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Antichiral topological phases and protected bulk transport in dual-helix Floquet lattices
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The incorporation of driven auxiliary nodes in Floquet lattices can substantially enhance their topological
nature, resulting in unique nontrivial phases. Here, we develop an alternative design approach in Floquet
topology by introducing a dual-helix modulation scheme that can simultaneously support a clockwise and a
counterclockwise helicity in a singular unit cell. As a result, the band structure of a dual-helix configuration can
parametrically deform between a conventional phase that exhibits crossed edge states and an antichiral phase
with tilted unidirectional states, showcasing for the first time an antichiral phase in Floquet topological systems.
An extended family of tilted and overtilted edge states is identified and topologically characterized, revealing that
integer Chern and winding numbers can successfully characterize lattices that lack global topological gaps. This
results in a rich dynamic response where light wave-packets can acquire different velocities at adjacent edges,
and even halt or reverse their direction into unidirectional bulk channels, preserving their topological protection.
To investigate these effects, we study a dual-helix photonic lattice of evanescently coupled waveguides where
a nontrivial topology can now emerge on a completely stationary configuration, departing from conventional
schemes that require helical variations of the lattice sites.
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I. INTRODUCTION

In recent years, topological theories have transformed the
way physical models are viewed and classified, unveiling a
host of novel wave-transport phenomena in both the classical
and the quantum world [1–12]. A nontrivial topological phase
is associated with the emergence of unidirectional states at the
edges of insulating materials, establishing new transport path-
ways for electron or light currents through robust boundary
channels [13–15]. These topological states offer exceptional
protection from backscattering and defects and have thus
been advocated for a variety of technological applications,
including spintronic devices, dissipationless transistors, and
energy-efficient microelectronics [16–21]. Towards this new
era of topological physics, photonics has also played a pivotal
role by providing accessible experimental platforms in both
two and three dimensions, ranging from one-way waveguide
lattices to topological metamaterials [22–29].

Typically, a nontrivial topological phase is associated with
a process that can break time-reversal symmetry in a lattice,
such as a magnetic field or periodic driving in Floquet con-
figurations [30–34]. Generally, the unidirectional properties
of topological edge waves are dictated by the helicity of the
lattice itself. In other words, a definite propagation path can
be imposed by controlling either the direction of an applied
magnetic field or the rotation path of the Floquet modula-
tion (i.e., performed either clockwise or counterclockwise).
In this context, an unconventional response can be realized
when a diatomic lattice incorporates opposite helicity in each
sublattice, leading to the formation of antichiral edge states

that do not cross at a singular momentum point but rather
lie along the same tilted axis [35–37]. In photonics, antichi-
ral lattices have been exclusively demonstrated by utilizing
opposing local magnetic fields, supporting edge waves that
can propagate in opposite directions at intersecting boundaries
[38]. In antichiral systems, the bulk band structure remains
gapless and therefore it cannot be characterized by a nontrivial
topological phase; i.e., the Chern numbers of the conduction
and valence bands remain zero. Nonetheless, a generalization
of these design principles can facilitate the exploration of
novel nontrivial phases in topological lattices, which may go
beyond pure chiral or antichiral states.

An intriguing question can be raised as to whether a con-
tinuous deformation between conventional topological edge
states and antichiral unidirectional states is possible in time-
periodic Floquet lattices. This reveals a unique opportunity
to realize topological configurations that can exhibit signif-
icantly greater flexibility in their nonreciprocal dynamics.
However, such a design proposition requires a topological
lattice that can support arbitrary helicity in each individual
sublattice. In a photonic setting, this demands precise con-
trol of the involved magnetic fields or, in the context of
Floquet topology, an opposing modulation path for waveguid-
ing elements, a requirement that is impossible to implement
in conventional platforms.

