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Exchange interaction for Mn acceptors in GaAs: Revealing its strong deformation dependence

I. V. Krainov ,1,* K. A. Baryshnikov ,1,† A. A. Karpova ,1,2 and N. S. Averkiev1

1Ioffe Institute, 194021 St. Petersburg, Russia
2Saint Petersburg Electrotechnical University, 197022 St. Petersburg, Russia

(Received 17 January 2023; revised 30 March 2023; accepted 12 April 2023; published 2 May 2023)

In this paper we calculate the exchange interaction constant between the manganese ion inner electronic
d-shell and GaAs valence band bound hole using their microscopic multiparticle wave functions. We reveal
its parametric dependence on crystal lattice deformations and find that it could be about and even more than
dozens of a percent when the strain tensor reaches values of 10−3−10−2. This fact is in accordance with the
previous hypothesis of deformation dependence of Mn acceptors in a GaAs fine energy structure obtained from
Raman spectroscopy; we show that this dependence has the same magnitude. Also, we resolve here the problem
of a substantial high-temperature mismatch between well-developed theory and experimental data for the static
magnetic susceptibility of Mn ions in GaAs. We show by numerical estimates and calculations that quite a
strong parametric dependence of the exchange coupling value on GaAs lattice expansion determines the high-
temperature (above 50 K) magnetic susceptibility reduction as well.
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I. INTRODUCTION

Modern material science is focused on functional materials
combining different properties with maximal functionality.
Some of these important kinds of materials are magnetic
semiconductors mixing electrical, optical, and magnetic prop-
erties. Different ways to control these properties merge into
important directions of research, including the production of
new compounds [1–6], nanostructure design [1,7–11], and
the investigation of the effects of external forces application
[12–16]. One of the most well-known functional materials
is GaMnAs [17–20]. In this material, manganese ion with
its inner magnetic 3d-shell containing five electrons brings
magnetism to the GaAs semiconductor host. This is due
to the exchange interactions between manganese’s inner d-
electrons with GaAs holes. Also, the manganese impurity acts
as an acceptor increasing the hole concentration in the GaAs
semiconductor crystal. For an isolated impurity the exchange
interaction between the Mn half-filled d-shell with the total
spin of electrons 5/2 and localized hole in the �8 symmetry
state acting like a 3/2 spin results in an initially 24-hold
degenerate state split into four sublevels with total angular
momentum F = 1, 2, 3, 4 with F = 1 being the ground state
[16]. Here we focus our attention on this exchange interac-
tion between the isolated manganese ion and a hole localized
on it.

The exchange interaction constant A for the Mn acceptor
consists of two parts. The first part includes the exchange
between Mn d-shell orbital electrons and the Bloch orbital
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of the �8 hole. The second part includes the value of the hole
envelope at the impurity site, i.e., the probability to couple
with the half-filled d-shell as a whole. In all previous works
[21–23] in which such an interaction was discussed, only the
second part (the value of the hole envelope at the impurity site)
was assumed to change in different conditions, while the first
part (the exchange between Bloch functions) was assumed
to be unperturbed and its value was postulated [16]. The
deformation influence on the envelope part of the exchange
constant was investigated in Ref. [23], but it was found that
it changes by less than one percent at pressures on the limit
of GaAs hardness. The purpose of this work is to calculate the
exchange interaction value between Bloch functions of the Mn
d-shell and the �8 hole bound from the GaAs valence band,
and to treat its dependence on deformation. We demonstrate
that this part of the exchange interaction is sensitive to the
presence of crystal strains.

Previously, the assumption of a strong dependence of ex-
change constant A on the crystal deformation played a crucial
role in the study of the fine-structure of an isolated Mn ac-
ceptor in GaAs. This was investigated using Raman spin-flip
scattering and its dependence on magnetic fields and external
deformations at helium temperatures [24]. The theoretical fit
of intra- and inter-transitions between Mn-hole levels based
on a standard model of the Mn acceptor eigenstates was also
carried out in Ref. [24], but to make a satisfactory agreement
between all experimental curves and theoretical calculations
the deformation dependence of the exchange interaction con-
stant was phenomenologically proposed and its value was
estimated from comparison with the experiment. The ex-
change interaction value changes by 20% for the pressure
5 kbar, which is about half of the GaAs critical value of
hardness, and hence this change is much larger than previ-
ously mentioned—nearly one percent dependence on the hole
envelope wave-function change.
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Independently, there were taken drastically different mea-
surements of static magnetic susceptibility behavior in a wide
temperature range in GaAs samples with a low concentration
of Mn ions. The first experiments were made by Andrianov’s
group [25], but their work contained an irrelevant theoreti-
cal model of the Mn center, which mismatched with several
low-temperature properties of the center. Other measurements
were carried out by Frey’s group and reported in Ref. [26],
where the relevant theoretical model was applied, which, how-
ever, has some discrepancies with the data at the very high
temperature edge. The findings of these studies are that the
theoretical fit based on that true and now standard Mn-hole
interaction model of experimental data is in good agreement
with the low-temperature region below 50 K. However, for
the high-temperature region, there is a reduction of magnetic
susceptibility compared with the theoretical prediction, which
is still puzzling. A recent paper [16] containing a deep re-
view of different experimental and theoretical facts about the
Mn center in GaAs proposed a hypothesis that the variance
mentioned above could be explained by the Jahn-Teller effect
(JTE).

