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Thermal radiation in asymmetrically driven coupled non-linear photonic cavities
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We study thermal radiation from a system of two coupled photonic cavities including the nonlinear Kerr
effect, using numerical simulations and analytical methods. The general system, which can be implemented as
two cavities in a waveguide, is asymmetrically driven with a monochromatic pumping from a single side. We
describe the eigenmodes in the linear and nonlinear regime as well as the transmission of the coupled system.
These results are then employed to understand the thermal radiation exhibited from both sides as each part of
the system is coupled to a bath at a different temperature. Interestingly, the radiation spectrum is complicated,
and can present up to four peaks due to the rich nonlinear coupling features. Furthermore, in certain regimes
these spectra can drastically change upon variation of the bath temperatures. In addition, interference between
the emitted and reflected radiation can lead to dips in the thermal radiation. Moreover, the system can exhibit
self-pulsing, leading to comblike spectra for thermal radiation with peaks of very large amplitude. Our proposed
analytical model for thermal radiation in the stable regime fits very well with the numerical results and describes
a general class of devices.
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I. INTRODUCTION

The study of thermal radiation from microstructures finds
current applications in energy devices [1–3] as well as in nan-
otechnology [4,5] and imaging via thermal microscopy [6–9].
Interest in micro/nanoscale thermal radiation has not stopped
expanding since Rytov developed a fluctuation-dissipation
approach for thermal electromagnetic fields [10–12]. Using
this theory, for example, it has been demonstrated that nanos-
tructured bodies can exhibit thermal radiation in the near-field
larger than the blackbody limit [13].

Radiative heat transfer in nonlinear media was also inves-
tigated, e.g., leading to thermal broadening due to two-photon
absorption and a non-Lorentzian emissivity due to self-phase
modulation [14]. In particular, thermal radiation was studied
in the case of a single driven Kerr cavity where it can present
Stokes and anti-Stokes side peaks, whose relative amplitudes
can be tuned by tailoring the temperatures [15]. Recently,
dynamic time modulation in photonic systems resulted in a
photon-based active cooling mechanism with performance ap-
proaching the Carnot limit [16]. This temporal modulation can
also instigate stochastic resonance induced by thermal fluctu-
ations, leading to a frequency shift in the coherent response of
the system [17].

Driven nonlinear oscillators, such as optical resonators,
were widely studied over the past decades [18–20]. When
these resonators are coupled, they present many interesting
effects, such as symmetry breaking and self-pulsing [21,22],
where the response is oscillating with a constant pump. In
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this paper, we consider these coupled cavities with thermal
fluctuations, which will be modeled as noise sources [14,15].
As in previous works [23,24], we assume the Markov ap-
proximation, avoiding temporal correlation of the sources.
Other works treat the case of systems with memory, e.g., in
optical systems with noninstantaneous nonlinearities where it
has been employed for energy harvesting [25].

In particular, in this paper, we extend the model of thermal
radiation from a single Kerr photonic cavity [15], towards a
coupled system made of two cavities, which, in practice, can
be coupled, e.g., via an intermediate waveguide connecting
both resonators. We investigate the effect of the relative tem-
peratures in the system to modify the shape of the radiation
spectra, which are quite complicated, and can be tailored to a
large degree. Furthermore, we examine the presence of para-
metrically unstable regimes and their influence on the emitted
radiation, which can present “supernarrow” peaks in certain
regimes.

First, in Sec. II, we present the typical geometry and
the coupled-mode theory equations. To efficiently depict the
results, in Sec. III, we propose a rewriting of these equa-
tions by using effective parameters. As thermal fluctuations
act as perturbations on the system, we perform an eigenmode
analysis in both the linear and nonlinear regimes. Section IV
describes the eigenmodes (Sec. IV A) and the transmission
function (Sec. IV B) in the linear regime. The same kind of
analysis is then performed in the nonlinear regime in Sec, V
with a perturbative description (Sec. V A) and a transmission
function (Sec. V B). In Sec. VI, we explore thermal radia-
tion spectra in both the linear (Sec. VI A) and the nonlinear
(Sec. VI B) regime. Finally, in Sec. VI C, we demonstrate that
relative temperatures drastically change these spectra before
concluding.
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FIG. 1. Photonic crystal geometry with two cavities coupled via a central waveguide. The system is excited with a monochromatic pump
via the left waveguide. Temperatures of left, central, and right waveguides as well as cavities 1 and 2, are controlled independently.

