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Dual-unitary circuits are a class of locally interacting quantum many-body systems displaying unitary dynam-
ics also when the roles of space and time are exchanged. These systems have recently emerged as a remarkable
framework where certain features of many-body quantum chaos can be studied exactly. In particular, they admit
a class of “solvable” initial states for which, in the thermodynamic limit, one can access the full nonequilibrium
dynamics. This reveals a surprising property: when a dual-unitary circuit is prepared in a solvable state the
quantum entanglement between two complementary spatial regions grows at the maximal speed allowed by
the local structure of the evolution. Here we investigate the fate of this property when the system is prepared
in a generic pair-product state. We show that in this case, the entanglement increment during a time step is
submaximal for finite times, however, it approaches the maximal value in the infinite-time limit. This statement
is proven rigorously for dual-unitary circuits generating high enough entanglement, while it is argued to hold for
the entire class.
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I. INTRODUCTION

The evolution of quantum entanglement gives a universal
and unifying characterization of nonequilibrium dynamics in
a wide range of quantum many-body systems ranging from
lattice models to relativistic field theories [1–4]. Whereas the
analysis of specific local observables is clouded by a plethora
of system- and observable-specific effects, the evolution of
entanglement over large scales does not depend on such
inessential details and returns a clear portrait of the full (gen-
eralized) thermalization process [5,6]. Whenever a quantum
many-body system with local interactions is prepared in an
out-of-equilibrium state with low entanglement, and then let
to follow its own unitary evolution, the entanglement between
different spatial regions is observed to grow in time, signaling
the proliferation of quantum correlations. In the course of
this process, the entanglement entropy of a given subsystem
is transformed into thermodynamic entropy and eventually
saturates to a time-independent value indicating the onset of
relaxation [5,7–10]. Unless specific competing mechanisms
are introduced—such as disorder [11–13], confinement [14],
or local measurements [15–17]—the entanglement grows lin-
early in time, irrespective of the nature of the system dynamics
[5,6,10,18–33].

The linear growth of entanglement naturally defines a
velocity—known as entanglement velocity [6,23,31]—which
is obtained dividing the slope of the growth by the density
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of stationary entropy. The entanglement velocity is the key
emergent parameter of the thermalization process: it gives in-
formation on when subsystems start approaching stationarity
and, at the same time, determines the feasibility of classical
simulations of the quantum dynamics [34–37]. While it is
clear that the entanglement velocity depends on geometry
and couplings of a given system [10,28,38], it is less obvious
whether it also depends on the initial configuration. One might
expect that the dependence on the initial configuration should
be mild, and all configurations leading to the same stationary
state are characterized by the same entanglement velocity:
some numerical observations supporting this expectation have
been presented in Ref. [25]. On the other hand, the entan-
glement velocity describes a truly out-of-equilibrium regime
taking place prior to relaxation and when a full scrambling of
quantum information has yet to take place. For free systems,
for instance, initial configurations leading to the same station-
ary state can have different entanglement velocities [19]. The
same is expected for interacting integrable systems, where a
formula for the entanglement velocity [10,38] is only known
for a special class of initial states [39,40]. These examples
show that, at least for integrable models, the entanglement ve-
locity contains more information than the stationary state and
the intuitive expectation discussed above fails. For quantum
chaotic systems, however, the question is still open.

Here we analyze this question in the context of chaotic
“local quantum circuits,” i.e., chains of qudits evolved by
discrete applications of local unitary operators. These systems
are useful idealizations of generic quantum matter and, over
the last few years, have helped understanding information
spreading [6,25,28,31,41–44], spectral statistics [45,45–55],
and thermalization [26,32,51,56] in quantum many-body sys-
tems. Specifically, here we consider a particular class of local
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quantum circuits known as “dual unitary circuits” [57], which
are defined by the property that their bulk dynamics remain
unitary also when exchanging the roles of space and time. The
most remarkable feature of these systems is that, despite being
quantum chaotic, they allow for exact calculations of many
relevant many-body quantities [27,50,58–69]. Surprisingly,
even the very quantum chaotic nature of dual-unitary circuits
can be rigorously proven [45,49].

Dual-unitary circuits admit a class of “solvable” initial
states [25,26], whose dynamics can be characterized exactly
in the thermodynamic limit [25,26,65,70]. When evolving
from solvable states dual-unitary circuits display maximal
entanglement growth, namely they show the largest entan-
glement growth compatible with the local structure of the
time-evolution [25,26]. In fact, it has been recently shown
in Ref. [71] that such a maximal growth is only attainable
in dual-unitary circuits. For generic initial states, however,
dual-unitarity does not provide any obvious simplification and
exact calculations fall out of reach. In addition, many of the
special features of the dynamics of solvable states, including
the maximal growth of entanglement, are observed to disap-
pear in finite-time numerical experiments [25,26,65].

Here we show that, remarkably, some exact statements can
be made also for generic initial states. In particular, we con-
sider the entanglement evolution from “generic pair-product
states,” i.e., nonsolvable states written as products of arbitrary
two-site states, and show that the entanglement velocity is
maximal for almost all dual-unitary circuits. Therefore it is
almost always independent of the initial configuration.

To find these results, we introduce space-time-dependent
noise that preserves dual-unitarity and show that the en-
tanglement velocity averaged over the noise approaches the
maximal value for large times. We then prove that this im-
plies asymptotic maximality of the entanglement velocity for
each realization. Our statements are established rigorously for
circuits made of dual-unitary gates with high enough “entan-
gling power,” which measures how much a gate can entangle
two qubits. These include dual-unitary gates constructed with
complex Hadamard matrices [72] and four-leg perfect tensors
[73,74]. We also we present a constructive way—supported
by numerical checks—to extend them.

The rest of this paper is laid out as follows. In Sec. II,
we introduce the systems and initial states considered in this
work. In Sec. III, we introduce the entanglement velocity,
which is the quantity of interest, and review its calcula-
tion for dual-unitary circuits evolving from solvable states.
Section IV contains our main results: we begin by introducing
the space-time dependent noise and show how maximality
on average implies maximality for each single realization. In
Sec. IV A, we bound from below the averaged entanglement
entropy with a function depending on the gates solely through
their entangling power. Then, in Sec. IV B, we prove maxi-
mality on average for circuits made of gates with large enough
entangling power, while in Sec. IV C, we argue that the proof
can be extended to all dual-unitary circuits, and in Sec. IV D,
we present some supporting numerical evidence. Finally, in
Sec. IV E, we show that our result is robust if one considers
more general low-entangled initial states. Our conclusions and
final remarks are reported in Sec. V. The four Appendixes
contain a number of complementary technical points.

