]). However, it is much smaller than earlier estimates
for 180◦ magnetic domain walls in collinear antiferromagnet

FIG. 3. Stripe domains of antiferromagnetically ordered states
obtained from simulations at 4 K: (a) 180◦ antiferromagnetic domain
wall. Hexagon inside the brown circle is used in (a) to repre-
sent magnetic ordering according to symmetry of �1 irreducible
representation at the 180◦ domain wall. (b) Variation in local anti-
ferromagnetic order parameters (�1: B, B′, and B′′; �3: A, A′, and
A′′) across the 180◦ antiferromagnetic domain wall shows buildup
of magnetic ordering of �1 irreducible representation (green) at the
domain wall. (c) z component of the toroidal moment (Tz ) is calcu-
lated with three choices of origins ((i) Ra′ = 0 = Rb′ [Ra′ and Rb′ are
lattice vectors of paraelectric structure; see Fig. 1(a)], (ii) Ra′ = 0,
Rb′ = 1, and (iii) Ra′ = 1, Rb′ = 0) from the homogeneous magnetic
ordering (bulk crystal) of �3 and �1 irreducible representations. Tz

of antiferromagnetic ordering of �1 irreducible representation picks
up a phase of π when the origin is translated by Ra′ or Rb′ . Tz of the
antiferromagnetically ordered state corresponding to �3 irreducible
representation is zero irrespective of the choice of origin. Vertical
dashed lines in (c) separate the values of toroidal moments (Tz )
calculated with three choices of origin.

NiO (1500 Å [60]), Cr2O3 (420–650 Å [61]), and ferromagnet
La0.7Ca0.3MnO3 (380 Å [62]). Our estimate of the domain
wall energy is 4 mJ/m2, which is an order of magnitude
higher than that associated with an antiferromagnetic domain
wall at the surface of NiO (0.42 mJ/m2) [60,63]. It is compa-
rable to the theoretical estimates of 180◦ ferroelectric domain
wall energy in improper ferroelectric YMnO3 (11 mJ/m2)
[37] and proper ferroelectric BaTiO3 (6–16 mJ/m2) [59,64].

We evaluate local antiferromagnetic order parameters as-
sociated with �3 [A, A′, and A′′, defined in Eq. (1)] and
�1 [B = 1

6

∑6
i=1(r̂i × ŝi )z, B′ = 1

6

∑6
i=1(−1)i(ĉi × ŝi )z, and

B′′ = 1
6

∑6
i=1(−1)i(d̂i × ŝi )z, where r̂i, ĉi, and d̂i are defined

in Fig. 1(c); see Eq. (1) and Fig. S10(b) in [48]] irreducible
representations across the antiferromagnetic domain wall with
the choice of origin of the unit cell at Ra′ = 0 = Rb′ [Ra′ and
Rb′ are lattice vectors of paraelectric unit cell, green hexagon
in Fig. 1(a)]. The antiferromagnetic order parameter A� [A =
1, choice of origin at Ra′ = 0 = Rb′ ; see Fig. 1(a)] linearly
depends on A′

� and A′′
� (A′ = −0.5 and A′′ = −0.5 with

the choice of origin at Ra′ = 0 = Rb′ and A� = −A′
� − A′′

�;
see Sec. II B) when a homogeneous magnetic ordering with
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the symmetry of �3 irreducible representation is considered.
Similarly, antiferromagnetic order parameter B� (B = 1,
choice of origin at Ra′ = 0 = Rb′ ) linearly depends on B′

� and
B′′

� (B′ = −0.5 and B′′ = −0.5 with the choice of origin at
Ra′ = 0 = Rb′ and B� = −B′

� − B′′
�; see Fig. S10(b) in [48])

in a homogeneously ordered magnetic state with the sym-
metry of �1 irreducible representation. Our estimates of the
local magnetic order parameter B (= −B′ − B′′) at the 180◦
antiferromagnetic domain wall is close to 1, whereas the value
of A (= −A′ − A′′) remains close to zero [see Fig. 3(b)]. If the
origin of the unit cell is shifted by Ra′ , then the value of B′′ (=
−B − B′) is close to one at the antiferromagnetic domain wall,
whereas the value of A′′ (= −A − A′) goes to zero. Therefore,
magnetic ordering according to �1 irreducible representation
is evident at the antiferromagnetic domain wall irrespective of
the choice of origin of the unit cell [see Figs. 3(a) and 3(b)].