II. NUMERICAL MODEL

We consider a geometry consisting of two coupled pho-
tonic cavities that are single-mode and present nonlinearities
of the Kerr type. Such a system can be implemented in a
photonic crystal circuit, e.g., as represented in Fig. 1, but other
structures with standard waveguides and rings are feasible as
well. We assume that the cavities are sufficiently far from
each other, so that the coupling arises only from the central
waveguide with no direct coupling. Furthermore, the length
of the waveguides is sufficiently small, so we neglect their
losses. Even if we neglect losses inside the waveguides, there
are dissipation channels for the cavities: The first one is the
coupling to the waveguides, and the second one is internal
dissipation in the cavities.

As pictured in Fig. 1, the system can be driven from one
or both sides, however, in this paper, we focus on single-
side asymmetric driving via a monochromatic pump with
constant intensity. The cavity mode amplitude evolution is
accurately described using coupled-mode theory with the
Langevin framework [15,26,27]. Using a rotating frame at the
pump frequency (see Appendix A),

dψ1

dτ
= [− j(� + |ψ1|2) − 1]ψ1 + je j φ

2 ( f1 + ξeL )

+ je j(φ/2)(b2 + ξeC ) + ξd1 (1)

b1 = e jφ ( f1 + ξeL ) + jκe j(φ/2)ψ1 (2)

dψ2

dτ
= [− j(� + |ψ2|2) − 1]ψ2

+ je j(φ/2)
(

f2 + ξeC′
) + je j(φ/2)

(
b3 + ξeR

) + ξd2 (3)

f3 = e jφ

(
b3︸︷︷︸
0

+ξeR

)
+ jκe j(φ/2)ψ2 (4)

where ψi is the dimensionless mode amplitude of the cavity i.
The dimensionless forward and backward fields in the waveg-
uide i are, respectively, fi and bi. As the pumping is from the
left side, b3 = 0 in Eq. (4). The reduced time τ is expressed in
terms of the total dissipation rate γ of the cavities (τ = γ t).
Each cavity is coupled to two ports and can support internal
losses. The total decay rate γ in each cavity is the sum of the
coupling to left and right channels, respectively, γeL and γeR as
well as internal losses γd . The latter corresponds to coupling

to phonons or other internal dissipative decay channels in the
cavity.

We consider equal coupling to the left and right channels
(γeL = γeR = γe/2) and the same internal dissipation for both
cavities (same γd ). To summarize, for each cavity, the total
dissipation rate is γ = γe + γd . We introduce the relative
coupling κ = γe/γ � 1, the ratio between external and total
dissipation rates. This coupling is the same for both cavities.
We consider the same resonant frequency ω0 for the cavities
as well. The detuning between the pump frequency ωp and
the resonant frequency ω0 of the cavities is captured via the

reduced detuning � = ωp − ω0

γ
.

The reference planes, see Fig. 1, are chosen in order to
have the forward and backward fields in the central waveguide
given by (see Appendix C)

f2 = κ
je jφ/2ψ1 + e3 jφ/2ψ2

1 − e2 jφ
(5)

b2 = κ
je3 jφ/2ψ1 + e jφ/2ψ2

1 − e2 jφ
. (6)

In these relations, φ represents a phase that depends on the
waveguide lengths (so the reference planes) and the photonic
crystal waveguide barrier reflection properties.

In Eqs. (1)–(4), the temporal evolution of the fields is
stochastic because each waveguide and cavity are described as
different baths. These baths are determined by their tempera-
tures, which are set independently. Their thermal fluctuations
are modeled with complex white-noise sources ξi satisfying
the following correlation relations [15,28,29]:

〈ξi(ω)ξ ∗
j (ω′)〉 = αγe

γ 3
�(ω, Ti )δ(ω − ω′)δi j, (7)

〈ξk (ω)ξ ∗
l (ω′)〉 = 2

αγd

γ 3
�(ω, Tk )δ(ω − ω′)δkl , (8)