II. SETTING

A one-dimensional local quantum circuit is a chain of 2L
qudits—with d internal states—where the evolution occurs
in discrete time steps and describes local interactions. In
particular, considering circuits where the time evolution is
implemented in the so called “brickwork” geometry, we write
the unitary operator evolving the system from time t to time
t + 1 as

U (t ) = U2(t ) · U1(t ), (1)

where we introduced

U1(t ) =
⊗
x∈ZL

Ux,t , U2(t ) =
⊗

x∈ZL+ 1
2

Ux,t+1/2. (2)

The operator Ux,t acts nontrivially, as the d2 × d2 unitary
matrix U (x, t ), only on the qudits at positions x and x + 1/2.
The matrices {U (x, t )} are known as “local gates” and encode
the physical properties of the system. In particular, whenever

U (x, t ) = U, ∀x, t, (3)

the evolution operator is invariant under two-site shifts in
time and space. We will refer to this case as a space-time
translational invariant quantum circuit.

Note that in Eq. (2), we labeled sites by half integers and
assumed periodic boundary conditions so that the (half-odd)
integers x and x + L denote the same site. We also remark that
the form (1) of the time-evolution operator implies that there
is a strict maximal speed for the propagation of correlations.
This means that any pair of local operators ax and by evolved
up to time t satisfy

[ax(t ), by(t )] = 0, |�x� − �y�| > 2vmaxt, (4)

where �•� denotes the ceiling function (smallest integer larger
or equal to the argument). Moreover, our choice of units
implies a maximal speed vmax = 1.

We consider a particular class of local quantum circuits
called dual-unitary circuits [57]. Their defining property is
that they are generated by local gates that remain unitary under
a particular reshuffling which corresponds to switching space
and time. More precisely, defining a matrix Ũ with elements

Ũ( j,l );(i,k) = U(i, j);(k,l ), i, j, k, l = 0, . . . , d − 1, (5)

where we set (i, j) = i ∗ d + j, we require

U †U = UU † = I, Ũ †Ũ = ŨŨ † = I. (6)

Whilst the first condition is the standard unitarity requirement
for the local gate, the second one is imposing that the gate acts
as a unitary matrix also when the roles of space and time are
swapped. These constraints admit solution for all local Hilbert
space dimensions d � 2, however, a full parametrization is
only known for d = 2 [49,57,62,72,75,76]. It is also useful to
recall that, even though some of the solutions to (6) are inte-
grable [59,62,76,77], i.e., generate evolution operators with an
extensive number of local conserved charges, the integrable
instances can only form a lower dimensional sub-manifold
of the total manifold of dual-unitary circuits. This can be
intuitively understood by noting that the two equations (6) are
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left invariant by the transformation

U �−→ u+ ⊗ u− · U · v+ ⊗ v−, (7)

with u+, . . . , v− arbitrary elements of the group of d × d uni-
tary matrices, which we denote by U (d ). This transformation
is generally enough to break any nontrivial conservation law.
In other words, dual unitary circuits are generally noninte-
grable or quantum chaotic.

A. Entangling power

A feature of the local gate U which will prove to be im-
portant in the following is its entangling power. The latter is
a measure of the average entanglement produced by U when
acting on Haar-random product states, see, e.g., Ref. [78]. In
particular, as shown in Refs. [78–80], for dual-unitary circuits
it can be expressed as

p = d4 − tr[(Ũ t2 (Ũ t2 )†)2]

d2(d2 − 1)
, (8)

where (·)t2 denotes the partial transpose with respect to the
second qudit. From (8), one can immediately verify that p is
invariant under (7).

As we recall in Appendix A, the entangling power (8)
fulfils

0 � p � 1. (9)

The lower bound is attained when Ũ t2 (Ũ t2 )†/d2 is a rank-1
projector. This happens when, up to the transformation (7), U
coincides with the SWAP gate. Namely, it merely swaps the
states of the two qudits it acts on, generating no entanglement.
Instead, the upper bound is attained for

Ũ t2 (Ũ t2 )† = (Ũ t2 )†Ũ t2 = I. (10)

To understand this condition it is useful to think of U a state
of four qudits with amplitudes {U(a1,a2 );(a3,a4 )}. In this lan-
guage, Eq. (10) means that the subset formed by the first and
fourth qudits is maximally entangled with its complement.
Recalling that the gate U also fulfils (6), we see that also the
subsets formed by first and second and first and third qubits
are maximally entangled with their complements. In fact, in
the state defined by U any bipartition of the four qudits has
maximal entanglement with its complement. Gates generating
states with this property are called perfect tensors [81] or
2-unitary gates [82]. Perfect tensors with four entries exist for
every local Hilbert space dimension strictly larger than d = 2
[73,74] and, therefore, for d > 2, the upper bound p = 1 can
be attained. Instead, for d = 2 the maximal value that p can
attain is [57]

p = d

d + 1
, (11)

and, up to (7), it is attained by local gates of the form

U(i, j),(k,l ) = δilδ jk exp

(
i
2π i j

d

)
. (12)

The family (12) of dual-unitary gates has been constructed
in Ref. [72] using complex Hadamard matrices. Here, for
brevity, we call it the “Hadamard family.”

B. Quantum quench

To study the out-of-equilibrium dynamics of the circuits
we consider a standard quantum quench protocol: we prepare
them in a nonequilibrium state |�0〉 and let them evolve
according to their time-evolution operator. In particular, we
consider generic “pair-product” states of the form

|�0〉 = 1

dL/2

L⊗
x=1

⎛⎝ d−1∑
i, j=0

mi; j |i, j〉
⎞⎠, (13)

where {|i〉}d
i=0 is a basis of the local Hilbert space and matrix

m, with elements mi; j , fulfils

tr(mm†) = d, (14)

which ensures that |�0〉 is normalized to one. Apart from this
condition, the matrix m is completely generic.

Although the family (13) does not represent the most
general low-entangled state, it contains many physically rele-
vant points—in particular it contains all translational invariant
product states—and it is complex enough to show generic
behavior. In most of the paper, we focus on this family to
reduce to a minimum the technical complications, while in
Sec. IV E, we show that our techniques can be applied to more
general families of matrix product states leading to qualita-
tively similar results.