In this paper, we demonstrate that an extended class of
chiral and antichiral topological states can indeed be real-
ized in Floquet lattices based on a dual-helix chain-driven
approach. To accomplish this, we depart from the conven-
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FIG. 1. (a) A honeycomb lattice can be enhanced with new degrees of freedom via the addition of six auxiliary elements, with on-site
detunings δAi,Bi. A proper zigzag termination must include both auxiliary sites. The band structure is depicted near zero energy to focus on the
two highlighted edge states. (b) A time-periodic modulation of δAi,Bi is applied with a phase difference of φAi,Bi. When both sublattices acquire
a clockwise helicity, the band structure becomes topologically nontrivial, encompassing a pair of crossed unidirectional edge states. When
the helicity is reversed in one sublattice, the band structure becomes topologically trivial, displaying a pair of antichiral edge states. (c) For
different modulation strengths or modulation phases, the band structure can continuously deform between the two limiting cases of panel (b).
Here, a pair of tilted, flat and overtilted edge states are shown.

tional design approach of helical motions [see Fig. 2(a)] and
instead implement a variation of bimorphic topological in-
sulators that were recently demonstrated experimentally in
photonic lattices [23]. Bimorphic configurations can man-
ifest a nontrivial topology by employing several auxiliary
elements that are modulated independently in time, preserv-
ing their position and therefore maintaining a static lattice
geometry. Here, we exploit the unique strengths of bimorphic
topological insulators (TIs), and in contrast to their origi-
nal conception where modulation is uniform, we introduce
higher complexity through several additional auxiliary nodes
in the unit cell. This allows us to employ arbitrary helicity
on each sublattice, showcasing an antichiral phase in Flo-
quet topological systems. In this respect, we demonstrate that
dual-helix configurations can support a continuous class of
nontrivial topological edge states that may gradually deform
into antichiral states by altering the modulation profile of the
lattice, leading into a gapless overtiled regime characterized
by integer Chern and winding numbers. In contrast to con-
ventional topological phases, we show that the corresponding
topological invariants can be determined through a k-space
transformation that allows them to conform to the gapless
nature of overtilted Floquet spectra.

To investigate the effects associated with antichiral
Floquet systems, we examine a diverse array of boundary
configurations on a dual-helix photonic waveguide lattice

and demonstrate an unprecedented level of control over the
transport properties of topological waves. In particular, we
showcase that, in a uniform lattice geometry, one can simulta-
neously excite multiple unidirectional wave-packets that can
propagate with arbitrary transport speeds and even opposite
directions, while maintaining robust topological protection.
Moreover, we reveal the presence of unidirectional bulk chan-
nels that can provide a coupling path between antichiral states
residing at opposite edges, thus creating alternative means of
topological protection that can involve bulk dynamics. In this
regard, while bimorphic photonic TIs have made an essen-
tial step in the evolution of topological waveguide platforms
by eliminating bending losses, the versatility of dual-helix
configurations can further improve upon these core design
principles, expanding the means to manipulate light wave-
packets, towards a new generation of topological photonic
circuitry.

II. THEORETICAL FRAMEWORK

To begin with, we consider a tight-binding lattice using a
straightforward extension of the chain-driven design utilized
by bimorphic TIs. This generalized model will be later applied
to a photonic array of evanescently coupled waveguides. In
this section we study a honeycomb arrangement; however, the
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FIG. 2. (a) In a photonic waveguide array, a nontrivial topology is conventionally generated via a global helical motion of the elements
along the propagation axis. Each element must follow an identical rotation path to maintain consistent couplings along z. (b) A building
block of a bimorphic (chain-driven) lattice where each site is surrounded by a number of auxiliary elements. A nontrivial topology can be
generated via a modulation of the effective local potentials of the three auxiliary elements (corresponding to an index variation �n along the
z axis in the context of photonic waveguides), maintaining the local position of the elements. Due to this property, two different chain-driven
sublattices that exhibit a different phase, magnitude, or period in their respective auxiliary-site modulations can coexist within a singular unit
cell. (c) A trapezoid configuration combines both an A and a B sublattice termination at the top edge and the left edge, respectively. Two
crossed topological edges states travel unidirectionally around the lattice, wrapping around corners with zero scattering or diffraction. (d) Two
antichiral edge states propagate in opposite directions, meeting at the top-left corner where they subsequently scatter into the bulk. (e, f)
Reducing the modulation amplitude in one sublattice can lead to asymmetric edge state pairs. In panel (e) a wave packet remains stationary at
the top edge for �Ai = 0, while in panel (f) a wave packet slows down after it crosses the top-left corner.