There is a symmetry allowed nonzero toroidal moment
along the z axis associated with the magnetic ordering accord-
ing to �1 irreducible representation at the 180◦ antiferromag-
netic domain wall [65]. The toroidal moment is defined as

Tz = 1

6

6∑
i=1

(r̂i × ŝi )z, (5)

where r̂i represents a unit vector along the in-plane projection
of position vector of ith Mn atom (i = 1, . . . , 6) with
respect to the center [

∑6
i=1 r̂i = 0; see Fig. 1(c)] and si

is the spin vector of ith Mn atom. It is equivalent to the
definition of the magnetic order parameter B associated to
�1 irreducible representation (Eq. 1 in [48]). We estimate
the z component of toroidal moment [Tz using Eq. (5)]
considering homogeneously ordered magnetic states of �3

and �1 irreducible representations. If a Mn sublattice at z = 0
(origin of unit cell at Ra′ = 0 = Rb′ ) with magnetic ordering
according to �3 irreducible representation is translated by
Ra′ or Rb′ , the direction (see Fig. S10(a) in [48]) of each
spin has to rotate by 120◦ counterclockwise (around the
z direction and in the ab plane) to keep the system unchanged
upon translation. Therefore, local values of toroidal moments
in homogeneously ordered magnetic state with �3 irreducible
representation (see Fig. S10(c) in [48]) with three different
choices of origins (related by Ra′ or Rb′ ) are

Tz = sin(2nπ/3),

= 0 (n = 0, Ra′ = 0, Rb′ = 0),

= 0.86 (n = 1, Ra′ = 1, Rb′ = 0),

= −0.86 (n = 2, Ra′ = 0, Rb′ = 1). (6)

Similarly, local values of toroidal moment in a ho-
mogeneously ordered magnetic state of �1 irreducible
representation (see Fig. S10(d) in [48]) are

Tz = cos(2nπ/3),

= 1 (n = 0, Ra′ = 0, Rb′ = 0),

= −0.5 (n = 1, Ra′ = 1, Rb′ = 0),

= −0.5 (n = 2, Ra′ = 0, Rb′ = 1). (7)

The toroidization lattice (formed by distributions of toroidal
moments; see Fig. S10(c)-S10(d) in [48]) corresponding to
�3 irreducible representation is inversion (center of inversion
in the paraelectric state) symmetric (see Fig. S10(c) in [48]),

whereas it is not in the magnetic state of �1 irreducible
representation (see Fig. S10(d) in [48]). Translation of the Mn
sublattice at z = 1/2 (origin of unit cell at Ra′ = 0 = Rb′ ) by
Ra′ or Rb′ (see Fig. S10(a) in [48]) with the homogeneously
ordered magnetic states according to �3 or �1 irreducible
representation results in clockwise rotation of each spin
by 120◦ (around the z axis and in the ab plane) to keep
the system unchanged upon translation (counterclockwise
rotation of each spin by 120◦ when the Mn sublattice at z = 0
is translated by Ra′ or Rb′ ). Therefore, the changes in the
toroidal moment due to translation of the origin by Ra′ or Rb′

need to be calculated by considering the displacements of both
Mn sublattices at z = 0 (counterclockwise rotation of spin by
120◦) and at z = 1/2 (clockwise rotation of spin by 120◦):

Tz(�3, Ra′ 	= 0 or Rb′ 	= 0)

= sin(2π/3) + sin(−2π/3) = 0,

Tz(�1, Ra′ 	= 0 or Rb′ 	= 0)

= cos(2π/3) + cos(−2π/3) = −1. (8)

Tz (associated with the magnetic ordering with �1 irreducible
representation) picks up a phase of π (toroidization quantum
analogous to polarization quantum [66]) under the translation
operation by Ra′ or Rb′ . This is pictorially represented
in Fig. 3(c) and highlights that the magnitude of the
difference in toroidal moments associated with magnetic
states (homogeneously ordered) with �3 and �1 irreducible
representations is always unity irrespective of the choice of
origin of the unit cell.