The evolution quantum circuits can be conveniently repre-
sented graphically. One depicts the local gates as a four-leg
tensors

U(i,j);(k,l) =

i j

k l

, (15)

and the initial state matrix m as a two-leg one

mi; j =
ji
. (16)

When it does not lead to confusion the indices can be dropped
to represent the actual tensor instead of its elements. For
instance, (6) are conveniently represented as

(17)

(18)

where we introduced the diagram

U† = . (19)

174311-3



ALESSANDRO FOLIGNO AND BRUNO BERTINI PHYSICAL REVIEW B 107, 174311 (2023)

Instead, the state at time t is depicted as

U
t Ψ0 = , (20)

where we took L = 4 and t = 2, we represented the matrix
multiplication from bottom to top and we conveniently de-
picted the space-time translational invariant case with periodic
boundary conditions. The representation in Eq. (20) makes it
clear why this particular way of applying local gates is called
brickwork geometry.

III. ENTANGLEMENT GROWTH

In this paper, we are interested in the evolution of
the entanglement between a contiguous block of 2LA qu-
dits, A = {x1, x1 + 1/2, . . . x2}, and its complement, Ā =
{1/2, . . . , L} \ A, in the state (20). In particular, we will focus
on the regime where the entanglement typically grows linearly

in time [5,6,10,18–33], i.e.,

2vmaxt � LA � L − LA. (21)

Since we are considering systems with local interactions, the
entanglement between A and Ā is produced starting from the
boundaries between the two sub-systems. In the regime of
interest, the two boundaries between A and Ā are causally
disconnected and give identical contributions.

To quantify the entanglement of the bipartition we compute
the reduced density matrix

ρA(t ) = trĀ[U t |�0〉〈�0|U−t ] (22)

and evaluate its Rényi entropies

S(α)
A (t ) = 1

1 − α
ln tr[ρA(t )α], α ∈ R. (23)

Note that S(α)
A (t ) is nonincreasing in α

S(α)
A (t ) � S(β )

A (t ), α � β, (24)

and its liming value for α → 1 corresponds to the celebrated
entanglement entropy

lim
α→1

S(α)
A (t ) = −tr[ρA(t ) ln ρA(t )] ≡ SA(t ), (25)

which is a bona fide measure of bipartite entanglement [1].
To analyze Rényi entropies in the regime (21) we note that

the reduced density matrix can be represented as

ρA( t) =
1

d2t+LA
, (26)

where we used the two-site product form of the initial state
(13), the normalization (14), the unitarity of the gates U , and
we introduced the diagram

m† = . (27)

Using the representation (26) and employing the unitarity
relations (17) one can readily show that if

2t < |�x2� − �x1�|, (28)

the traces of powers of the reduced density matrix ρA(t ) fac-
torize as follows:

Tr[ρA(t )α] = Tr
[(

C†
2tx2

C2tx2

)α]
Tr

[(
C†

2tx1
C2tx1

)α]
. (29)

Here txi = t − {xi} ({•} ≡ �•� − • is the fractional part) and
Cx is a dx × dx matrix corresponding to the following diagram

[Cx]a;b =
1

d
x
2

bx

b1

ax

a1

,

...... (30)

where q j denotes the jth digit of q in base d . Thanks to the
unitarity of the local gates, we have the condition

Tr[Cx C†
x ] = 1, ∀x. (31)
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To simplify the notation, from now on, we assume x1, x2 to
be integers. Plugging (29) into (23), we can express the Rényi
entropies as

S(α)
A (t ) = 2

1 − α
ln Tr[(C†

2tC2t )
α], (32)

where the factor of 2 occurs because the two independent
boundaries between A and Ā give the same contribution.

Since Cx C†
x is Hermitian, positive definite, and fulfils (31),

it is easy to find a bound for the powers of its trace. To see this,
we diagonalize the matrix and express the above conditions in
terms of its eigenvalues λi as follows:

λi � 0,

N∑
i=1

λi = 1, (33)

where N = dx is the dimension of the vector space on which
the matrix acts. The constraints (33) on generic real numbers
lead to the following bound:

1

N α−1
� Tr[(C†

x Cx )α] =
∑

i

λα
i � 1. ∀α � 1. (34)

Using this in (32), we find

0 � S(α)
A (t ) � 4t ln d, ∀α � 1. (35)

The lower bound is reached when C†
x Cx is a projector on

a one-dimensional space, while the upper bound is attained
when it is maximally mixed, i.e.,

Cx C†
x = 1x

dx
, (36)

where 1x is the identity matrix on x qudits.
We are now in a position to introduce the quantity of

interest in this paper, i.e., the entanglement velocity, which
quantifies the asymptotic growth of entanglement in the out-
of-equilibrium regime (21). In our setting, this quantity is
defined as the ratio between half of the asymptotic slope
of the entanglement entropy and the density of entropy of
the stationary state—the additional factor of two is included
to isolate the entanglement growth from a single boundary
between A and Ā. More formally, for a circuit without local
conservation laws, we have

vE ≡ lim sup
t→∞

lim
LA→∞

lim
L→∞

SA(t )

4t ln d
. (37)

Note that in (37), we used that the circuit has no local conser-
vation laws to find the density of its thermodynamic entropy
(2 ln d) and we introduced the limit superior rather than the
regular limit to make sure that vE always exists. Analogously,
we can introduce entanglement velocities for all Rényi en-
tropies

vE,α ≡ lim sup
t→∞

lim
LA→∞

lim
L→∞

S(α)
A (t )

4t ln d
, vE,1 = vE. (38)

Using (24) and (35) we find the following general bound

0 � vE,β � vE,α � 1, β � α. (39)

Note that, up to now, we did not use the dual-unitarity of the
gates at any point in the reasoning and, in fact, our discussion
applies to any chaotic local quantum circuit. This is because

generic matrices m “break” the special dual-unitarity property
of the local gates, preventing any direct simplification. On
the other hand, as we shall now see, for a special class of
compatible matrices, dual-unitarity immediately leads to an
explicit expression for S(α)

A (t ).
Let us consider a subclass of pair-product states (13) char-

acterized by unitary matrices m, i.e., matrices fulfilling the
diagrammatic relations

(40)

Repeatedly applying (40) and (18), we can fully contract the
tensor network

C †x Cx =
1

dx
, (41)

and find

C†
x Cx = 1x

dx
. (42)

Pair-product initial states with this property are part of a larger
family of exactly treatable states, generically in MPS form,
called solvable states [26].