In this paper we also test this hypothesis (see the Sup-
plementary Material [27] and also Refs. [16,25,28–32] and
references therein). It is known from many other experimental
facts [16] that the Mn ground F = 1 state is unaffected by the
static Jahn-Teller distortion, so only dynamical JTE should be
tested [32]. Moreover, one can show that at high temperatures,
there is only one way for dynamical JTE to occur, which is
reduced to the Jahn-Teller interaction of a hole in the �8 state
with local lattice distortions. As we show (see Ref. [27], Part
2), the high temperature dependence of magnetic suscepti-
bility is negligibly dependent on the Jahn-Teller effect and
ceases quite rapidly as temperature increases, which cannot
explain the observed reduction of the magnetic susceptibility
discussed above. Also we test a hypothesis of the crystal
field influence, but this also cannot explain the magnetic
susceptibility reduction at high temperatures (see Ref. [27],
Part 1). Here we show that if we link the phenomenological
dependence of the exchange interaction value on the external
deformation from Ref. [24] with the thermal expansion coeffi-
cient of the crystal, the problem of high-temperature magnetic
susceptibility reduction can be elegantly resolved.

In this paper we will calculate the Mn-hole exchange-
interaction value part associated with the Bloch wave
functions overlap. Then we provide an estimate for this strain
dependence. Note that the trace of the strain tensor for the
pressure about 5 kbar is in the range of 10−3–10−2, and it
is quite surprising how it can lead to a strong dependence
of the exchange constant of ∼20%. We elaborate and explain
a simple mechanism that could explain this fact. Further, we
show that such purely theoretical estimates result in a similar
variation for the Mn-hole exchange constant on stress that
was assumed in Ref. [24], which has the same order of value.
Finally, we show by direct calculations that the obtained de-
pendence of A on the crystal strains ε, which theoretically fit
the Mn fine-energy structure [24], leads to a better agreement

between high-temperature magnetic-susceptibility calculation
results and the experimental data. We also believe that the
developed model could be applied to other magnetic impu-
rities and hosts with appropriate modifications in symmetry
analysis.

II. THEORY

A. Exchange Hamiltonian and representation of total
angular momenta F = 1, 2, 3, and 4

The eigenstates of the Mn acceptor are composed of the
sixfold degenerate states of Mn ion d-shell electrons in the
ground state with a total spin S = 5/2 and the fourfold de-
generate state of a localized hole having the �8 symmetry,
which corresponds to the total angular momentum J = 3/2.
Further, to simplify all conclusions, we will work in the hole
basis of the d-shell, which has the same properties as the
electronic one, because the shell is half-filled and one-particle
states simply have opposite spins. These eigenstates are split
by the exchange interaction between the half-filled d-shell and
the localized hole resulting in the total angular momentum
states F = 1, 2, 3, 4 with a corresponding degeneracy equal
to 2F + 1.

So if we assume that the exchange interaction between the
ion’s d-shell and the hole is described by only one constant A,
i.e., if we set the corresponding Hamiltonian as

Ĥex = A(Ŝ · Ĵ) = A

2
(F̂ 2 − Ŝ2 − Ĵ2),

F̂ = Ŝ + Ĵ, (1)

then we can easily find out all its energy eigenvalues, which
are A[F (F + 1) − S(S + 1) − J (J + 1)]/2. All other possible
terms proportional to (Ŝ · Ĵ)2 and (Ŝ · Ĵ)3 are connected to
the second-order and higher-order perturbation terms of the
Coloumb interaction causing a change of the spin projections
of the d-shell electrons. We will neglect such terms because
the energy of the spin-spin interaction between the d-shell
electrons is assumed to be the largest among all other energies.
This assumption allows us to consider all processes as if no
changes in spin states of the inner shell electrons occur. Note
also that there are no spin-orbit splittings in the d-shell, which
is confirmed by the Raman scattering data of Mn0 centers in
GaAs, which has a g-factor strictly equal to 2 [24,33]. If there
were four or six electrons in the d-shell of the ion, the nonzero
orbital momentum appears and leads to additional orbitally
dependent terms in the Hamiltonian [34]. However, as soon as
we consider the half-filled shell, such effects become out of
the scope of this paper.

To calculate the eigenenergies of Ĥex, it is sufficient to use
the subset from the whole basis of acceptor states because of
the spherical symmetry of the Hamiltonian. Let us consider
such a subset consisting of only four wave functions |F, Fz =
0〉 (where F = 1, 2, 3, 4), and taking it from Ref. [16] (note
that the prefactor coefficient in the |2, 0〉 function is changed
to normalize correctly the wave function) one can write it
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down as
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Then one can calculate all the energy differences between
Ĥexch eigenstates as

EF+1 − EF = 〈F + 1, 0|Ĥexch|F + 1, 0〉 − 〈F, 0|Ĥexch|F, 0〉
= 2A, 3A, 4A. (6)

This result could be obtained by taking a subset of four wave
functions, which contain only zero projections of the total
momentum on the z axis {�S

3/2�
J
−3/2; �S

−3/2�
J
3/2; �S

1/2�
J
−1/2;

�S
−1/2�

J
1/2}, generating |F, 0〉 states. By calculating the ex-

change Hamiltonian using these wave functions as bra and
ket functions, we can obtain a 4 × 4 matrix, the eigenval-
ues of which give us the same energy differences as in
Eq. (6).

Thus, the main idea for microscopic calculation of A
via exchange integrals is to consider the first-order cor-
rection to the energies of d-states and of the hole state
due to the Coulomb interaction calculated using only these
four wave functions with appropriate symmetrization and
antisymmetrization of all multiparticle orbitals and spin
states.