core principles outlined herein are universal, with a square
lattice case also covered in the Supplemental Material [39].

To employ our double-helix approach we introduce two
auxiliary elements for each connecting path between the pri-
mary sites of the honeycomb lattice, as depicted in Fig. 1(a).
The tight-binding Hamiltonian is given by

H (k) =
3∑

i=1

δAi(t )c†
AicAi +

3∑

i=1

δBi(t )c†
BicBi + Hκ (k), (1)

where δAi(t ) and δBi(t ) are the on-site detunings of the six
auxiliary elements and Hκ (k) is the coupling Hamiltonian in-
volving all nearest-neighbor terms. Without loss of generality,
Hκ (k) comprises identical couplings which are all normal-
ized to unity. Nonetheless, one may also consider unequal
couplings as long as the two sublattices remain balanced,
a symmetry that protects against trivial band-gap openings.
By introducing the three auxiliary chains the primitive unit
cell of the honeycomb lattice is enlarged but its morphology
remains identical to the diatomic variation. In this respect, due
to the symmetry rules of the honeycomb lattice the static band
structure displays a pair of Dirac cones that can generate two

trivial edge states for a zigzag termination [Fig. 1(a)]. To avoid
the formation of defect (Tamm-like) edge states the outer
auxiliary chains must also be included at the terminated edge,
as shown in the upper panel of Fig. 1(a). The band diagrams of
Fig. 1 focus on the modes around β = 0, with the full spectra
shown in the Supplemental Material [39].

Before discussing the generalized model, we begin by in-
troducing a conventional topological phase in the dual-helix
design. To do so, we implement a z-periodic modulation of
the refractive indices in the six auxiliary sites, associated with
the on-site detunings δAi and δBi, as shown in Fig. 1(b) (left).
In this example, the on-site detunings follow a sinusoidal
variation with a 2π/3 phase shift between the three elements,
δAi,Bi = �Ai,Bi sin (2πt/T + φAi,Bi ) and a period of T = 7. In
this respect, when a clockwise modulation is imposed in both
sublattices, with an equal amplitude on all six auxiliary sites
(�Ai,Bi = 6), the Dirac gap opens and a topological pair of
unidirectional edge states emerges [Fig. 1(b), left]. The lattice
topological invariants, namely, the two bulk Chern numbers
(C) and the Floquet winding number (W ), acquire nonzero
values, indicating indeed the presence of a nontrivial topolog-
ical phase [39].
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In order to step beyond the conventional topological phase
characterized by a crossed pair of edge states, we must break
the uniformity of the two sublattices. In this respect, the flexi-
bility of the dual-helix design becomes immediately apparent.
The two main sites [highlighted with red and blue in Fig. 1(a)]
are surrounded by three individual neighbors which can be
modulated independently from each other. In this respect, a
different helicity can be imposed locally on each sublattice
by a proper phase shift of the δAi,Bi coefficients. First, we
focus on the special case where the two sublattices acquire
opposite helicity with equal modulation amplitudes between
�Ai and �Bi. In this second example, the modulation phases
φA2 and φA3 are swapped, reversing the helicity in sublattice
A. The band structure associated with this design [as shown in
Fig. 1(b), right], is gapless, similar to the nonmodulated case
of Fig. 1(a). However, the two edge states are now noticeably
tilted. This result corresponds to an explicit manifestation of
a Floquet antichiral phase. A numerical characterization of
the topological invariants reveals a strictly trivial phase with
zero Chern numbers, as expected for antichiral edge states.
Interestingly, as both edge states acquire a negative group
velocity, the bottom and top zigzag edges support only a left-
wise transport direction, as opposed to conventional crossed
topological states which support opposite transport directions.
This property has significant implications in the transport
dynamics of fully finite configurations, as discussed in the
following section.