We see that, for solvable pair product states, C†
x Cx takes the

maximally mixed form (36), therefore the entropies saturate
the bound (35), i.e.,

S(α)
A (t ) = 4t ln d, ∀α, (43)

or, equivalently, all entropies have the maximal increment over
a time step

	S(α)
A (t ) ≡ S(α)

A (t ) − S(α)
A (t − 1)

4 ln d
= 1, ∀α. (44)

This condition characterizes all solvable states for large
enough subsystems [26]. A particular consequence of this is
also

vE = 1. (45)

The goal of this paper is to show that, even if hidden, an effect
of dual-unitarity is also present for generic initial states. As
a consequence, even if (44) does not hold at finite times, the
entanglement velocity remains maximal.

IV. ENTANGLEMENT VELOCITY FROM GENERIC
PAIR-PRODUCT STATES

Our strategy to treat generic initial states is to introduce
space-time-dependent noise and to show that our statements
hold for arbitrary distributions of the noise. More specifically,
we consider a space-time translational invariant, dual-unitary
circuit characterized by a local gate U , and insert uncorre-
lated Haar-distributed U (d ) noise at each space-time point
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through the transformation (7). Note that the family of ran-
dom dual-unitary gates produced in this way is the direct
generalization for generic d of the family introduced in in the
case d = 2 [83].

In this random setting, it is natural to consider the averaged
Rényi entropies

S̄(α)
A (t ) = 1

1 − α
E[ln tr(ρA(t )α )], (46)

where E[·] is the average over the set of unitaries

u ≡ {u(τ, x)}τ=1/2,1,...,t ;x=1/2,1,...,L ∈ U 4Lt (d ), (47)

and U x(d ) denotes the direct product of x copies of U (d ).
Analogously, we define the averaged entanglement veloci-

ties as

v̄E,α ≡ lim sup
t→∞

lim
LA→∞

lim
L→∞

S̄(α)
A (t )

4t ln d
, v̄E = v̄E,1. (48)

With these definitions at hand, we are now in a position to
state our main objective. Our goal is to prove the following
property.

Property 1. For all states of the form (13)

v̄E = 1. (49)

Before approaching the proof, let us analyze its implica-
tions. Recalling the bound in Eq. (39) we see that this property
implies that the average entanglement velocity is maximal for
any initial state (13). Since we find our bound saturated on
average, we intuitively expect the entanglement velocity to
be maximal for almost every choice of the unitaries u, i.e.,
in the nonrandom case. To make this statement more precise,
consider the function f whose limit superior for t → ∞ is the
entanglement velocity

f (t, {u±(t, x)}, {v±(t, x)}) ≡ lim
LA→∞

lim
L→∞

SA(t )

4t ln(d )
. (50)

Note that, for any choice of the gates, we have

f (t, {u±(t, x)}, {v±(t, x)}) ∈ [0, 1]. (51)

Here we make this function depend on an semi-infinite square
grid of gates, labeled by (x, t ), with t = 1, 2, . . . ∞ and x =
−∞, . . . ∞ (at finite times t it actually depends only on a
finite subset of such gates). This function is measurable for
any t because it is continuous [84]: its associated measure
� is the product of the Haar measures, we call them �loc,
of each unitary u(t, x). Importantly, the measure � is fixed
and does not depend on t because it is a countable product of
Haar measures on the semi-infite square grid described above.
Since f is positive and measurable for any t , we can apply
Fatou’s lemma [84] and exchange the order between limsup
and integral∫

d� vE =
∫

d� lim sup
t→∞

f � lim sup
t→∞

∫
d� f = v̄E = 1,

(52)

where, in the last equality, we used property 1. Using the
bound (51), we then find∫

d� vE = 1. (53)

Since this saturates the bound on the velocity, it is implied
that, for almost all choices of gates, the entanglement velocity
is 1, i.e.,

v̄E = 1 ⇒ vE ≈ 1. (54)

Here the symbol ≈ indicates that the equality holds for almost
all choices of gates.

Importantly, the statement (53) has strong implications also
for the nonrandom case. Indeed, for any given nonrandom
distribution of the one-site gates u—for instance, one that
is uniform in space and time—one can consider adding an
arbitrary small distribution of “noise.” Namely, one modifies
the one-site gates as

u(ε)(τ, x) := u(τ, x) · w(ε)(τ, x), (55)

where, for each (τ, x), wε (τ, x) is a unitary matrix extracted
at random from an ε−ball centered on the identity matrix.
We emphasize that this ball is taken to have unit measure.
For instance, one can take wε (τ, x) distributed according to
a Gaussian measure

d�loc �→ d�
(ε)
loc =

d2−1∏
a=1

1√
2πε

exp

(
−1

2

θ2
a

ε2

)
dθ, (56)

or a box measure

d�loc �→ d�
(ε)
loc =

d2−1∏
a=1

1

2ε
�(ε − |θa|)dθ, (57)

where θ = {θa}d2−1
a=1 are the Euler angles specifying wε (τ, x).

The choice (55) implies that, by choosing small enough
ε, one can make u(ε)(τ, x) arbitrarily close to u(τ, x). Then,
Eq. (53) guarantees that for every ε > 0 the entanglement
velocity averaged over u(ε)(τ, x) is maximal, i.e., it is maximal
when we get arbitrarily close to the nonrandom case.

In the upcoming subsections we prove property 1. In
Sec. IV A, we show that S̄A(t ) can be bounded from below
in terms of a function depending on the gates only through the
entangling power of U . In Sec IV B, we show that for

p � p̄(d ) ≡ d2 − 1

d2

(
1 − 1√

2d + 2

)
, (58)

this bound leads to a rigorous proof of property 1. In particu-
lar, recalling Sec. II A and noting that

p̄(d ) <
d

d + 1
< 1, (59)

we prove that property 1 holds for perfect tensors and for the
Hadamard family (cf. Eq. (12)) while in Sec. IV C, we argue
that property 1 can be extended to all p except for a neighbor-
hood of p = 0. Instead, in Sec. IV D, we present numerical
evidence supporting the claim that vE is one for concrete
individual realizations of the noise. Finally, in Sec. IV E, we
show that similar statements can be made for a more general
class of initial states in MPS form.