〈ξm(ω)ξn(ω′)〉 = 〈ξ ∗
m(ω)ξ ∗

n (ω′)〉 = 0, (9)

where i, j ∈ {eL, eC, eC′ , eR}, k, l ∈ {d1, d2}, and m, n ∈
{eL, eC, eC′ , eR, d1, d2}. Interestingly, for the central waveg-
uide, which connects the cavities, two noise sources should
be considered: One is added to the forward field arriving at
reference plane 2′ (ξeC′ ) of Fig. 1, and the other term corre-
sponds to the backward field at reference plane 2 (ξeC ). These
noise sources are not correlated with each other, but their
amplitudes are equal because there is only one temperature
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for the central waveguide. Parameter α in Eqs. (7) and (8)
characterizes the strength of the nonlinear interaction and de-
pends on an overlap integral of the linear cavity fields [15] (see
Appendix A). In this paper, we consider α real corresponding
to self-phase modulation [14,15]. It is possible to account for
two-photon absorption (TPA) by choosing a complex α with
a nonzero imaginary component. Since TPA affects the total
absorption rate depending on the power intensity, it must be
included in the fluctuation-dissipation theorem when describ-
ing the diffusion coefficient of the noise sources [14]. Finally,
�(ω, T ) = h̄ω/[exp (h̄ω/kBT ) − 1] is the mean energy of a
quantum oscillator in thermal equilibrium with the bath at
temperature T . Therefore, the noise intensity in each part of
the system is tailored via the temperatures.

III. EFFECTIVE COUPLING AND DETUNING

In this section, we propose a more compact version of the
equations by introducing effective coupling and detuning. As
there is no direct coupling, the cavities are connected via the
central waveguide. Therefore, Eqs. (1) and (3) are coupled via
Eqs. (5) and (6) and the field amplitude evolution in cavity i
(∈ {1, 2}) can be rewritten

dψi

dτ
= −[ j(�′ + |ψi|2) + ]ψi − jJψ3−i + je jφ/2 f1δ1,i

+Ni, (10)

Ni = ξdi + je jφ/2(ξeL + ξeC )δi,1 + je jφ/2(ξeR + ξeC′ )δi,2,

(11)

where Ni contains all the noise sources.
Equation (10) also introduces an intercavity coupling

J = κ/(2 sin φ) as well as an effective detuning �′ = � +
κ/(2 tan φ). These two parameters are affected by the phase
φ and the relative coupling κ , meaning that the interaction be-
tween both cavities only depends on the losses and the phase.
This intercavity coupling will be maximum when there is no
internal dissipation (κ = 1), and if the phase tends toward 0
or π . In these limit cases, the cavity amplitudes are either
opposite (ψ1 = −ψ2 for φ = 0) or the same (ψ1 = ψ2 for
φ = π ), and the intercavity coupling goes to infinity for these
phase values. The effective detuning �′ is larger than � when
0 < φ < π/2 and smaller when π/2 < φ < π .

Finally, Eq. (10) introduces the effective cavity dissipation
as  = 1 − κ/2. The latter increases when the relative cou-
pling to the waveguides, κ = γe/(γe + γd ), decreases. In that
case, a larger part of the total dissipation rate is related to
internal losses.

The phase dependence of the coupling J , effective detuning
�′, and effective dissipation rate  is summarized in Fig. 2
with varying κ . As the phase φ goes toward 0 or π , construc-
tive interference in the central waveguide leads to an increase
of the coupling J [solid curves in Fig. 2(a)]. Decreasing the
relative coupling κ increases losses through internal dissipa-
tion and, therefore, leads to smaller intercavity coupling J
[curves in Fig. 2(a)] and larger effective dissipation rate 

[horizontal dotted lines in Fig. 2(a)]. In Fig. 2(b), the deviation
from the original detuning � becomes larger as the phase is
approaching 0 or π and changes sign at φ = π/2.

FIG. 2. (a) Intercavity coupling J (curves) and effective dissi-
pation rate  (horizontal lines) versus phase φ for various relative
coupling κ . (b) Change in effective detuning �′ due to resonant
coupling versus phase φ for various κ .

IV. LINEAR ANALYSIS

In order to understand the behavior of the coupled sys-
tem for low input powers, we first perform a linear analysis
[|ψi|2 � 0 in Eq. (10)]. We examine the eigenmodes as well
as the transmission in this particular regime.

A. Eigenmodes

In the absence of pumping f1 = 0 and noise ξi = 0, the
coupled equations of Eq. (10) become

d�

dτ
= Dlin�, (12)

where � = (ψ1, ψ2)T and Dlin is the Jacobian of the linear
system. As at equilibrium, we expect a solution of the form
ψi ∼ eλτ , an eigenvalue analysis of Dlin leads to

λ± = − − j(�′ ∓ J ). (13)

One can show (see Appendix B) that the frequency and damp-
ing rate of the two eigenmodes k ∈ {+,−} are

ωk = γ Im(λk ) + ωp, (14)

γk = γ Re(λk ), (15)

and that �+ (�−) are the eigenvectors of λ+ (λ−) correspond
to the antisymmetric (symmetric) mode. In our case, with an
asymmetric pumping, both modes can be excited [30]. By
inspecting Eqs. (13) and (14), one can see that the eigenfre-
quency of both modes depends on the intercavity coupling
J . One can make an analogy with two coupled mechanical
oscillators where the eigenmodes depend on the spring con-
stant between both masses. As there are losses in the system,
the eigenmodes are damped with a rate equal to the effective
dissipation rate .