Emergence of antiferromagnetic ordering corresponding to
�1 irreducible representation at the domain wall separating
the domains of antiferromagnetic states with the symmetry
of �3 irreducible representation supports its linear coupling
with electric field, as allowed by symmetry. Toroidal moment
(Tz ) is a polar vector that changes sign under spatial inversion
and time reversal operations. Symmetries which allow for
off-diagonal and antisymmetric components of a linear mag-
netoelectric tensor are identical to that allowing for a nonzero
toroidal moment [66,67]. Thus a toroidal moment couples
linearly to the cross product of electric and magnetic fields.

Interactions between ferroelectric polarization (Pz ),
toroidal moment (T ) associated to �1 irreducible
representation, applied electric field (E ), and magnetic
field (H ) at the 180◦ antiferromagnetic domain wall in the
low temperature phase (T < TN ) can be modeled as

F (E , Pz, T, H ) = 1
2εP2

z + a1T 2 − PzEz

+ c1TzEz + c2T · (E × H ), (9)

where ε is the dielectric susceptibility. The z compo-
nent of the toroidal moment acts as an antiferromagnetic
order parameter corresponding to �1 irreducible represen-
tation [see Eq. (5) and Eq. S1]. Noncollinear antiferro-
magnetic ordering [in the ab plane; see Fig. 3(a) here
and Fig. S10(b) in [48]] according to the symmetry of
�1 irreducible representation does not respect spatial in-
version symmetry. Hence an additional nonzero component
of polarization along the z axis is expected along with
the one originating from nonlinear coupling between zone
boundary and zone center polar phonon modes at the fer-
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roelectric transition [6,30,33] at 1270 K. This particular
coupling is modeled through the fourth term in Eq. (9) and
is nonzero only at the 180◦ antiferromagnetic domain wall
below TN . The last term in the right hand side of Eq. (9) repre-
sents a trilinear coupling between toroidal moment, electric
field, and magnetic field that is compatible with the space
and time reversal symmetries. This term gives a nonzero
off-diagonal magnetoelectric coupling in any material with a
nonzero toroidal moment.

The first derivative of free energy [Eq. (9)] at the antiferro-
magnetic domain wall with respect to Ez is given as

P′
z − Pz = �Pz = −c1Tz, (10)

which quantifies the change in the spontaneous polarization
along the z axis at the antiferromagnetic domain wall due to
the nonzero toroidal moment and can be measured in piezore-
sponse force microscopy experiments. We approximate the
change in ferroelectric polarization at the antiferromagnetic
domain wall by estimating the difference in bulk polarization
(Berry phase) of the two homogeneously ordered magnetic
states corresponding to �3 and �1 irreducible representa-
tions. The estimated change in bulk polarization is around
3 × 10−2 μC/cm2. The estimated change in polarization is
comparable to the value of magnetically induced ferroelec-
tric polarization in TbMnO3 (8 × 10−2 μC/cm2) [68] and
an order of magnitude larger than that observed in S =
1/2 Kagome magnet PbCu3TeO7 (1.4 × 10−3 μC/cm2) [69],
molecular magnet (ND4)2 [FeCl5(D2O)] (3 × 10−4 μC/cm2)
[70], and frustrated magnet MnWO4 (5 × 10−3 μC/cm2)
[71]. The change in polarization at the 180◦ antiferromag-
netic domain wall is even comparable to the ferroelectric
polarization measured in improper ferroelectrics (Rb2ZnCl4:
12 × 10−2 μC/cm2; K2SeO4: 5.6 × 10−2 μC/cm2) where the
primary order parameter is structural [72,73].