B. Microscopic calculation of exchange integrals

Wave functions of the bound �8 hole corresponding to
the total moment J = 3/2 include envelope and Bloch parts.
Within the framework of the effective mass method for
shallow acceptors in cubic semiconductors in the spherical
approximation, the wave function of this hole is the sum
of the products of the Bloch amplitudes Xμ and the smooth
envelopes R0(r) and R2(r)

�J
3/2 = R0(r)Y00X3/2 + 1√

5
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−
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2

5
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where Ylm are the spherical functions corresponding to the
orbital moment l and its projection m. The exchange inter-
action integral will involve these functions and the d-shell
wave functions, which are located in one elementary cell at
the impurity site. We can neglect the effect of R2(r) func-
tions because they tend to the zero limit at the magnetic
impurity site, while R0(r) functions take nonzero values (see
the calculations results in Ref. [16]). Thus, in the Appendix
we calculate all exchange integrals using only Bloch parts
of the �8 hole wave functions, setting �J

μ ≈ f (0)Xμ, where

f (0) = R0(0)/
√

4π .
Based on spin configurations of wave functions ψi (i =

1, 2, 3, 4),{
�S

3/2�
J
−3/2; �S

−3/2�
J
3/2; �S

1/2�
J
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−1/2�
J
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}
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we can show that the Hamiltonian of the Coulomb interaction
has the following 4 × 4 matrix form in this basis:

ĤC =

⎛
⎜⎜⎝
X Z 0 0
Z Y V 0
0 V Y Z
0 0 Z X

⎞
⎟⎟⎠. (12)

The details of the calculation can be seen in the Appendix,
where the true microscopical multiparticle structure of all
wave functions is taken into account. Here we represent the
results

X = 〈
�S

3/2�
J
−3/2|U (r1 − r2)|�S

3/2�
J
−3/2

〉
= W + æ| f (0)|2, (13)

Y = 〈
�S

1/2�
J
−1/2|U (r1 − r2)|�S

1/2�
J
−1/2

〉
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3
æ| f (0)|2, (14)

Z = 〈
�S

3/2�
J
−3/2|U (r1 − r2)|�S
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J
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〉
= 2

√
2√

3
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V = 〈
�S
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J
−1/2|U (r1 − r2)|�S

−1/2�
J
1/2

〉
= 2æ| f (0)|2. (16)
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Here the Coloumb potential is used, which is given by the
expression

U (r1 − r2) = e2

|r1 − r2| . (17)

Note that we treat the Coloumb interaction between the lo-
calized hole and holes in the d-shell (as empty states in
the half-filled shell), and hence we have the positive sign in
Eq. (17). The W terms in Eqs. (13) and (14) could be excluded
from the consideration because they result in an equal general
energy shift of all four states due to the Coloumb interaction.
The main result is the connection of X , Y , Z , and V terms
with the exchange integral æ, which reads as

æ =
5∑

j=1

∫∫
�

dr1dr2

15
ϕ j∗(r1)ϕ j (r2)U (r1 − r2)χ∗(r2)χ (r1),

(18)

where the integrations go over the directly doubled GaAs-
crystal elementary cell volume �, the sum is taken over all
five one-electron orbitals of the 3d-shell of the manganese
ion ϕ j (the upper index numerates all possible orbital states
j = 1, . . . , 5), and there is an overlapping with a p-like Bloch
part of the localized hole wave function χ defined in the
Appendix after Eqs. (A1) to (A4).

The eigenvalues of matrix (12) give us the following energy
differences between eigenstates of this system:

E2 − E1 = 4
3 æ| f (0)|2, E3 − E2 = 2æ| f (0)|2,

E4 − E3 = 8
3 æ| f (0)|2. (19)

One can see from Eq. (6) that they give the same ratio between
the energy differences as in the phenomenological approach
using Hamiltonian (1). These results totally coincide if one
puts

A = 2
3 æ| f (0)|2. (20)

The later expression gives us the tool for microscopic calcula-
tions of the external forces’ effects on the exchange constant
A, which is relevant for many measurements.

C. Exchange constant dependence on deformation

From the symmetry point of view, the possible dependence
of the exchange constant on deformation reads as

Ĥ = A0(Ŝ · Ĵ) + BPTr(ε̂)(Ŝ · Ĵ) + CP

∑
i, j

ŜiĴ jεi j . (21)

If one considers hydrostatic deformation, the constant A de-
pends only on the trace of the deformation tensor εi j =
δi jTr(ε̂)/3 (here δi j is the Kronecker delta symbol)

Ĥ = A0(Ŝ · Ĵ) + (BP + CP/3)Tr(ε̂)(Ŝ · Ĵ). (22)

Further, we will neglect the dependence of the envelope wave
functions f (0) on deformation ε because their change is too
small (it is in the order of 1% of the observed values [23]).

To understand the microscopic foundations of such a
Hamiltonian dependence on deformation, we assume that the
true wave functions of the p-type forming the Bloch eigen-
states of the valley band could be admixed by some other

atomic states, for example, via the pd hybridization mecha-
nism keeping the total symmetry of the state unchanged. Such
hybridization can occur for different reasons, for example, due
to the lack of inversion symmetry in the Td group or the action
of some internal potentials. We suggest here to consider the
admixing mechanism stemming from the existence of random
electric fields that are commonly present near Mn impurity
centers in GaAs [16].