174310-3



BERTRAND BRAECKEVELDT AND BJORN MAES PHYSICAL REVIEW B 107, 174310 (2023)

B. Transmission

The transmission T is defined as the outgoing power from
the right waveguide | f3|2, divided by the pump power | f1|2
into the left port. By using Eqs. (1)–(6) in the frequency do-
main, one can show that (see the Supplemental Material [31])

T (ω) = J2κ2

[2 − �′(ω)2 + J2]2 + 42�′(ω)2
, (16)

with �′(ω) = ω − ω0

γ
+ κ

2 tan φ
. The transmission function

Eq. (16) possesses three extrema, for

�′ = ±
√

J2 − 2 and �′ = 0. (17)

As the effective detuning is a real parameter, the first two
solutions exist when J � . In this situation, these two
solutions locate the transmission maxima, wherease �′ = 0
corresponds to the local minimum. On the other hand, when
J < , there is only one transmission peak located at �′ = 0.
Moreover, it can be shown that when there is no internal
dissipation ( = 0.5), a detuning � = 0 (pump resonant with
cavities) always corresponds to a maximum transmission.

This analysis shows that J >  gives the condition to
observe two transmission peaks. From a physical point of
view, the coupling of the two cavities splits the transmission
peak of a single cavity into two peaks. The larger the
intercavity coupling J , the larger the separation between
both peaks. On the other hand, the effective dissipation
rate  determines the linewidth of the transmission peaks.
Therefore, the peaks can only be resolved if the coupling is
larger than the effective dissipation rate (linewidth). Thus, for
a coupling larger than the effective dissipation rate, two peaks
are visible in the transmission spectra (Fig. 3). They reach
κ2/42 and are separated by a local minimum transmission of
J2κ2/(2 + J2)2 for �′ = 0. When the intercavity coupling is
smaller than the effective dissipation rate, the local minimum
becomes the only peak.

From this paper, and comparing Eq. (14) with Eq. (17),
one can see that the transmission peaks do not coincide with
the eigenfrequencies (vertical black solid and dotted line in
Fig. 3).

Figure 3 presents transmission spectra for different phases
φ and relative coupling κ . For a phase φ = π/2 (solid and
dashed red curve), the coupling J is minimal, and the effective
detuning �′ = �. As shown in Fig. 2(a), the condition J > 

is never satisfied, independently of κ . Therefore, there is only
one maximum in the transmission spectrum for this phase,
located at ω0, the cavity resonance. This maximum is equal
to 1 when there are no losses (κ = 1) and decreases with
decreasing κ .

When the phase φ < π/2 (dotted and dashed-dot red
curve), one transmission peak appears for a frequency smaller
than ω0 (a negative detuning �) due to the coupling between
the two cavities. The location of the two peaks is given by the
first two relations of Eq. (17). This equation is used to plot
the vertical black line in Fig. 2 for φ = π/5 and κ = 1. Once
again, if κ < 1, the maximum transmission is smaller than 1
because of the dissipation inside the cavities.

For phases φ > π/2 (blue curves) the second transmission
peak appears at frequencies larger than the cavity resonance

FIG. 3. Transmission (curves) in the linear regime. The verti-
cal black line represents one frequency at maximum transmission,
given by Eq. (17) for κ = 1 and φ = π/5. The dotted black line is
the eigenfrequency of the associated symmetric mode. The dashed
horizontal line represents the maximum transmission for κ = 0.9,
φ = π/5 (or φ = 4π/5). The dotted horizontal line indicated the
local minimal transmission for κ = 1 and φ = π/5 (or φ = 4π/5).

(detuning � > 0). The horizontal dashed black line gives
the maximal transmission for κ = 0.9 and φ = π/5, 4π/5.
Finally, the dotted horizontal black line represents the minimal
transmission for κ = 1 and φ = π/5, 4π/5.