The first derivative of free energy [Eq. (9)] at the antiferro-
magnetic domain wall with respect to Ex and Ey are given as

Px = − ∂F

∂Ex
= −c2TzHy,

Py = − ∂F

∂Ey
= c2TzHx.

(11)

The magnetic field along y (x) direction induces ferroelectric
polarization along x (y) direction at the 180◦ domain wall due
to a nonzero toroidal moment (Tz ) along z direction. This gives
rise to the transverse (off-diagonal) linear magnetoelectric
effect at the 180◦ antiferromagnetic domain wall of YMnO3

which is symmetry forbidden in bulk. The linear magneto-
electric effect at the antiferromagnetic domain wall predicted
here is magnetic in origin and not induced by structural dis-
tortion in contrast to the bulk magnetoelectric effect observed
in hexagonal LuFeO3 [74] and ErMnO3 [75]. The linear,
transverse magnetoelectric response of the antiferromagnetic
domain wall in YMnO3 can be utilized in visualization of the
180◦ antiferromagnetic domain wall in piezoresponse force
microscopy.

E. Antiferromagnetostructural domain wall

We next investigate inhomogeneous spin ordering at the
antiferromagnetostructural domain wall (antiferromagnetic
states locked to structural states). The six states of coupled
antiferromagnetic and structural ordering below TN [modeled
in Eq. (2)] are (a) A� (u� or −u� ), (b) A′

� (u′
� or −u′

� ), (c) A′′
�

(u′′
� or −u′′

� ), (d) −A� (u� or −u� ), (e) −A′
� (u′

� or −u′
� ), and

(f) −A′′
� (u′′

� or −u′′
� ). Polarization is associated with �1 ir-

reducible representation in the ferroelectric phase (P63cm1′).
u�’s (−u�’s) structural states appear in the ferroelectric phase
with positive (negative) value of polarization (see Sec. II A).
Due to the third order spin-phonon coupling [last term in
Eq. (2)], magnetic state A� (antiferromagnetic ordering) can
coexist with both u� and −u� structural states. The indirect
coupling between antiferromagnetic (A� ) and ferroelectric
order parameters (Pz ) is mediated by the structural order
parameter (u� ). Thus the structural and ferroelectric domain
walls serve also as magnetic domain walls (at T < TN ).

We simulate the full model Hamiltonian [Eq. (4)] with
a periodic system of 60 × 60 × 8 unit cells to investi-
gate the structure and nature of ordering of spins at the
antiferromagnetostructural domain wall (structurally locked
antiferromagnetic domains). We now examine the spin con-
figuration equilibrated at 4 K and starting with a stripe
ordering of six antiferromagnetic domains [see Fig. 4(b)] in
the heating-up simulation [initial state: stripe domain pattern
formed by three antiferromagnetic states A� , A′

� , and A′′
�

in the ab plane (sequence: A� → A′
� → A′′

� )]. The observed
sequence [see Fig. 4(a) and 4(b)] of six antiferromagnetic
states in the stripe pattern is −A′

� → A� → −A′′
� → A′

� →
−A� → A′′

� . Between the two adjacent antiferromagnetic do-
mains, spins in the z = 0 plane (z = 1/2 plane) rotate by
60◦ in the counterclockwise (clockwise) direction [e.g., going
from −A′

� to A�; see Fig. 4(b)] across the antiferromagne-
tostructural domain wall. These magnetic domain walls are
much wider (≈38 Å) than the structural domain walls [6]
(5–10 Å) simulated in YMnO3. Such thick domain walls are
generally observed in most collinear [76] and noncollinear
magnetic materials [77]. Estimated domain wall energy of
the 60◦ antiferromagnetic domain wall is ≈6.8 mJ/m2 and is
higher than that of a 180◦ magnetic domain wall (4 mJ/m2).
Another possible sequence of antiferromagnetic orderings in
the stripe domain structure is −A′

� → A′′
� → −A� → A′

� →
−A′′

� → A� , which is symmetry equivalent to the one pre-
sented in Fig. 4(a). In this case, spins at z = 0 plane (z =
1
2 plane) rotate by 60◦ in the clockwise (counterclockwise)
direction across the antiferromagnetostructural domain wall
[e.g., going from −A′

� to A′′
� and see Fig. 4(b)].