A. Bound on S̄A(t )

We aim to bound S̄A(t ) in the regime (21) by a function
depending on the local gates only through p. We begin by
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using (24) and (35) which give

S̄(2)
A (t ) � S̄A(t ) � 4t ln d. (60)

Noting now that the function

f (x) = −2 ln x (61)

is convex, we have

−2 lnP2t � S̄(2)
A (t ), (62)

where we introduced the averaged purity for the matrix C†
x Cx

Px ≡ E[Tr[(C†
x Cx )2]]. (63)

Putting all together, we have

−2 lnP2t � S̄A(t ) � 4t ln d. (64)

To conclude, we show that Px depends on the local gates
only through their entangling power. To this end, we note that,
since u are independently distributed at each space-time point,
the average E[·] factorizes on each separate gate. This allows
us to adopt a convenient tensor-network representation for Px,
which is obtained by folding the four diagrams for Cx,C†

x ,Cx,
and C†

x on top of each other and averaging (see Ref. [83]
for a more detailed explanation of this “folded” diagrammatic
representation)

(65)

where we introduced the vectors

1

d i, j,k,l
δij δkl ijkl ,

1

d i, j,k,l
δil δjk ijkl ,

(66)

and the averaged gate

W = = (P P ) (U r U ) r 2(P P ) . (67)

Here ⊗r denotes the tensor product over replicas rather than
spatial sites, and the operator

P = E[(v ⊗r v∗)⊗r 2] v ∈ U (d ), (68)

is a projector on a two-dimensional space spanned by the vec-
tors (66) (see, e.g., Appendix G of Ref. [41] for an elementary
proof). Note that these states are linearly independent but not
orthogonal, indeed

(69)

Since P is a projector, we used

P2 = P, (70)

to apply it also on the initial state matrix. Namely, we defined
the averaged initial state matrix as

n = = P (m r m ) r 2P. (71)

The above discussion implies that all wires in (65) carry
a two-dimensional vector space spanned by | 〉 and |�〉. Al-
most all matrix elements of W and n in this basis are fixed
solely by dual unitarity (6) and the normalization condition
(14) and are hence independent of the specific U and m. The
only exceptions are

= 1 − p +
p

d2
,

c

d
, (72)

where the second equation defines the parameter c, which
characterizes the averaged initial state matrix. In Appendix B,
we show that c takes values in [1, d] and it is equal to one only
when the initial state is solvable.

Considering, for instance, the orthonormal bases

(73)

where we introduced the state

=
d −

d2 − 1
, (74)

we explicitly find

W =

⎡⎢⎢⎢⎢⎣
1 0 0 0

0 0 1 − p p√
d2−1

0 1 − p 0 p√
d2−1

0 p√
d2−1

p√
d2−1

1 − 2p
d2−1

⎤⎥⎥⎥⎥⎦ (75)

and

n =
⎡⎣ 1 c−1√

d2−1
c−1√
d2−1

1 − 2(c−1)
d2−1

⎤⎦. (76)

Since W bares dependence on the gate only through p, the
same holds for Px. We also stress that, since the averaged gate
is symmetric and parity-invariant, we did not include a mark
in its graphical representation.

B. Rigorous proof of property 1 for p � p̄(d )

In this section, we make use of the bound (64) to prove
property 1 for p > p̄(d ) (cf. (58)). To this end, we introduce
the following lemma.

Lemma 1. For p � p̄(d ) and any state (13), there exist
A, B � 0 such that

dxPx � A + Bx. (77)

The choice B = 0 can only be made for initial solvable states
satisfying (40).

Equations (77) and (64) imply

1 − ln(A + 2Bt )

2t ln d
� S̄A(t )

4t ln d
� 1. (78)
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Taking the infinite-time limit and using the bound (39), we
obtain

vE = 1, (79)

which proves property 1. Note that using lemma 1 one can
also prove

vE,α = 1, α � 2, (80)

by combining (62), (24), and (35).
To prove lemma 1, we derive a simple recursive relation for

Px. We begin by noting that the dual-unitarity conditions (6)
imply

(81)

and

(82)

Moreover, we have

= +
c − 1

d2 − 1
, (83)

= +
c − 1

d2 − 1
, (84)

where we introduced

=
d −

d2 − 1
. (85)

We now have all the fundamental ingredients for deriving
the desired recursive relations. Using (84) in the bottom right
corner of (65), telescoping (82), and using (69), we find

Px = 1

d
Px−1 + c − 1√

d2 − 1
Qx, (86)

where we introduced

(87)

and Q1 = 〈 |�〉 = √
d2 − 1/d . Applying now (83) to the

bottom left corner of (87) and then telescoping (81), we have

Qx = 1

d
Qx−1 + c − 1√

d2 − 1
Rx, (88)

where

(89)

To close the recursive system formed by (86) and (88), we
now seek a bound for Rx. In particular, a bound of the form

|Rx| � C

Dx
, (90)

for some C > 0 and D > d , leads to

Qx � α

dx
+ β

Dx
, (91)

Px � γ

dx
+ (c − 1)α√

d2 − 1

x

dx
+ δ

Dx
, α, β, γ , δ ∈ R, (92)

which immediately imply (77).
To find the bound in Eq. (90), we view Rx as the matrix

element of

[M1]a;b =
bx−1

......

b1

bxax

ax−1

a1

, (93)

between the vectors

[v1]b =
bx

...

b1

, (94)

and

[w1]a =

ax

ax−1

a1

.

...
(95)

Employing the Cauchy-Schwartz inequality, we then obtain

|Rx| = |〈v1|M1|w1〉| � ‖M1‖∞
√

〈v1|v1〉
√

〈w1|w1〉. (96)

Let us now consider separately the three factors on the right-
hand side. Since the gates are the average of dual-unitary
gates, the operator norm of the dual averaged gate W̃ , with
elements

[W̃ ]( ab) ;( cd)

a c

b d

, (97)

is one. Therefore we have nontrivial contributions to the norm
of M1 only from the initial state row. This gives

‖M1‖∞ � ‖n‖x−2
∞ =

(
d + c

d + 1

)x−2

, (98)

where the identity

‖n‖∞ = d + c

d + 1
, (99)

is proven in Appendix B.
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Equation (98) is the key simplification provided by dual-
unitarity in the current setting. Even though the bottom
boundary of the tensor network (93) is “generic,” the dual-
unitarity of the bulk tensors implies that its operator norm
is bounded by a number that scales with the number of
tensors on its edge. This should be contrasted with the non-
dual-unitary case, where the dual gate W̃ has operator norm
greater than one [85], and, therefore, the operator norm of
M1 scales with the total number of tensors composing it. In
summary, because of dual-unitarity, Eq. (98) shows an “area
scaling” rather than a “volume scaling.” As we now see, for
large enough entangling power p such an area scaling can be
counter-balanced by the other two terms in (96), leading to the
bound (90).