V. NONLINEAR ANALYSIS

In order to understand the phenomena occurring at rela-
tively high input powers, we now investigate the effects of
nonlinearity. As we have performed for the linear regime, we
first derive the eigenmodes of the system, then, the transmis-
sion in the nonlinear regime.

As a first step, we show that, by fixing the outgoing power,
it is possible to obtain steady states analytically. Indeed, con-
sidering steady state (ψ̇i = 0), and by fixing the outgoing
power, | f s

3 |2, one can find ψ s
2 from Eq. (4). Then, using

Eq. (3), ψ s
1 can be computed, leading to a corresponding pump

f s
1 given by Eq. (1),

ψ s
1 = −1

J

[(
�′ + |ψ s

2|2
) − j

]
ψ s

2, (18)

f s
1 = e− j(φ/2)

{[(
�′ + |ψ s

1|2
) − j

]
ψ s

1 + Jψ s
2

}
. (19)

In these equations, the superscript s stands for the steady state.

A. Perturbative analysis

We are now interested in obtaining an eigenvalue problem
for the nonlinear regime. As for the linear case, it will provide
an understanding of the damping and frequencies of the sys-
tem eigenmodes through the real and imaginary parts of the
eigenvalues.
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For the nonlinear eigenmodes, we consider no pumping
( f1 = 0) and no noise (Ni = 0) in Eq. (10). By linearizing

Eq. (10) around the steady state and denoting the right-hand
side of this equation hi,

˙̃�i = hi(�̃ ) � hi(�̃
s)︸ ︷︷ ︸

0

+ ∂hi

∂�̃k

∣∣∣∣
�̃s

(
�̃k − �̃s

k

)
, (20)

where �̃ = (ψ1, ψ
∗
1 , ψ2, ψ

∗
2 )T . In this last relation, Dik = ∂hi

∂�̃k
|�̃s is an element of the Jacobian matrix of the nonlinear system.

By considering a first-order perturbation, ψi(t ) � ψ s
i + δψi(t ), one obtains the relation ˙δ�̃ = D δ�̃ where the Jacobian,

D =

⎛
⎜⎜⎜⎜⎜⎝

− j
(
�′ + 2

∣∣ψ s
1

∣∣2) −  − jψ s2

1 − jJ 0

jψ∗
1

s2
j
(
�′ + 2

∣∣ψ s
1

∣∣2) −  0 jJ

− jJ 0 − j
(
�′ + 2

∣∣ψ s
2

∣∣2) −  − jψ s2

2

0 jJ jψ∗
2

s2
j
(
�′ + 2

∣∣ψ s
2

∣∣2) − 

⎞
⎟⎟⎟⎟⎟⎠. (21)

In order to obtain the desired eigenvalue problem as proposed in previous literature [30,32], one writes the perturbation fields as

δψi = uie
λτ + v∗

i eλ∗τ (22)

leading to the secular equation (see the Supplemental Material [31]),

D� ′ = λ� ′, (23)

where � ′ = (u1, v1, u2, v2)T is the vector of fluctuation amplitudes and λ is the eigenvalue of the perturbed fields, sometimes
called Bogoliubov modes [30,32]. As for the linear analysis, examining the real and imaginary parts of λ gives the eigenmode
damping and frequencies for the perturbations.

In addition, the perturbative analysis provides a way to analyze the stability of the steady states. As δψi ∼ eλτ , by observing
the real and imaginary parts of the eigenvalues, we can distinguish between stable and unstable states. If the four eigenvalues
have negative real parts, the mode will be damped and, therefore, stable (S). On the other hand, if one of them is positive, the
steady state will be one mode unstable (1M) when the corresponding imaginary part is zero. Finally, if there is a pair of complex
conjugates with positive damping (real part of λ) it leads to parametric instability (PU). As a result, self-pulsing can be observed
where for a constant pump intensity, the outgoing power varies. Furthermore, in this situation, chaotic behavior is possible and
can be predicted by numerically solving Eqs. (1)–(6) and computing the maximal Lyapunov exponent of the resulting time series.
This is not reported in the current paper, so we only focus on stable parametrically unstable and one-mode unstable states.