Depending on the coupling between structural, ferroelec-
tric, and antiferromagnetic order parameters [Eq. (2)], the
choices of structural and ferroelectric ordering in the observed
sequence of antiferromagnetic domains in this configuration
[see Fig. 4(a)] are (a) −A′

�: (−u′
� , −Pz ) → A�: (u� , Pz ) →

−A′′
�: (−u′′

� , −Pz ) → A′
�: (u′

� , Pz ) → −A�: (−u� , −Pz ) →
A′′

�: (u′′
� , Pz ) or (b) −A′

�: (u′
� , Pz ) → A�: (−u� , −Pz ) → −A′′

�:
(u′′

� , Pz ) → A′
�: (−u′

� , −Pz ) → −A�: (u� , Pz ) → A′′
�: (−u′′

� ,
−Pz ). Change in the antiferromagnetic ordering across a mag-
netostructural domain wall causes change in the structural
ordering, which causes the locking between antiferromag-
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FIG. 4. (a) Stripe pattern of antiferromagnetic domains with spin
direction changing by 60◦ at 4 K coupled to structural domains
(antiferromagnetostructural domain wall or 60◦ antiferromagnetic
domain wall). The structural domain corresponding to each mag-
netic domain is listed in (a). There are two choices of ordering of
structural domains due to third order spin-phonon coupling. Both
choices involve rotation of atomic displacement vectors (in the ab
plane) by 60◦ (O2 atoms: counterclockwise rotation going from −u′

�

to u� or u′
� to −u� ) across the domain wall. A magnetostructural

domain wall separating −u′
� and −u� corresponding to change in the

trimerization angle by 2π/3 (no change in sign of Pz ) has not been
observed experimentally [6,37]. (b) Atomic scale structure of order-
ing of spins across the 60◦ domain wall separating antiferromagnetic
states −A′

� and A� . Hexagon inside the red circle in (b) is used to
represent the choice of origin [Ra′ = 0 = Rb′ , where Ra′ and Rb′ are
lattice vectors of paraelectric structure; see Fig. 1(a)] and the mag-
netic order parameters A’s are estimated with this choice of origin. In
each magnetic domain, the local value of the antiferromagnetic order
parameter is larger than 0.93. Black colored portions in (a) denote a
60◦ antiferromagnetic domain wall.

netic states and structural states (as discussed earlier in this
subsection). Atomic displacement vectors (O1 atoms at z =
0.16) rotate by 60◦ in the clockwise (counterclockwise for
O2 atoms at z = 0.33) direction [see Fig. 1(b)] between two
consecutive magnetostructural domains (e.g., from −A′

� to
A� ) and are in agreement with earlier theoretical analysis
[6]. The antiferromagnetostructural domain wall separating
structural states −u′

� and −u� corresponds to a change in
trimerization angle by 2π/3 [see Fig. 4(a)]. This particular
antiferromagnetostructural domain wall separating structural
states (−u′

� and −u�; −Pz ) with the same sign of polar-
ization has not been observed experimentally [38]. Earlier
first-principles calculations [6,37] have shown that this type of
magnetostructural domain wall is not energetically favorable
and decays into the lowest energy ferroelectric and structural
domain walls across which atomic displacement vectors rotate
by 60◦ [60◦ domain wall; see Fig. 4(a)].