To treat the second factor in (96), we introduce the matrix

T2 = , (100)

so that we can write

v1 v1 = x − 1 = T x−1
2 ,

(101)

where we used the fact that the averaged gate is real. As shown
in Appendix D, the vector |��〉 is an eigenvector of T2 with
eigenvalue

λ(p) = (1 − p)2 + p2

d2 − 1
. (102)

Therefore we have

〈v1|v1〉 = λ(p)x−1〈 |��〉 = λ(p)x−1 d2 − 1

d2
. (103)

Proceeding analogously (cf. Appendix D), we find

〈w1|w1〉 = λ(p)x−2. (104)

Finally, putting all together, we obtain the following bound:

|Rx| �
(

d + 1

d + c

)2
√

d2 − 1

d2λ(p)3

(
d + c

d + 1

)x

λ(p)x (105)

�
(

d + 1

d + c

)2
√

d2 − 1

d2λ(p)3

(
2d

d + 1

)x

λ(p)x, (106)

where we used that c � d . Choosing p such that

λ(p)
2d

d + 1
<

1

d
, (107)

we then find the bound (90). Solving for p we find that (107)
is indeed satisfied for all

p � p̄(d ). (108)

This concludes the proof.

C. Extension to p < p̄(d )

An obvious strategy to generalize our proof is to extend
lemma 1 to p � p̄(d ). To this end, a simple observation is
that, for small enough values of c, one can use the tighter
bound (105) for |Rx|. The latter grants the validity of lemma
1 whenever (

d + c

d + 1

)
λ(p) <

1

d
. (109)

Recalling that c � 1 (cf. Appendix B), we find that this bound
can be satisfied for some c only if

p > p̃(d ) ≡ d2 − 1

d2

(
1 − 1√

d + 1

)
. (110)

In fact, the bound (109) can be easily refined. For instance,
instead of Eq. (96), we can consider

|Rx| �
√

〈w2|w2〉
√

〈v2|v2〉||M2||, (111)

with |w2〉, |v2〉, defined with an extra row of gates, i.e.,

v2 = . (112)

Comparing this with (94), we see that the norm 〈v2|v2〉
involves the matrix T4. One can directly verify that the
eigenvalue of T4 contributing to this norm corresponds to an
eigenvector with support 4 and it is strictly smaller than λ(p).
This results in an immediate improvement of the bound. In
fact, this procedure can be repeated considering increasingly
“thicker” states |wx〉, |vx〉 for any x � 2 and leads to a system-
atic improvement.

The fact that the bound on Rx can be improved is also sug-
gested by numerical evidence. For instance, in Fig. 1, we show
the behavior of Rxdx as a function of time for d = 5. We see
that the exponential decay (90)—which implies the validity
of Lemma 1—is clearly shown by our numerical evaluations
for p > 0.3, which should be compared with p̄(5) ≈ 0.68
and p̃(5) ≈ 0.57. From the trend in the numerical data, it is
reasonable to expect that, upon accessing larger values of x,
the same decay would be observed for all p �= 0. A different
indication is shown in Fig. 2, which suggests that

	 lnPx ≡ lnPx−1 − lnPx, (113)

approaches 1 for all values of p except for a neighborhood of
p = 0. Consistently with lemma 1 the leading corrections at
large x appear to be ≈x−1.
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FIG. 1. Remainder dxRx [cf. (89)] for c = 2.5, d = 5, and sev-
eral values of p. The exponential decay (90) with D > d covers much
more values than the range p � 0.62, for which our rigorous bound
(109) applies. The dotted line on the bottom indicates the limit of the
numerical accuracy.

D. Numerical results for single realizations

In this section, we provide numerical evidence support-
ing the claim that vE is maximal for essentially any single
realization of the gates (47). For our numerical experi-
ments we consider dual-unitary quantum circuits with a
two-dimensional local Hilbert space. In this case, the most
general local gate can be written as

U(i j);(kl ) =
2∑

i′, j′,k′,l ′=1

exp(iJδi′ j′ )u+ i;i′u− j; j′v+ k;k′v− l;l ′ , (114)

where {v±, u±} are fixed U (2) matrices and J ∈ [0, π/2]. The
angle J is in one-to-one correspondence with the entangling

FIG. 2. Increment of the indicator 	 ln(Px ) in Eq. (113) per step
for an initial state corresponding to c = 2.5 and d = 5. The quantity
is expected to saturate at the averaged velocity value as x → ∞.
Note that our rigorous analytic bound (109) applies only if p � 0.62.
Assuming dxPx ∼ A + Bx even for p > 0.62, we expect, for large x,
	 lnPx ∼ 1 − 1/(x ln d ).

FIG. 3. 	S(2)
A (t ) as a function of t−1 for a system prepared in

a generic pair product state specified by the matrices (116) with
θ = 0.35 and evolved with a homogeneous dual-unitary quantum
circuit with local gate (114), with fixed {v±, u±} (their explicit form
is reported in Appendix E) and different values of a [related to J
through (115)]. This quantity saturates at the Rényi-2 entanglement
velocity vE,2 as t → ∞. Assuming that for large times S(2)

A (t ) ∼
−2 lnP2t , we expect the various plots to reach asymptotically the
line 1 − 1/(2t ln(d )) (black).

power [57]. Specifically, using the definition (8), we have

p = 2
3 cos(J )2. (115)

In the following we use p, rather than J , to keep consistency
with the previous sections. The initial state matrix is instead
taken of the form

mi; j = (1 − δi j ) sin(θ ) + δi j cos θ. (116)

Focussing on a space-time translationally invariant circuit,
i.e., a circuit where the local gate is the same at each space-
time point, we compute the Rényi entropy S(2)

A (t ) for t � LA/2
by numerically constructing the matrix Cx [cf. (30)] and using
(32). This direct approach allows us to reach values of x up
to 14. Note that, due to the fast growth of entanglement in
dual-unitary circuits, this is more efficient than tensor network
methods based on the truncation of the time-evolving state,
e.g., TEBD.