B. Transmission

As we have performed in the linear regime, we study the nonlinear transmission spectra. With a real and positive nonlinearity
α, the transmission peaks are redshifted with increasing pump amplitude. Therefore, in the noninear regime,

T = κ2n2

n1[(�′ + n1)2 + 2] + J2n2 − 2n2(�′ + n2)(�′ + n1) + 2n22
, (24)

where ni = |ψ s
i |2 is the stationary dimensionless energy in

cavity i. As the energy n1 is a function of the effective detun-
ing �′ [see Eq. (18)], the transmission extrema are given by a
general polynomial of order 5. According to the Abel-Ruffini
theorem, there is no closed form for the roots. However, we
find that (when κ � 1) a good approximation is as follows:

�′ � ±
√

J2 − 2 − n2, (25)

which corresponds to the linear peaks, shifted by n2 as repre-
sented by the green dashed lines in Fig. 4. Indeed, if internal
losses are small with respect to coupling with external ports
(κ � 1) when the transmission is maximal, the energy inside
cavity 2 (n2) must be high. As the redshift of the cavity
resonances is directly proportional to ni in Eq. (10), a similar
shift appears in the transmission peaks.

As the transmission is now a function of the frequency and
the pump intensity, we consider transmission maps in Fig. 4.
Because in particular regimes, multiple steady states exist for
one incoming power, we consider the transmitted power | f3|2
instead of the incoming power | f1|2 in these maps. Indeed,
Eqs. (18) and (19) give a direct link between the transmitted
field and the fields in the cavities.

Using the previously derived stability analysis, we can
determine the various stability regions. Three situations are
shown in Fig. 4 corresponding to the same relative cou-
pling κ = 1 (no internal losses) but different phases φ. When
φ = π/5 [Fig. 4(a)], just like the linear regime, there are
two transmission peaks at frequencies given by Eq. (25) and
represented by the green dashed lines. PU, corresponding to
self-pulsing, arise when the cavity energy n2 = |ψ2|2 over-
comes the losses  = 0.5 [30], and for frequencies lying
between the transmission peaks. When φ = π/2 [Fig. 4(b)],

174310-5



BERTRAND BRAECKEVELDT AND BJORN MAES PHYSICAL REVIEW B 107, 174310 (2023)

FIG. 4. Transmission and steady-state stability versus detuning
and outgoing power for κ = 1 and (a) φ = π/5, (b) φ = π/2, and
(c) φ = 4π/5. S are dotted regions, PU are circle regions, and one-
mode unstable (1M) states are star regions. The vertical yellow line
represents the detuning � = −1 used in Figs. 7 and 8. The dashed
green lines are given by Eq. (25) and correspond to transmission
maxima.

the coupling J is minimal. Therefore, there is only one max-
imum for the transmission (green dashed line), and in this
situation there are no PU states. Finally, for a phase φ = 4π/5
[Fig. 4(c)], the coupling is the same as for φ = π/5, but the
effective detuning is different. Thus, the transmission peaks
start, for low power, at the resonance of the cavity and at a
larger frequency. Then, due to the nonlinearity, both peaks are
redshifted. In the three graphs, the vertical yellow line corre-
sponds to the detuning value � used in the next section. There
are also regions where the system is 1M meaning that the fixed
point corresponding to the couple (detuning, output power)
is unstable. It arises when the system supports multistability
i.e., multiple stable states for the same input power, which is
discussed in the Supplemental Material [31].

VI. THERMAL RADIATION

Now that we have derived analytical equations for the
steady state and eigenmodes in both the linear and the nonlin-
ear regimes, we focus on the derivation of thermal radiation.
It turns out that, when the steady state is stable, it is possible
to derive a useful analytical solution for the outgoing thermal
radiation to the left and right channels.

The cavity field amplitudes as well as the forward and
backward waveguide fields undergo fluctuations due to the
temperature, which are described via random processes.
These fluctuations are defined as deviations from the average
value. For example, the fluctuations of the left output field are
δb1(t ) = b1(t ) − 〈b1(t )〉, where 〈·〉 means “ensemble averag-
ing.”

As in previous literature, we define the density of thermal
radiation (DTR) as the spectral density of fluctuations, which
we note as 〈|δb1(ω)|2〉 for the left waveguide and 〈|δ f3(ω)|2〉
for the right one. It is computed as the difference between the
total power spectral density 〈| f3(ω)|2〉 and the coherent power
spectral density |〈 f3(ω)〉|2. Indeed, as all noise sources have
zero average, 〈 f3(ω)〉 corresponds to the coherent outgoing
field.