F. Magnetic topological defects

Motivated by structural topological defects in Ref. [6],
we now present analysis of magnetic topological defects [see

FIG. 5. Antiferromagnetic vortex and antivortex states obtained
in systems simulated with (a) periodic boundary conditions and
(b) open boundary conditions. +1 and −1 are the topological charges
associated with antiferromagnetic vortex and antivortex states. Black
colored regions in (a), (b), and (d) denote antiferromagnetic domain
walls. (c) Atomic scale schematic ordering of spins in the core of a
vortex corresponding to (b). � (ϕ) in (c) represents the azimuthal
angle enclosed by the direction of spin (position vector of an Mn
atom with respect to the vortex core) with a axis. Panels (b) and
(d) represent orderings of structural states in the core of the magnetic
vortex and antivortex, respectively. Displacement vectors associated
with O2 atoms across the antiferromagnetostructural domain wall in
(b) separating u′′

� and −u� rotate by 60◦ in a clockwise direction.
Similarly, displacement vectors associated with O2 atoms across
the antiferromagnetostructural domain wall in (d) separating u� and
−u′′

� rotate by 60◦ in a counterclockwise direction. Panels (b) and
(d) represent structural vortex and antivortex states.

Figs. 5(a) and 5(b)]. A topological defect arises at the intersec-
tion of six 60◦ antiferromagnetic domain walls [see Figs. 5(a)
and 5(b)]. Spins in the neighboring antiferromagnetic domains
[A′

� to −A′′
� in Fig. 5(c)] at the z = 0 plane (z = 1/2 plane)

rotate by 60◦ in the clockwise (counterclockwise) direction
in the vortex state, whereas this is reversed in the antivortex
state. We label such cyclic ordering of six antiferromagnetic
domains [see Figs. 5(a) and 5(b)] as Z6 vortex as spins rotate
by 60◦ across a domain wall. In contrast to the commonly
observed magnetic vortices [78], a vortex in YMnO3 does
not contain a core (central singularity) in which spins point
parallel to the vortex line [78]. We define a topological charge
(QT ) to differentiate a magnetic vortex from an antivortex
state:

QT = 1

4π

[∮
z=0

∂�

∂ϕ
dϕ −

∮
z=1/2

∂�

∂ϕ
dϕ

]
,

= 1

4π

[
�z=0|ϕ=2π

ϕ=0 − �z=1/2|ϕ=2π
ϕ=0

]
,

= 1

4π
× 4πm [� = mϕ + γ ],

= m, (12)
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where � (ϕ) represents the azimuthal angle enclosed by the
direction of spin (position vector of Mn atom with respect to
the vortex core) with a axis [see Fig. 5(c)]. The helicity of
the spin texture is defined by the phase γ [79,80]. m is the
vorticity and its value is +1 in the vortex state and −1 in the
antivortex state and their corresponding topological charges
(QT ) are +1 and −1. Our definition of topological charge is
equivalent to the definition of vorticity of an in-plane spin
texture of magnetic skyrmions [79,80]. The net topological
charge (QT ) in a periodic system vanishes, whereas it can
be nonzero with open boundary conditions [see Figs. 5(a)
and 5(b)]. We estimate the antiferromagnetostructural vortex
energy density using

εvortex = EOBC
vortex − EOBC

single − 6S × ε60◦
DW

Lv

. (13)

EOBC
vortex and EOBC

single are the energies of a system containing a
vortex and of a single antiferromagnetic domain calculated
with open boundary conditions, respectively. S is the total
area of a domain wall and Lv is the length of the vortex
line along the z axis. ε60◦

DW is the energy of the antiferromag-
netostructural domain wall across which spins rotate by 60◦
[see Fig. 4(a)]. The vortex energy considers both the magnetic
and structural degrees of freedom through the phonon renor-
malized spin Hamiltonian [Eq. (4)] as compared to earlier
works based on a structural model Hamiltonian which fo-
cused on understanding the evolution of crystal structure and
formation of structural vortex near a ferroelectric transition
[81,82]. Our estimate of the vortex energy using Eq. (13) is
70 × 10−10 J/m, which is of the same order as the dislocation
energy in Cu [30 × 10−10 J/m, shear modulus (G) = 45 GPa
at 300 K [83,84]]. Due to the locking of antiferromagnetic
states to structural states (as discussed earlier), the magnetic
vortex (antivortex) state corresponds to the structural vortex
(antivortex) state. In the structural vortex (antivortex) state,
displacement vectors associated with O2 atoms (z = 0.33) ro-
tate in the clockwise (counterclockwise) direction by 60◦ [see
Figs. 5(b) and 5(d)] across a boundary between neighboring
structural domains.