There are several reasons for the presence of random fields
in real GaMnAs crystals. The first reason is the difference in
the lattice constants of a pure GaAs crystal and MnAs crystals
with a zinc-blend lattice symmetry [35]; thus when the Mn ion
replaces the Ga atom in the GaAs lattice an additional local
stress arises, which induces a local change of lattice structure.
Second, Mn ions could also be interlocated between lattice
atoms, which besides another local distortion results in the
formation of double manganese donor complexes. As all other
donors these ones compensate for the single Mn acceptors
producing local electric fields of a random direction on a site
(see, for example, Ref. [36]). Finally, the Raman scattering
measurements on single Mn ions demonstrate very broad lines
in its spectrum compared with, however, resolvable differ-
ences between resonant energy levels, which indirectly marks
the crucial role of local distortions and averaging over them
[24]. The effect of random fields was treated using the pertur-
bation approach found in Ref. [37], and it was also considered
as a much greater effect than the exchange splitting of the �8

hole bound on the Mn acceptor in GaAs in Ref. [28].
Such random fields are usually considered as an additional

source of fine-structure splittings in the Mn acceptor energy
spectrum [16,24], but they also could affect local wave func-
tions of bound holes, i.e., the Bloch wave functions due to the
pd hybridization. Thus, in Eq. (18) the χ functions should be
substituted by the hybridized combinations like

χ̃ ≈ χ +
∑

d

γdϕ
d , ϕ̃d ≈ ϕd − γ ∗

d χ, γd = 〈ϕd |V̂ |χ〉
Ep − Ed

.

(23)

Here Ep and Ed represent the pure atomic energies of pure
p- and d-states without hybridization Ep − Ed ∼ 1 eV (we
assume here that for the Mn-acceptor in GaAs, the pure d-
state lies not very far from the top of the valence band, and
hence pd interaction is the largest one), and term V̂ = r · F
stands for the hybridization operator admixing one state to
another via the electrodipole induction mechanism, which is
due to some local random electric force F. This force could
be very sensible to the change of the elementary cell if the
deformation of the crystal occurs

F ′
i = Fi + αεi jFj . (24)

Here we introduce dimensionless parameter α that takes into
account the deformation dependence of random fields. We
assume that the applied stress is a small parameter of the
theory, so αε 	 1, and further we take into account only the
linear terms on stress.

Thus, we can estimate the change of æ under a pres-
sure or a temperature-affected widening using the following
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assumptions about local electric force properties:

V̂ 2 ≈ rirk (FiFk + αεkmFiFm + αεi jFjFk ).

〈〈Fi〉〉 = 0, 〈〈FiFj〉〉 = ζ δi j .

Here the double angle brackets represent averaging by
possible realizations of random forces. Of course, the true av-
eraging should be processed over observable values, although
the mean value of an observable depends on deformation
approximately the same way as the observable calculated with
such an averaged value of the exchange constant.

Finally, we can conclude that after averaging by random
forces Eq. (18) could be represented by the following terms:

æ ≈ æppdd +
∑

l,i

æll
dddd

〈χ |ri|ϕl〉〈ϕl |ri|χ〉
(Ep − Ed )2

ζ

(
1+ 2

3
αTr(ε̂)

)
,

(25)
where

æppdd =
5∑

j=1

∫∫
�

dr1dr2

15
ϕ j∗(r1)ϕ j (r2)U (r1 − r2)

× χ∗(r2)χ (r1),

æln
dddd =

5∑
j=1

∫∫
�

dr1dr2

15
ϕ j∗(r1)ϕ j (r2)U (r1 − r2)

× ϕl∗(r2)ϕn(r1),

which are exchange integrals with different integrand func-
tions. We should note that the values of these terms depend
on the functions’ overlap, and hence the more d-functions of
Mn ion involved, the larger the value of the Coulomb term is
æppdd 	 ædddd .

To estimate the magnitude of the effect, we first take
into account that all exchange integrals between d-functions
have the same value in sum in Eq. (25). Then using the
hydrogen atom functions χ corresponding to 4p orbitals and
ϕd corresponding to 3d orbitals we can obtain an estimate
ædddd/æppdd ≈ 104. Also, we can take the matrix elements
of the coordinates approximately equal to the Bohr radius
of the atom 〈χ |ri|ϕl〉 ≈ 〈ϕl |ri|χ〉 ≈ aB ≈ 10−8 cm, and the
value of the random forces’ dispersion could be estimated
as having the order of a typical interatomic interaction term√

ζ = F∗ ≈ 106 eV/cm (which is comparable with typical
values of the mean force affecting the nuclear complex of the
lattice cell in GaAs in the case of the Cu ion, for which F ≈
5 × 106 eV/cm [38,39]). Then we can write an estimate for
exchange constant A changing with deformation (AP ≡ BP +
CP/3)

A = A0 + APTr(ε̂), (26)

where

AP

A0
≈ 2

3
α

[15(aBF∗)2/(Ep − Ed )2]ædddd/æppdd

1 + [15(aBF∗)2/(Ep − Ed )2]ædddd/æppdd
. (27)

From the data analysis found in Ref. [24], we can esti-
mate alpha as AP/A0 = (900 meV/2.5 meV) ≈ 360, which is
equivalent to the relative change of A nearly by δA/A0 ∼
αTr(ε) ∼ 0.2 at half of the critical strain of the GaAs crystal
corresponding to the hardness limit at helium temperatures.

0 50 100 150 200 250 300–1
0
1
2
3
4
5
6

FIG. 1. Temperature dependence of linear expansion coefficient
αT . Dark orange circles are experimental results from [41] (see Table
80 on p. 233), black line is our interpolation for this dependence up
to 300 K.

III. CALCULATIONS AND DISCUSSION

We discussed above the parametric dependence of ex-
change constant value on crystal deformation and its mi-
croscopic reasons. This fact already played its role in the
explanation of Raman scattering experiment results [24], and
now we are going to demonstrate clearly that the same fact is
responsible for the high-temperature magnetic susceptibility
reduction measured independently in a completely different
experimental setting [16].