To obtain an analytical solution for the left and right output
DTR, which characterizes thermal emission from the sys-
tem, we follow these steps. First, we decompose ψi(t ) as

FIG. 5. DTR normalized by maximum thermal energy (kBT )
where T is the largest temperature in the system. Numerical simula-
tions (noisy red and blue curves) are compared to analytical solutions
(black dashed and dotted lines) for (a) κ = 1, | f1|2 = 0.625, � =
−1, TeL = 500, TeC = TeR = 10 K and φ = π/2. (b) κ = 0.9, | f1|2 =
0.670, and � = −1, all the temperatures at 300 K and φ = π/2.
(c) κ = 0.9, | f1|2 = 0.540, and � = −1, all the temperatures at
300 K and φ = 4π/5.

ψ s
i + δψi(t ) and separate the evolution of the coherent part

and the fluctuations (see the Supplemental Material [31]).
Second, we Fourier transform the resulting equations for the
fluctuations to obtain four equations in the frequency domain.
Finally, we combine these equations and after some calculus
we obtain (see the Supplemental Material [31]) the desired
functions,

〈|δb1(ω)|2〉 = 〈|ξeL (ω)|2〉 + κ2〈|δψ1(ω)|2〉
+2κ Re[ je− jφ/2〈δψ1(ω)ξ ∗

eL
(ω)〉], (26)

〈|δ f3(ω)|2〉 = 〈|ξeR (ω)|2〉 + κ2〈|δψ2(ω)|2〉
+2κ Re[ je− jφ/2〈δψ2(ω)ξ ∗

eR
(ω)〉]. (27)

The full analytical expressions of Eqs. (26) and (27) can be
found in the Supplemental Material [31]. In both equations,
the first term expresses the DTR from the temperature in the
corresponding channel (left/right), the second is proportional
to the emissivity of the cavity coupled into this channel.
Interestingly, the third term represents interference between
the cavity-emitted and waveguide-reflected radiation. DTR
does not only take into account the emissivity of the cavities.
The pump leads to an active system with another source of
emitted radiation that strongly interferes with and modulates
the passive behavior. As a result, even when normalized by
the thermal energy from the highest system temperature, the
DTR can be larger than 1.

The validity of this analytical model is checked by compar-
ing it with numerical simulations (Fig. 5). Numerical solutions
of Eqs. (1)–(6) are obtained by using a stochastic Runge-Kutta
homemade solver with averaging over 500 simulations. By
inspecting Fig. 5, it is clear that there is an excellent agreement
among Eqs. (26), (27), and the simulations, independent of the
relative coupling κ , phase φ, or the temperature combination.
As the analytical solutions accurately predict the DTR, in
what follows, we use the equations instead of simulations.

A. Linear regime

With the analytical form, first we study the low pump-
ing regime, when the nonlinearity can be neglected. One
expects to observe peaks in the thermal radiation at
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FIG. 6. Reduced DTR in the linear regime (| f1|2 = 10−3) for
left (solid red) and right (dashed blue) waveguides with φ = π/5,
κ = 0.9, and � = −1. (a) TeL = 300 K, and the others equal 10 K.
(b) TeC = 300 K, and the others equal 10 K. (c) Td1 = Td2 = 300 K,
and the others equal 10 K. (d) TeL = TeR = 300 K, and the others
equal 10 K. (e) All equal 300 K. Dotted vertical lines represent
eigenfrequencies [Eq. (14)].

eigenfrequencies given by Eq. (14), which as noted are differ-
ent from the transmission maxima [Eq. (17)]. As the system
is driven asymmetrically, both symmetric and antisymmetric
eigenmodes are excited, and we expect to observe peaks in the
DTR for both modes.

From the linear analysis (Sec. IV) there are two eigen-
modes, so one expects two DTR peaks. As an example, we
consider input power | f1|2 = 10−3, phase φ = π/5, relative
coupling κ = 0.9, and detuning � = −1 (represented by the
yellow vertical line in Fig. 4). We now explore various com-
binations for the temperatures of the waveguides and cavities,
leading to qualitatively different spectra.

When the temperature of the left channel is larger than the
others [Fig. 6(a)], the left thermal radiation (red line) presents
two dips at the two eigenfrequencies (dotted black lines).
These dips arise because as the left temperature dominates,
there is destructive interference between the reflected and the
emitted radiation by the first cavity [last term in Eq. (26)].
The DTR is normalized to the highest thermal energy in the
system (kBT ). Therefore, far from the eigenfrequencies (peaks
and dips), the DTR is 1 for the left channel (red plain line) and
TeR/TeL � 0.033 for the right one (blue dashed line). Indeed,
far from the eigenfrequencies, the influence of the cavities is
negligible, and the DTR is instead fully determined by the
ratio between the temperature of the considered port and the
maximum system temperature.