Having introduced the concept of Floquet antichiral states,
we now aim to generalize these results revealing the full
versatility of dual-helix designs. In this respect, one can show
that the two cases of Fig. 1(b) correspond to the limits of
a continuous family of edge modes that can transition be-
tween conventional topological states and antichiral states.
This expanded class of topological band structures is read-
ily supported by the dual-helix approach via an autonomous
variation of the �Ai and �Bi amplitudes. To illustrate this, we
investigate the chain-driven lattice, starting from the nontrivial
topological phase with a dual-helix clockwise modulation and
�Ai,Bi = �. In Fig. 1(c) we depict three special cases. First,
the ratio �Ai/�Bi is decreased by lowering the modulation
amplitude �Ai of the three elements surrounding site A. The
two edge states obtain a noticeable tilt while the spectrum
becomes asymmetric around the crossing point. By lowering
�Ai even further we reach a critical value (�Ai = 0) where
the global gap between the two photonic bands vanishes. In
this case, the edge state highlighted with red obtains a vanish-
ing group velocity and becomes flat. From this point on, by
increasing the modulation with a counterclockwise helicity
we are able to overtilt the two edge states, equipping both
with a negative group velocity, eventually reaching the lim-
iting case of antichiral states. It is worth noting that a similar
transformation can be achieved via a multitude of means. For
example, one may also consider a variation of the modulation
phases instead of the amplitudes, starting with φA1 = 0 and
φA2 = −φA3 = φA = −2π/3 while keeping �Ai,Bi and φBi

constant. In this respect, the complete family of topological
tilted and overtilted states can be obtained within the range
φA = [−2π/3, 2π/3].

The topological classification of this new family of tilted
edge states can be properly performed by characterizing the

corresponding topological invariants [13,40–44]. As shown
here, the two limiting cases of Fig. 1(b) correspond to a
nontrivial (left) and a trivial (right) topological phase. For the
examples presented in Fig. 1(c) we first attempt an evaluation
of the Chern numbers by numerically integrating the Berry
curvature over the bulk Brillouin zone. We find that in all
cases the Chern numbers are nontrivial (C = −1 and C = 1
for the top and bottom bands, respectively), irrespective of the
presence or absence of a global gab. Consequently, this class
of Floquet systems maintains a nontrivial topology, even in
the overtilted gapless regime [bottom panel of Fig. 1(c)].

An additional invariant quantity in the Floquet system that
can explicitly indicate the number of edge states that lie within
topological gaps is the winding number W . A conventional
approach to calculate W for a specific gap requires a shift
of its eigenvalue to the Floquet zone boundary (at β = π/T )
before integrating the unitary operator U over the k-t space
[39]. For gapped tilted cases this is a straightforward process
that here yields a nontrivial integer value of W = 1. However,
for overtilted band structures there is no universal eigenvalue
β that can be associated with a global gap and a new strategy
must be introduced. To overcome this issue, we propose an
alternative strategy. In this respect, we choose a k-dependent
branch cut for the logarithm in the effective Hamiltonian
Heff = 1/T logU (k, T ) and integrate over a β-k manifold that
cuts through the local Dirac band gaps. By doing so, the
winding number W can be successfully evaluated, revealing
again a nontrivial integer value of W = 1 for all overtilted
cases, until the limiting case of antichiral states is reached.