As the GaAs crystal undergoes thermal expansion, we test
our hypothesis of this expansion being responsible for the
anomalous reduction of magnetic susceptibility at relatively
high temperatures. The temperature dependence of the linear
expansion coefficient αT could be found in the literature (see,
for example, Refs. [40] or [41]). We show this dependence in
Fig. 1.

We will use a simple function to interpolate the αT depen-
dence on temperature, which makes the interpolation work up
to 300 K quite well (see Fig. 1)

α̃T =
{

0, T < 50 K,

C tanh
(

T −50
180−50

)
, 50 K � T � 300 K.

(28)

It is implied that T is measured in kelvins. The coefficient C =
6 × 10−6 K−1. Note that there is a slight increase in the αT

coefficient above 300 K (at 800 K it reaches 7.4 × 10−6 K−1,
see the full table of its values in Ref. [41]), and hence the ap-
proximation in Eq. (28) does not work if T > 300 K. For our
purposes it is enough to consider the region of T < 300 K in
which the interpolation in Eq. (28) describes the experimental
data quite well. Note that a very small decrease in αT values
between 25 K and 50 K does not affect the observables in any
reasonable manner, thus, we neglect it.

We are interested in the temperature range T = 0–300 K.
So we can write the dependence of the exchange value A on T
taking into account Eq. (26)

A(T ) = A0 + AP · 3α̃T · T, (29)

where A0 = 2.6 meV [24]. We multiplied α̃T by a factor
of 3 to get the bulk thermal expansion coefficient from
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5

FIG. 2. Temperature dependence of static magnetic susceptibil-
ity κ of manganese ions in GaAs crystal (concentration of manganese
ions 5.3 × 1018 cm−3). Both axes have logarithmic scale. Black
circles connected by dashed lines represent experimental data from
[16,25]. Light orange solid line is a result of calculation based on
the ordinary theory from [16], which implies that A(T ) = A0 =
2.6 meV. Violet solid line represents our calculation result, where the
expression for magnetic susceptibility taken from [16] is modified by
taking into account the exchange constant variation with temperature
A(T ) due to the thermal expansion effect.

the linear one because Tr(ε) = εxx(T ) + εyy(T ) + εzz(T ) =
3εxx(T ). Here we use the same value of AP = 900 meV as
in Ref. [24]. One can see the calculations results in Fig. 2.
Note that in Ref. [16] the electron-hole basis was used, hence
one should change the sign of the exchange constant into
the opposite one compared with the our result to obtain the
same order of energy levels for the manganese acceptor. Thus,
substituting Eq. (29) into the formulas in Ref. [16], we need
to multiply A(T ) by (−1).

As can be seen from Fig. 2 the relative mismatch between
the theory and experimental results at T > 100 K reduces
approximately from 50% to 20%, if we use Eq. (29). This re-
duction of the systematic mismatch leads to a better agreement
between theoretical results and the experimental data in the
high-temperature region, which have the allowable magnitude
of the experimental error (see the discussion in Ref. [16];
the experimental data were first obtained in Ref. [25], and
the same mismatch was also independently mentioned in
Ref. [26]). Also we point out that the sign of the changes
of the exchange interaction constant, which we use to fit the
magnetic susceptibility data, is the same as was used in Raman
experiments [24]. Note that other possible factors, such as the
crystal field effect or the reduction of magnetic susceptibility
caused by the dynamical Jahn-Teller effect observed by us in
Ref. [27], give no pronounced effects on magnetic susceptibil-
ity. Moreover, their effects diminish at high temperatures and
they also ruin the well-established theory predictions at low
temperatures below 50 K.

Thus, the effect of the exchange constant parametric depen-
dence on lattice deformation is the only effect that provides

a reasonable explanation of both high- and low-temperature
behavior characteristics of the manganese acceptor center in
GaAs. Note also that A(T ) at T = 300 K is nearly three times
larger than A0, and it could reach even higher values at higher
temperatures according to Ref. [41] and Eq. (29). Note that at
such big changes in A the nonlinear terms on lattice deforma-
tion should be also taken into account in the pd hybridization
mechanism of exchange constant renormalization via random
fields as soon as the parameter αTr(ε) reaches and exceeds
the limit of 1. We show in Fig. 2 that even linear terms give
the right trend in the temperature dependence of magnetic
susceptibility.

IV. CONCLUSION

The exchange constant value between d-electrons of man-
ganese ion impurity in GaAs crystal and the hole, localized
from the valence band on the impurity ion, is microscopically
derived. The effect of the crystal lattice period change on the
value of the exchange coupling constant occurring via the hy-
bridization of exchanging orbitals is shown and estimated. We
also discuss the effect of the thermal expansion causing the
change in magnetic susceptibility. We show that accounting
for this effect leads to a better agreement between theoreti-
cal results and magnetic susceptibility data measured at high
temperatures. The considered thermal widening mechanism
does not influence the low-temperature magnetic susceptibil-
ity behavior. This result is also in agreement with another
experiment of Raman scattering on Mn acceptors in GaAs
with applied external strain. We believe that the approach to
the analytical calculation of the exchange constant could be
generalized to the case of other magnetic centers in semicon-
ductor structures and semi-magnetic compounds.
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APPENDIX: CALCULATION OF EXCHANGE INTEGRALS

The localized-on-the-ion hole has the Bloch part of the
wave function, which describes both spin and orbital degrees
of freedom in the �8-state

�J
3/2 = −α

X + iY√
2

f (0), (A1)

�J
1/2 =

(√
2

3
αZ − β

X + iY√
6

)
f (0), (A2)

�J
−1/2 =

(√
2

3
βZ + α

X − iY√
6

)
f (0), (A3)

�J
−3/2 = β

X − iY√
2

f (0). (A4)
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Here α and β means spin-up and spin-down states of the
hole captured and localized from the valley band of the GaAs
crystal, respectively. Space orbitals X , Y , and Z correspond to
p-like orbitals, which form the valley band of the crystal, and
hence they are quite similar to each other from the cubic sym-
metry point of view. So we will use more compact notations
as χ+ = −(X + iY )/

√
2 and χ− = (X − iY )/

√
2.