Atomic displacements associated with �1 phonon mode
[u� , u′

� , and u′′
�; see Fig. 1(b)] of ferroelectric P63cm1′

phase are symmetry equivalent to the polar K3 (with
trimerization angle � = 0, 2π/3, and −2π/3; see Fig. S1(a)-
S1(c) in [48]) and �−

2 (Pz ) phonon modes of para-
electric P63/mmc1′ phase (see Sec. II A). Six struc-
tural states below TN in terms of trimerization angle
� (associated with K3 phonon mode) are defined [6]
as (a) u� ↔ (� = 0, +Pz ), (b) −u� ↔ (� = π , −Pz ),
(c) u′

� ↔ (� = 2π/3, Pz ), (d) −u′
� ↔ (� = −π/3, −Pz ),

(e) u′′
� ↔ (� = −2π/3, +Pz ), and (f) −u′′

� ↔ (� = π/3,
−Pz ). A sequence of cyclic ordering of structural domains [see
Figs. 5(b), 5(d) and 1(c) here and Fig. S1(a)-S1(c) in [48]]
around the vortex line (in the clockwise direction) in terms
of � (trimerization angle) is � = 0 (u� ) → −π/3 (−u′

� ) →
−2π/3 (u′′

� ) → π (−u� ) → 2π/3 (u′
� ) → π/3 (−u′′

� ). In the
antivortex state, the sequence is � = 0 (u� ) → π/3 (−u′′

� ) →
2π/3 (u′

� ) → π (−u� ) → −2π/3 (u′′
� ) → −π/3 (−u′

� ).
Angle � [see Figs. S1(a)-S1(c) and Fig. S11 in [48],
and Figs. 5(b) and 5(d) here] changes clockwise (counter-

clockwise) across the domain wall in the vortex (antivor-
tex) state and is consistent with the experimental findings
[38–40]. The sign of ferroelectric polarization changes
across a magnetostructural domain wall (similar to the
case of a 60◦ domain wall in stripe pattern formed by
antiferromagnetic domains). Our predictions of the orderings
of structural and ferroelectric domains (in the vortex and
antivortex states) below TN are in agreement with earlier the-
oretical analysis [6] and experimental work [38,39].

III. SUMMARY

Using statistical mechanical analysis of the first-principles
spin-phonon coupled Hamiltonian of YMnO3, we established
that confinement of spins in the ab plane and their ordering
according to �3 irreducible representation below TN induces
nonzero atomic displacements associated to �1 irreducible
representation as the secondary order parameter. The Néel
transition is weakly first order or close to being second order
in nature and our estimates of TN and θCW are in reasonable
agreement with their experimental values. We predict that the
180◦ antiferromagnetic domain wall within a single struc-
tural domain involves local ordering of spins according to the
symmetry of �1 irreducible representation and hence hosts
a local linear magnetoelectric coupling. This finding pro-
vides a deeper understanding of the magnetoelectric effects
at antiferromagnetic domain walls and will encourage exper-
imental confirmation using piezoresponse force microscopy.
We highlight that antiferromagnetic domains are locked to the
structural and ferroelectric domains. With spins and atomic
displacements rotating by 60◦ across a boundary between
adjacent domains, an antiferromagnetic vortex state with
nontrivial topological charge is stabilized. Thus antiferro-
magnetic domain walls offer a new playground to explore
emergent interfacial phenomena and future understanding of
their dynamic responses to external stimuli is desirable for
advancing antiferromagnetic spintronic technologies based on
antiferromagnetic materials. There remains an open issue of
underestimation of amplitude of the K1 phonon mode, i.e.,
position of Mn atom below TN , and it is possible that including
the effects of dynamical electronic correlations and quantum
spin fluctuations might resolve this discrepancy with experi-
ment. While studies of these effects are beyond the scope of
the present article, we believe that the work in this direction
will also impact understanding of magnetically frustrated sys-
tems which show magnetoelastic effects.