A representative example of our results is presented in
Fig. 3, where we report 	S(2)

A (t ) [cf. Eq. (44)] as a function
of the inverse time. Our results suggest that at large times
	S(2)

A (t ) approaches 4 ln d with power law corrections that,
as observed in the averaged case, are larger for smaller values
of p. This implies

vE,2 = vE = 1, (117)

in accordance with our expectations.

E. More general initial states

In most of this paper, we considered for simplicity the
family of pair-product states (13). However, our approach
can be applied more generally. For instance, as a nontrivial
example let us consider a family of MPS that are generic fixed
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points of the RG flow [86], i.e., they can be written as

|�0〉 = 1

d
L
2

∑
a j∈Zd

tr[Za1,a2 Za3,a4 . . . Za2N−1,a2L ]|a〉, (118)

where {Za,b} are χ × χ matrices such that

X ≡ 1

d

∑
a,b

Za,b ⊗ (Za,b)∗ = |L〉〈R|, (119)

with

|L〉 =
χ∑

i=1

|i, i〉, |R〉 =
χ∑

i=1

λi|i, i〉,
χ∑

i=1

λi = 1, (120)

and λi > 0. Generalizing the discussion of Secs. IV A and
IV B, in Appendix C, we show that for

λ(p)χ

(
d + 1

d − 1
+

√
d + 1

d − 1

)
<

1

d
, (121)

Property 1 holds for all the MPS (118).

V. DISCUSSION

We studied the asymptotic growth of entanglement in
dual-unitary circuits prepared in generic low-entangled states.
These states are generally nonsolvable: they break the unitar-
ity of the evolution in space and their entanglement dynamics
cannot be accessed using the standard dual-unitarity-based
approaches [25,26]. Moreover, as opposed to solvable states,
they display a submaximal entanglement increment at short
times.

By introducing dual-unitarity-preserving random noise we
showed that, surprisingly, the entanglement dynamics of
generic states remain exactly tractable for large times: one can
still make exact statements for individual realizations of the
noise, possibly excluding a subset with zero measure. In this
way, we proved that for a class of dual-unitary circuits with
large enough entangling power the growth-rate of entangle-
ment approaches the maximal value as time increases—i.e.,
their entanglement velocity is always maximal irrespective
of the initial conditions. We showed that this maximally en-
tangling class exists for any number d of local degrees of
freedom as it includes the Hadamard family of dual-unitary
gates introduced in Ref. [72]. Moreover, for d � 3 it also
contains four-leg perfect tensors [73,74,87–89]. In fact, we
presented analytical and numerical arguments suggesting that
all dual-unitary circuits with nonzero entangling power belong
to this class.

Our results established an even tighter connection between
dual-unitarity and maximal entanglement growth. While
Ref. [71] recently showed that if there exists an initial state
for which the asymptotic entanglement rate is maximal, then
the circuit is dual unitary, here we showed that in generic
dual-unitary circuits every initial state eventually approaches
maximal entanglement growth. In this respect, our results
show that dual-unitary circuits are the hardest quantum cir-
cuits to simulate with classical computers [34–37] making
of them the optimal test bed for investigations on quantum
supremacy in the nonequilibrium dynamics [90].

A natural question is whether our “generality”
assumption—the fact that we excluded a zero-measure set of
gates—is necessary or not. Namely, do we need to exclude
some special dual-unitary gates (e.g., the integrable ones)
or any dual-unitary circuit generates maximal entanglement
growth at large times? This would establish whether quantum
chaos is an essential ingredient to produce the observed
initial-condition independence of the entanglement velocities
or dual unitarity alone suffices.

Finally, we stress that the methods developed here provide
a systematic way to investigate quenches from generic initial
states in dual-unitary circuits. Interesting questions that one
can tackle with them include (deep) thermalization timescales
in dual-unitary circuits [25,26,65,70], and multiunital quan-
tum channels [91], or the “temporal entanglement” scaling in
chaotic quantum circuits [92] (see also Refs. [77,93–95]). The
latter question is currently under investigation [96].
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APPENDIX A: BOUNDS ON THE ENTANGLING POWER
OF DUAL-UNITARY GATES

The values that the entangling power p can take are
bounded by the unitarity of the matrix. To see this, consider
tr[(Ũ t2 (Ũ t2 )†)2] in the definition (8): the unitarity of the matrix
fixes the value of

tr[Ũ t2 (Ũ t2 )†] = tr[ŨŨ †] = d2. (A1)

Applying (34) to the matrix Ũ t2 (Ũ t2 )†

d2 , we find

tr[(Ũ t2 (Ũ t2 )†)2] ∈ [d2, d4] ⇒ p ∈ [0, 1]. (A2)

In particular, the case

tr[(Ũ t2 (Ũ t2 )†)2] = d2 (A3)

is attained if and only if Ũ t2 is unitary, having all eigenvalues
with magnitude 1. This request, together with the dual uni-
tarity conditions (6), means that U is unitary for any choice
of couples of in/out indexes. Tensors with this property are
known as 4-leg perfect tensors and they exist for all d > 2
[73,74]. There is, however, a nonexhaustive class of dual
unitary gates which is well defined in any dimension [62]

U(i j),(kl ) = δilδ jk exp(iJi j ), (A4)

with Ji j being any set of d2 real numbers. In terms of Ji j , we
can write

tr[(Ũ t2 (Ũ t2 )†)2] =
∑

i, j,k,l

exp[i(Ji j + Jkl − Jil − Jk j )]. (A5)

As before, we can express the right-hand side as a matrix trace∑
i, j,k,l

exp[i(Ji j + Jkl − Jil − Jk j )] = d4 tr[(ξξ †)2], (A6)
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with

ξi j ≡ exp(iJi j )

d
⇒ Tr[ξξ †] = 1. (A7)

Using again (34), we find

tr[(Ũ t2 (Ũ t2 )†)2] ∈ [d3, d4] ⇒ p ∈
[

0,
d

d + 1

]
. (A8)

The choice Ji j = 0, which corresponds to a swap gate, gives
p = 0. Instead, the choice

Ji j = 2π i j

d
, (A9)

corresponding to the Hadamard familyconsidered in Sec. IV,
gives

p = d

d + 1
. (A10)

We also note that, since the value of p depends continuously
on Ji j , there must exist gates corresponding to all values in the
range

p ∈
[

0,
d

d + 1

]
. (A11)

Finally, we remark that this range is exhaustive in d = 2, since
any dual unitary gate can be expressed as in Eq. (114).