The half-filled 3d-shell of the Mn ion is described by a
five-hole wave function with the totally symmetrical spin part.
We assume that Hund’s rule is the most powerful here, and all
spin-spin interactions in the shell already led to the appearance
of codirected spins of all five d-holes resulting in the total spin
S = 5/2; hence it has an antisymmetric orbital part

�S
Sz

= �d
1,2,3,4,5|S, Sz〉, (A5)

�d
1,2,3,4,5 = 1√

5!

∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1
1 ϕ2

1 ϕ3
1 ϕ4

1 ϕ5
1

ϕ1
2 ϕ2

2 ϕ3
2 ϕ4

2 ϕ5
2

ϕ1
3 ϕ2

3 ϕ3
3 ϕ4

3 ϕ5
3

ϕ1
4 ϕ2

4 ϕ3
4 ϕ4

4 ϕ5
4

ϕ1
5 ϕ2

5 ϕ3
5 ϕ4

5 ϕ5
5

∣∣∣∣∣∣∣∣∣∣∣∣
, (A6)

|S, 5/2〉 = �
5/2
1,2,3,4,5 = α1α2α3α4α5,

|S, 3/2〉 = �
3/2
1,2,3,4,5 (A7)

= 1√
5

(α1α2α3α4β5 + α1α2α3β4α5 + · · · ), (A8)

|S, 1/2〉 = �
1/2
1,2,3,4,5 = 1√

10
(α1α2α3β4β5

+α1α2β3α4β5 + · · · + α1α2β3β4α5 + · · · ).

(A9)

The lower indices of the d-holes’ orbital coordinates
r1, r2, r3, r4, r5 are the lower indices k = 1, 2, 3, 4, 5 of the
functions in Eq. (A6). The upper indices of the ϕ

j
k functions

list five d-shell different orbitals j = 1, 2, 3, 4, 5. According
to Hund’s rule we take all five possible d-orbitals for the
ground state of the ion because the states with identical orbital
functions (and hence with opposite directions of spins) corre-
spond to the excited states of the Mn ion having the excitation
energy of electronvolts and they are out of consideration.
Spin coordinates of different d-holes are also marked by the
corresponding indices. The dots in the brackets of Eqs. (A8)
and (A9) mean that all possible permutations of four α and one
β for Eq. (A8) and three α and two β for Eq. (A9) over d-hole
indices are taken into account. Wave functions corresponding
to the negative projections of the total spin on the z axis
Sz = −1/2,−3/2,−5/2 are the same if one changes all α to
β and vice versa. The normalization constants for those wave
functions are equal to one over the square root of the number
of permutations of the α and β positions in each case, i.e.,

1/

√
C2

5 = 1/
√

10, 1/

√
C1

5 = 1/
√

5, 1/

√
C0

5 = 1, respectively.
Thus, we have five d-holes in the 3d-shell, where the

strongest Coloumb interaction already led to the realization
of Hund’s rule, and there is the sixth localized-on-the-ion
hole in the �8 state, which interacts with all five d-holes. Let
us introduce the potential energy operator of the remaining

weaker Coloumb interactions between the particles

Û =
5∑

i=1

U (ri − r6). (A10)

Let us calculate the first diagonal element of such a Coloumb
operator in the basis of zero total-momentum projection func-
tions. Using the notation introduced above, we can write an
antisymmetrized form of the wave function

�S
3/2�

J
−3/2 = f (0)√

6

{
�d

1,2,3,4,5�
3/2
1,2,3,4,5χ

−
6 β6

− �d
1,2,3,4,6�

3/2
1,2,3,4,6χ

−
5 β5

− �d
1,2,3,6,5�

3/2
1,2,3,6,5χ

−
4 β4 − · · · }. (A11)

This many-particle wave function is formed by the multi-
plication of the wave functions of the localized hole and
of five d-holes with the fixed order of their coordinates
(i = 1, 2, 3, 4, 5), followed by the subtraction of all possible
multiples with consequently interchanged coordinates of the
localized hole (i = 6) and the d-shell holes. We can prove
that this procedure gives us the antisymmetric total wave
function of the system in accordance with the properties of
the determinant columns’ interchange.

Here we illustrate this result with the example of a three-
electron system. If one has an antisymmetric combination
of two electron wave functions φ1,2 = ϕ1ψ2 − ϕ2ψ1 with the
fixed order of arguments, then one can show that the procedure
gives us the fully antisymmetric wave function when adding
the third electron

φ1,2χ3 − φ1,3χ2 − φ3,2χ1

= (ϕ1ψ2 − ϕ2ψ1)χ3 − (ϕ1ψ3 − ϕ3ψ1)χ2

− (ϕ3ψ2 − ϕ2ψ3)χ1

=
∣∣∣∣∣∣
ϕ1 ϕ2 ϕ3

ψ1 ψ2 ψ3

χ1 χ2 χ3

∣∣∣∣∣∣. (A12)

Then

X = 〈
�S

3/2�
J
−3/2

∣∣U (r1 − r2)
∣∣�S

3/2�
J
−3/2

〉
= | f (0)|2

6

∫
dr1 . . . dr6

× (
�d∗

1,2,3,4,5�
3/2†
1,2,3,4,5χ

∗
6β

†
6 − (5)† − (4)† − · · · )

× Û × (
�d

1,2,3,4,5�
3/2
1,2,3,4,5χ6β6 − (5) − (4) − · · · )

= W + æ| f (0)|2, (A13)

where the notation (5), (4), and so on are introduced for the
terms in which the localized hole index 6 (and hence its
coordinate r6) is swapped with the corresponding intershell
d-hole indices 5, 4, and so on.