III. WAVE-PACKET DYNAMICS IN A PHOTONIC ARRAY

The chain-driven design principles can be applied to any
configuration that allows a periodic variation of its on-site
potentials. In this respect, photonic waveguide arrays provide
an efficient platform to implement dual-helix topological lat-
tices. To demonstrate this, we numerically solve the Floquet
eigenvalue problem of the continuous Schrödinger equa-
tion associated with a z-periodic chain-driven lattice in a
photonic waveguide array, as shown in the Supplemental
Material [39]. Each waveguide is shaped as a super-Gaussian
local potential with an appropriate magnitude and separation
between its neighboring sites, so as to closely approximate
the dynamics of the theoretical tight-binding Hamiltonian.
All parameters lie well within their experimental limits. The
results are in excellent agreement with the coupling model
band diagrams, affirming that the classes of antichiral tilted
and overtilted topological edge states can manifest themselves
in a realistic photonic structure. In this section, we utilize this
waveguide array to observe light-packet evolution in several
dual-helix designs. The lattices are designed using an opti-
mized set of modulation phases rather than the ones used in
Fig. 1, as outlined in the Supplemental Material, Sec. 1 [39].

The transport dynamics of dual-helix chain-driven lat-
tices are investigated via beam propagation method (BPM)
simulations by employing a finite trapezoid configura-
tion that combines both an A and a B sublattice ter-
mination at intersecting boundaries (Fig. 2). The two
boundaries meet at a 120◦ angle in the top-left corner,
acting as a “top” and a “bottom” edge of a ribbon-
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like configuration, respectively. Starting with Fig. 2(c), we
depict a case where both sublattices acquire the same
(clockwise) helicity, displaying a conventional topological
phase that encompasses a pair of crossed unidirectional edge
states [corresponding to the case of Fig. 1(b), left]. The lattice
is excited simultaneously at the two edges with two separate
wave-packets, indicated by the red and blue intensity profiles.
As expected, the two wave-packets travel unidirectionally
along the boundaries, facing a clockwise direction, and even-
tually wrap around the corners with zero scattering into the
bulk. In essence, each of the two wave-packets is paired to
a clockwise topological mode and the red-to-blue arrow in
the final panel corresponds to a singular transport path, due
to maximal coupling between the red and the blue states.

When we impose an opposite helicity in the two sublattices
(with equal modulation amplitudes) the band diagram dis-
plays a pair of antichiral edge states [corresponding to the case
of Fig. 1(b), right]. In this scenario, illustrated in Fig. 2(d), the
two wave-packets propagate in opposite directions, towards
the upper-left corner of the lattice. Eventually, due to a mis-
match of the transport directions supported by each boundary,
the two wave-packets are unable to couple into the adjacent
edge and instead penetrate the lattice, seemingly scattering
into the bulk. At first, this appears as a failure of topological
protection, a property which dictates that wave packets are
immune to bulk scattering from corners or defects. However,
as we see in the final example, this is far from the truth, not
only for antichiral states but also for all overtilted cases.

Before further investigating the bulk scattering of overtilted
states, we focus on two special cases, one lattice variation
where the amplitudes �Ai are nullified (�Ai = 0) and one case
with decreased modulation amplitudes (�Ai < �Bi). In gen-
eral, a decreased modulation amplitude allows the design of
topological lattices that can support multiple transport speeds
for singular wave-packets at intersecting boundaries. This
feature is exclusive to dual-helix lattices due to the fact that
multiple helicities can now coexist within a singular unit cell.
In conventional topological lattices, one may naively attempt
a similar dynamic effect by combining two individual unit
cells with different helicities. However, this will fail as it will
inadvertently lead to the formation of secondary topological
boundaries.

In the first case, presented in Fig. 2(e), the group ve-
locity of the blue edge state vanishes and, consequently,
the blue-highlighted wave packet remains trapped in the
excited waveguides, allowing only a small degree of micro-
motion. On the other boundary, the red edge state acquires a
nonzero group velocity and the red-highlighted wave packet
propagates as a conventional topological state, exhibiting
unidirectional propagation at the edge. In the second case,
presented in Fig. 2(f), the launched wave-packets travel unidi-
rectionally, in a fashion similar to that of the result of Fig. 2(c),
but at a different pace when traversing each edge. When meet-
ing the top-left corner, the red wave-packet is able to fully
couple to the blue-highlighted state with no scattering into
the bulk, despite the mismatch in transport speeds between
the red and the blue states. This example, therefore, exhibits
an exclusive topological response where wave packets can
traverse the boundaries of a photonic lattice with enhanced
degrees of freedom.