IV. METHODS

We optimized atomic positions of YMnO3 within first-
principles density functional theory as implemented in the
QUANTUM ESPRESSO package [85] and treated spin dependent
exchange-correlation energy within a local density approxi-
mation (LDA) in the Perdew-Zunger parametrized functional
[86]. We used fully relativistic pseudopotentials [87] to
include the effects of spin-orbit coupling (SOC) in determi-
nation of all the parameters in our model Hamiltonian. We
employed the Berry phase method [88] as implemented in
QUANTUM ESPRESSO [85] to estimate the difference in polar-
ization of bulk YMnO3 with magnetic moments ordered in the
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ab plane according to �1 and �3 irreducible representations
(see Sec. D in [48] for more details).

We performed classical Monte Carlo simulations
on a model Hamiltonian [Eq. (4) in the main text] to
determine the behaviors of antiferromagnetic and structural
order parameters in YMnO3 near the Néel transition. In
these simulations, we considered a supercell with each
hexagonal unit cell containing six Mn atoms. The in-plane
positions of Mn atoms form an ideal triangular lattice. The
direction of Heisenberg spin at ith Mn site is defined by
(θi ∈ [0, π ], φi ∈ [0, 2π ]) and it is updated by randomly
choosing θi = cos−1(2u − 1) and φi = 2v, where u and v

are pseudorandom random numbers (uniformly distributed
between 0 and 1). The updated direction of spin (θi, φi ) is
accepted by following the standard Metropolis algorithm. We
considered periodic systems of 9 × 9 × 9 (single structural
domain) and 60 × 60 × 8 unit cells (multiple structural and
magnetic domains) and carried out heating-up and cooling-
down simulations with temperature steps of ±2 K. We
used 90 000 Monte Carlo steps for thermalization followed
by 90 000 Monte Carlo steps for statistical averaging of
various properties at each temperature. We chose a randomly
generated spin configuration as the initial state in cooling-
down simulations and spin configuration with �3 irreducible
representation as the initial state in heating-up simulations.
Average values of antiferromagnetic order parameters (A, A′,
A′′, and M ) at each temperature are estimated using

A(T ) = 1

U × Nave

Nave∑
j=1

U∑
n=1

|An, j |,

A′(T ) = 1

U × Nave

Nave∑
j=1

U∑
n=1

|A′
n, j |,

A′′(T ) = 1

U × Nave

Nave∑
j=1

U∑
n=1

|A′′
n, j |,

M(T ) = 1

U × Nave

Nave∑
j=1

U∑
n=1

|Mn, j |.

(14)

Nave denotes the number of Monte Carlo steps used in
thermal averaging and U is the total number of unit cells.
Here |An, j | (|Mn, j |) is the absolute value of the order
parameter A (M ) associated with nth unit cell in the jth spin
configuration. We calculated average values of A′ and A′′

in a similar way of calculating the value of A. Generalized
magnetic susceptibility associated with the phase transition
and specific heat are

χab = 1

2
(χa + χb),

χa =
〈
M2

Fx

〉 − 〈MFx〉2

kBT
,

χb =
〈
M2

Fy

〉 − 〈MFy〉2

kBT
,

MFx(y)(T ) = 1

6U × Nave

Nave∑
j=1

6U∑
i=1

sx(y),i j (T ),

M2
Fx(T ) = 1

6U × Nave

Nave∑
j=1

M2
Fx, j (T ),

CV = 〈E2〉 − 〈E〉2

kBT 2
, where 〈E〉 = 1

Nave

Nave∑
j=1

Ej,

(15)

where Ej is the energy of the jth configuration of spins.
To determine the magnetic topological defects, we carried
out heating-up Monte Carlo simulations (initial state: vortex
configuration consisting of six antiferromagnetic states A, A′,
A′′, −A, −A′, and −A′′) with open and periodic boundary
conditions (on a 60 × 60 × 8 supercell).

All the data supporting the present work are available from
the first author upon request.
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