The Coloumb term W is determined by the direct product
of the multiples of the same type as it is shown on the scheme
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FIG. 3. The scheme of bra and ket direct multiples in Eq. (A13).
The total number of direct multiples is equal to 6.

in Fig. 3 below, and it reads as

W = | f (0)|2
∫∫

dr1dr2|χ−(r1)|2
5∑

j=1

|ϕ j (r2)|2U (r1 − r2).

(A14)

The exchange term is given by Eq. (18), where χ stands for
χ− and the numerical prefactor stems from the normalization
of the wave functions and the convolution of the spin wave
functions with all possible cross-multiples with permutable
indices, which are shown in Figs 4(a) to 4(e). Note that all
multiples give the same contribution but with different signs.
Thus, we carry out the calculations for the case of the multi-
plication of Eqs. (6) and (5) terms shown in Fig. 4(a) and take
proper account of the summation of all terms with positive
and negative signs

�
3/2†
1,2,3,4,5β

†
6�

3/2
1,2,3,4,6β5[−5 × 2 + (4 + 3 + 2 + 1) × 2] = 2.

(A15)

Note also that the remaining orbital part of the exchange
integral (after the summation by the spin indices) has the
following form:

æ = 2

6

∫
dr1 . . . dr6χ

∗
6χ5�

d∗
1,2,3,4,5�

d
1,2,3,4,6

× [U (|r5 − r6|) + · · · ]

= 1

3
× 4!

5!

∫∫
dr5dr6χ

∗
6χ5

5∑
j=1

ϕ
j∗
5 ϕ

j
6U (|r5 − r6|). (A16)

The integration with all terms denoted by dots in the first part
of Eq. (A16) gives us zero due to the orthogonality of all
orbital wave functions. The summation over the d-orbital in-
dices in the last part of the equation is carried out considering
only one index j = 1, . . . , 5 for both one-particle functions
ϕ

j∗
5 and ϕ

j
6. The latter could be easily checked by treating the

multiples in explicit forms written one under another as

χ∗
6�

d∗
1,2,3,4,5 = χ∗

6√
5!

(
ϕ1

1ϕ
2
2ϕ

3
3ϕ

4
4ϕ

5
5 − ϕ1

1ϕ
2
2ϕ

3
3ϕ

4
5ϕ

5
4 + · · · )∗

,

(A17)

χ5�
d
1,2,3,4,6 = χ5√

5!

(
ϕ1

1ϕ
2
2ϕ

3
3ϕ

4
4ϕ

5
6 − ϕ1

1ϕ
2
2ϕ

3
3ϕ

4
6ϕ

5
4 + · · · ).

(A18)

Here the first term is determined by the fixed sequence of
the coordinate indices and all others are determined by the
coordinate indices’ swapping accompanied by a change of the
sign. One can see that the nonzero multiples are only those
which are the products of two terms written strictly under each
other in Eqs. (A17) and (A18). All other multiples give us

FIG. 4. The scheme of bra and ket cross-multiples in Eq. (A13).
(a) There are 5 × 2 = 10 cross-multiples with the minus sign if one
considers five cross-multiples in the inset and their mirror twins
emerging as if the virtual reflection in the horizontal plane takes
place. (b)–(e) The number of each multiple of the plus sign should
be multiplied by 2 due to the same reason as discussed for inset (a).
The total number of multiples equals to (4 + 3 + 2 + 1) × 2 = 20.

zero due to the mutual orthogonality of all functions. Thus, all
terms are summed up only with positive signs. The number
of such summands with fixed position of fifthth and sixth
particles equal to the number of permutations of the other four
electrons over the remaining four orbitals and hence it is equal
to 4! = 24.

Let us explain now, in brief, the calculation details for the
Y , Z , and V terms. The Y term also involves bra and ket
functions of the same type

�S
1/2�

J
−1/2

= f (0)√
6

{
�d

1,2,3,4,5�
1/2
1,2,3,4,5

(√
2

3
Z6β6 +

√
1

3
χ−

6 α6

)

−(5) − (4) − · · · }. (A19)

Here the same notation [(5), (4), etc.] is introduced as for
Eq. (A13). One can see that the same scheme which we used
when calculating the matrix elements of the direct Coulomb
interaction terms gives us, as denoted in Fig. 3, the same value
W (due to the symmetry properties of χ− and Z functions
of the localized hole), and the latter could be excluded from
consideration. The exchange terms’ calculation requires con-
sideration of two possible results of the wave function’s spin

174401-8



EXCHANGE INTERACTION FOR Mn ACCEPTORS IN … PHYSICAL REVIEW B 107, 174401 (2023)

parts’ convolution. The first is

�
1/2†
1,2,3,4,5β

†
6�

1/2
1,2,3,4,6β5

= 1

10
(α†

1α
†
2α

†
3β

†
4β

†
5 + α

†
1α

†
2β

†
3α

†
4β

†
5 + · · · )β†

6

× (α1α2α3β4β6 + α1α2β3α4β6 + · · · )β5

= 1

10
(α†

1α
†
2α

†
3β

†
4 + α

†
1α

†
2β

†
3α

†
4 + · · · )