APPENDIX B: AVERAGED INITIAL STATE MATRIX

Considering the averaged form of the initial state matrix in
the basis {| 〉, | 〉}, we have

n =
⎛⎝ 1 c−1√

d2−1
c−1√
d2−1

1 − 2 c−1
d2−1

⎞⎠, (B1)

with

c = 1

d
tr((m†m)2). (B2)

We can bound the values that the constant c can take noting
that the matrix m is subject to the constraint

tr(m†m) = d. (B3)

Therefore we can use (34) on m†m /d with N = d , α = 2,
finding

c ∈ [1, d]. (B4)

The matrix (B1) is Hermitian and, therefore, its operator norm
coincides with the norm of its maximal eigenvalue. Comput-
ing it explicitly, we find

λmax = 1 − c − 1

d2 − 1
+

√(
c − 1√
d2 − 1

)2

+
(

c − 1

d2 − 1

)2

= 1 − c − 1

d2 − 1
(1 −

√
d2 − 1 + 1) = d + c

d + 1
. (B5)

In summary, we have

‖n‖∞ = c + d

d + 1
∈

[
1,

2d

d + 1

]
. (B6)

APPENDIX C: INITIAL STATES IN MPS FORM

Consider an MPS which is a generic fixed point of the RG
flow, i.e., it obeys Eqs (119), (120). This means we can write

X †X = 〈L|L〉|R〉〈R| (C1)

implying that

||X ||∞ =
√

〈R|R〉
√

〈L|L〉 � √
χ. (C2)

We can repeat the steps of Sec. IV B finding recurrence
relations for PMPS

x ,QMPS
x —the analogues of (65) and (87)—

and bounding RMPS
x —the analog of (89)—by means of the

Cauchy-Schwartz inequality. In order to do so, we find the
operator norm of the matrix representing the folded MPS after
averaging over the local unitaries.

We begin by noting that the average restricts the upper in-
dices (a1, a2, a3, a4) and (b1, b2, b3, b4) of the doubly folded
tensor

Za1,b1 ⊗ (Za2,b2 )∗ ⊗ Za3,b3 ⊗ (Za4,b4 )∗, (C3)

to the subspace spanned by

| 〉 = δa1,a2δa3,a4

d
(C4)

and

|�〉 = δa1,a4δa3,a2

d
. (C5)

We call Z̃ the resulting tensor.
Grouping the indices (a, i) and (b, j), the tensor Z̃a,b

i, j can be
seen as a matrix of dimension 2χ × 2χ , acting on the vector
space V◦,• ⊗ Vχ , where V◦• is the space spanned by (C4) and
(C5), and Vχ = Cχ is the auxiliary space of the MPS. Our
task is to find the operator norm of this matrix. To this end,
we write it as

Z = Z Z
Z Z

, (C6)

and bound its norm as

Z ∞ ≤ max Z ∞, Z ∞ + Z ∞. (C7)

Using Eqs. (119) and (C2), we find

Z ∞ = Z ∞ = X ∞)
2
≤ χ. (C8)

Consider now the nth norm of Z̃ � (where n is taken to be
even): we can write it as

Z n = Tr (An A †n A n A
†
n )

1
n , (C9)

where we defined the matrix

(An)a,b ≡ d− n
2 Tr

⎡⎣ n/2∏
i=1

Za2i−1,b2i−1
(
Za2i,b2i

)†

⎤⎦. (C10)

Here ai = 1, . . . d and the trace is taken over the auxiliary
space. Moreover, we have that

Tr(AnA†
n) = Tr[(XX †)

n
2 ]. (C11)
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The matrix AnA†
n is Hermitian and acts on a dn-dimensional

vector space, this means that

Tr(AnA†
nAnA†

n)

Tr[(XX †)
n
2 ]2

∈ [d−n, 1], (C12)

Taking the limit n → ∞, and using Eq. (C2), we find

(C13)

Using Eqs. (74), (C13), and the triangular inequality, the
norms of the submatrices are bounded as

Z ∞ ≤ χ
d + 1
d − 1

Z ∞ ≤ χ
d + 1
d − 1

, (C14)

finally, Eq. (C7) implies

||Z̃||∞ � χ

(
d + 1

d − 1
+

√
d + 1

d − 1

)
. (C15)

Using this result, we finally obtain condition (121).

APPENDIX D: TWO-SITE TRANSFER MATRIX

Consider the transfer matrix T2 in Eq. (100): using the
explicit expression for the averaged gate (75) (which has the
same form in the square states basis), we see that its explicit
form in the basis

(D1)

reads as

T2 =

⎛⎜⎜⎝
1 0 0 0
0 1 − p 0 0
0 0 1 − p 0
0 0 0 (1 − p)2 + p2

d2−1

⎞⎟⎟⎠, (D2)

allowing us to immediately compute

v2 v2 = T x −12

= λ (p) x −1 =

= λ (p) x −1
d2 − 1
d2

.

(D3)

TABLE I. Parameters for the one-site unitaries used to produce
the data in Fig. 3.

θ φ α

u− 0.774764 5.531527 4.534001
u+ 2.521203 3.352128 4.712387
v− 1.768693 0.704289 5.567499
v+ 0.251880 1.607363 5.823117

Similarly, the transfer matrix

T2
′ = (D4)

can be put in the same form under a unitary change of basis
{�,�} → { , }, allowing us to find

w2 w2 = T x −2
2

= λ (p) x −2

= λ (p) x −2 ,
(D5)

where we used the notation for the arc state

= + . (D6)

APPENDIX E: DETAILS OF THE NUMERICS

In Fig. 3, we plotted the numerical evaluation of the
Rényi-2 entropy for different values of the parameter p. We
implemented the gates defined in Eq. (114), where the uni-
tary matrices u±, v± ∈ U (2) are obtained from a random
Haar uniform extraction. Those matrices are kept fixed while
varying the value of J (or p, which are connected through
Eq. (115)). The explicit parametrization implemented is the
following:[

cos(α) + i sin(α) cos(θ ) i sin(α) sin(θ )e−iφ

i sin(α) sin(θ )eiφ cos(α) − i sin(α) cos(θ )

]
.

(E1)

The values used to produce Fig. 3 are reported in Table I.
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