FIG. 3. (a) An antichiral state couples perfectly to unidirectional
bulk modes [red-highlighted states in panel (c)] that originate from
the flat band of the undriven spectrum. These bulk states create a
protected channel that links two antichiral states at opposite edges.
(b) Adding a defect along the path of the bulk channel causes light
to travel around the missing element, revealing a new aspect of
topologically protected transport. (c) The spectrum around β = 0,
including the emerging unidirectional CLS. (d) A similar effect is
observed in a larger lattice with roughly four times the number of
elements.

To investigate the bulk scattering of overtilted topological
states, in Fig. 3(a) we repeat the simulation of Fig. 2(d) by
observing the red-highlighted wave packet for a longer time
span, after allowing itself to scatter at the corner. Here, the
field snapshots at different observations times are combined
on the same panel, with their approximate positions indicated
by individual arrows. In contrast to what initially appears as
random diffusion of power into the bulk, the wave packet
instead follows a localized unidirectional path through the
lattice. After meeting the opposite edge, it couples almost
fully to an antichiral edge state, continuing its path along
the left boundary. This unique behavior is supported by the
presence of compact localized states (CLS) that originate from
the flat band of the undriven spectrum (as seen in Fig. S1 [39]).
In contrast to other bulk modes, these states have the same di-
mensionality as edge states and are thus highly favored when
mode coupling occurs due to scattering. Their group velocity
[Fig. 2(c)] is almost linear and has a sign opposite that of the
corresponding antichiral edge states. Thus, light can propagate
across the diagonal of the lattice almost undispersed, creating
a link between antichiral states at opposite edges. While in
practice a small amount of power is expected to leak into the
bulk (depending also on the distance between the boundaries),
in the example of Fig. 2(e) approximately 95% of power is
robustly transferred between the two edges.

The result of Fig. 3(a) reveals an alternative aspect of
topological protection encountered exclusively in dual-helix
Floquet lattices. To support this claim, we perform an addi-
tional set of simulations in a dual-helix system with a lattice
defect, by removing one site directly on the path of the bulk
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channel [shown in Fig. 3(b)]. The wave packet travels around
the defect and an effect similar to that in Fig. 3(a) is observed.
Moreover, to quantify the coupling efficiency between the
two edges and the losses due to dispersion or bulk mode
scattering, we repeat the simulation (without the defect) on a
larger lattice. The result of Fig. 3(a) verifies that the observed
effect is indeed highly robust.

IV. CONCLUSION

In conclusion, we have investigated an alternative class of
dual-helix modulation schemes in Floquet lattices that can ex-
hibit a continuous family of nontrivial topological phases with
tilted, flat, and overtilted unidirectional edge states. Overtilted
edge states in dual-helix Floquet systems are topologically
protected and can propagate unidirectionally along the edges,
while the straightforward design rules of chain-driven lattices
provide increased versatility in manipulating their transport
properties. In this article, we have investigated only a subset
of the possible variations of dual-helix lattices, exclusively
in diatomic designs. One may consider more advanced de-
signs by freely manipulating the magnitude and the phase of

each individual element or even involve unit cells with more
than two sublattices, incorporating multiple local helicities.
In this respect, dual-helix lattices may enable the design of
advanced topological circuits that can exhibit a large variety of
transport characteristics. The proposed designs can be readily
implemented in photonic waveguide lattices or other similar
photonic platforms that can support modulation of the on-
site potentials without having to periodically shift the node
positions or apply external magnetic fields.
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