× (α1α2α3β4 + α1α2β3α4 + · · · ) = 4

10
, (A20)

and the second is

�
1/2†
1,2,3,4,5α

†
6�

1/2
1,2,3,4,6α5

= 1

10
(α†

1α
†
2α

†
3β

†
4β

†
5 + α

†
1α

†
2β

†
3α

†
4β

†
5 + · · · )α†

6

× (α1α2α3β4β6 + α1α2β3α4β6 + · · · )α5

= 1

10
(α†

1α
†
2β

†
3β

†
4 + α

†
1β

†
2α

†
3β

†
4 + · · · )

× (α1α2β3β4 + α1β2α3β4 + · · · ) = 6

10
. (A21)

Then, after the summation over the spin indices and
taking into account possible cross-multiples, as in
Figs. 4(a) to 4(e), we obtain an additional multiplier
[−5×2+(4+3+2+1)×2] = 10 as in Eq. (A15), and then we
get the exchange part of Y equal to

| f (0)|2 10

6

∫
dr1 . . . dr6

(
2

3

4

10
Z∗

6 Z5 + 1

3

6

10
χ∗

6 χ5

)
× �d∗

1,2,3,4,5�
d
1,2,3,4,6(U (|r5 − r6|) + · · · )

= | f (0)|2 7

9
× 4!

5!

∫∫
dr5dr6χ

∗
6 χ5

×
5∑

j=1

ϕ
j∗
5 ϕ

j
6U (|r5 − r6|) = 7

3
æ| f (0)|2. (A22)

Here we use the symmetry equivalence of Z and χ functions
when calculating such types of integrals.

When calculating Z , the off-diagonal matrix element be-
tween quantum states from Eq. (A11) and Eq. (A19) is taken.
Thus, there is no Coloumb term and the exchange integral in
this case reads as

Z = | f (0)|2 10

6

∫
dr1 . . . dr6�

d∗
1,2,3,4,5�

3/2†
1,2,3,4,5χ

−∗
6 β

†
6

× Û�d
1,2,3,4,6�

1/2
1,2,3,4,6

(√
2

3
Z5β5 +

√
1

3
χ−

5 α5

)

= | f (0)|2 10

6

∫
dr1 . . . dr6�

d∗
1,2,3,4,5�

3/2†
1,2,3,4,5χ

−∗
6 β

†
6

× Û�d
1,2,3,4,6�

1/2
1,2,3,4,6

√
1

3
χ−

5 α5. (A23)

The multiplier 10 arises as a result of the usage of the intro-
duced scheme, which implies taking into account all exchange
integrals [see Figs. 4(a) to 4(e)]. There are no multiples with Z
functions because the convolution of the spin functions gives
zero, as the considered summands have 4α and 1β parts of

�
3/2†
1,2,3,4,5 spin function, and 3α and 2β enter �

1/2
1,2,3,4,6 spin

function. The spin convolution of the latter part is equal to

�
3/2†
1,2,3,4,5β

†
6�

1/2
1,2,3,4,6α5

= 1√
5

(α†
1α

†
2α

†
3α

†
4β

†
5 + α

†
1α

†
2α

†
3β

†
4α

†
5 + · · · )β†

6

× 1√
10

(α1α2α3β4β6 + α1α2β3α4β6 + · · · )α5

= 1√
50

(α†
1α

†
2α

†
3β

†
4 + α

†
1α

†
2β

†
3α

†
4 + · · · )

× (α1α2α3β4 + α1α2β3α4 + · · · ) = 4√
50

. (A24)

Then finally we get

Z = | f (0)|2 10

6

4√
50

1√
3

4!

5!

∫∫
dr5dr6χ

∗
6 χ5

×
5∑

j=1

ϕ
j∗
5 ϕ

j
6U (|r5 − r6|) = 2

√
2√

3
æ| f (0)|2. (A25)

The calculation of another off-diagonal matrix element V
requires usage of the following ket wave function according
to Eq. (16):

�S
−1/2�

J
1/2

= f (0)√
6

{
�d

1,2,3,4,5�
−1/2
1,2,3,4,5

(√
2

3
Z6α6 +

√
1

3
χ+

6 β6

)

−(5) − (4) − · · · }. (A26)

As the spin function �
1/2
1,2,3,4,5 contains 3α and 2β in each

summation term, while the function �
−1/2
1,2,3,4,5, on the contrary,

contains 2α and 3β in each summand, one can see that the
exchange matrix element of the interaction between quantum
states given by Eqs. (A19) and Eq. (A26) will reduce to the
following expression, having nonzero contributions from only
Z-orbital terms:

V = | f (0)|2 10

6

∫
dr1 . . . dr6�

d∗
1,2,3,4,5�

1/2†
1,2,3,4,5

×
√

2

3
Z∗

6 β
†
6Û�d

1,2,3,4,6�
−1/2
1,2,3,4,6

√
2

3
Z5α5

= | f (0)|2 10

6

2

3

6

10

4!

5!

∫∫
dr5dr6Z∗

6 Z5

×
5∑

j=1

ϕ
j∗
5 ϕ

j
6U (|r5 − r6|) = 2æ| f (0)|2, (A27)

in which the result of the spin function’s convolution is in-
cluded

�
1/2†
1,2,3,4,5β

†
6�

−1/2
1,2,3,4,6β5

= 1

10
(α†

1α
†
2α

†
3β

†
4β

†
5 + α

†
1α

†
2β

†
3α

†
4β

†
5 + · · · )β†

6

× (β1β2β3α4α6 + β1β2α3β4α6 + · · · )α5

= 1

10
(α†

1α
†
2β

†
3β

†
4 + · · · )(α1α2β3β4 + · · · ) = 6

10
. (A28)
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