When the temperature of the central connecting waveguide
dominates [Fig. 6(b)], the left and right DTRs are equal as
the system is symmetric regarding the temperatures. When the
temperatures of the cavities dominate [Fig. 6(c)], the spectra
are symmetric as well for the same reason. The maximum
DTR is smaller than in the previous case because there is
thermal radiation toward the central waveguide as well.

When both external waveguides have a high temperature
[Fig. 6(d)], both left and right spectra present two eigenmode
dips due to destructive interferences on both sides. Finally,
when all temperatures are equal [Fig. 6(e)], the spectra are
similar to Figs. 6(b) and 6(c). The system is symmetric, and
the left and right channels do not dominate, leading to no DTR
dips. The maximum DTR in Fig. 6(e) is larger than in Fig. 6(b)
because the whole system is at 300 K and contributes to the
thermal radiation. As all the temperatures are the same, the
DTR is 1 for frequencies far from the eigenmodes.

FIG. 7. Eigenvalues of the Jacobian Eq. (21) for κ = 0.9, � =
−1, and φ = π/5. Each color/line style represents a different mode.
(a) Damping of the mode. (b) Frequency of the mode relative to the
pump detuning �. Vertical black lines and letters correspond to pump
amplitudes used in Figs. 9 and 11.

B. Nonlinear regime

As mentioned in the perturbative analysis, there are four
perturbed (Bogoliubov) modes. Just like in the linear regime,
we expect that the frequencies of these modes correspond
to the peaks and dips of the DTR spectra. Furthermore, by
analyzing the real and imaginary parts of the eigenvalues, we
can discuss the stability of the steady states and their influence
on the DTR spectra. Figures 7 and 8 show the evolution of the
four eigenvalues versus incoming power from the left | f1|2 for
two different phases φ.

One first notes [Figs. 7(b)] and 8(b) that the imaginary parts
are symmetric around the detuning � = −1, meaning that the
perturbed eigenmode frequencies are symmetric around the

FIG. 8. Eigenvalues of the Jacobian Eq. (21) for κ = 0.9, � =
−1, and φ = 4π/5. Each color/line style represents a different
mode. (a) Damping of the mode. (b) Frequency of the mode relative
to the pump detuning �. Vertical black lines and letters correspond
to pump amplitudes used in Fig. 10.

174310-7



BERTRAND BRAECKEVELDT AND BJORN MAES PHYSICAL REVIEW B 107, 174310 (2023)

FIG. 9. Density of thermal radiation versus detuning when all
temperatures are equal to 300 K for κ = 0.9, � = −1, and φ = π/5.
(a) | f1|2 = 0.1, (b) | f1|2 = 0.45, (c) | f1|2 = 1.05, and (d) | f1|2 =
1.5. The red solid and blue dashed curves correspond to left and
right ports, respectively. Arrows indicate the location of Bogoliubov
modes.

pump. The modes corresponding to λ1 and λ3 (Figs. 7 and 8)
are redshifted due to the chosen nonlinearity (α > 0). The two
other modes, mirrored with respect to the pump (λ2 and λ4)
are, therefore, blueshifted when the pump intensity increases.

Second, either one or both redshifted eigenfrequencies can
cross the pump (cross the horizontal black line corresponding
to the detuning � = −1) depending on phase φ. Indeed, in
the linear regime (small | f1|2), one redshifted mode [Im(λ1)]
is smaller than the pump frequency � = −1 for φ = π/5
[Fig. 7(b)] whereas both of them [Im(λ1,3)] are larger than
the detuning when φ = 4π/5 [Fig. 8(b)].

In order to relate Figs. 7 and 8 to the spectra of Figs. 9 and
10, one should understand that by damping, we mean the real
part of the eigenvalue (λi). Therefore, when the damping be-
comes positive, the corresponding mode becomes unstable or
parametrically unstable. So in this context, the more negative
the damping, the more damped the mode.

For the thermal properties, we first consider all tempera-
tures equal, a phase φ = π/5 and a relative coupling κ = 0.9.
Close to the linear regime, for | f1|2 = 0.1 (first vertical line in
Fig. 7), mode 3 has a larger frequency than the pump whereas
mode 1 has a smaller one. As the pump power is relatively
small, only two peaks, corresponding to quasilinear modes,
are visible in the density of thermal radiation [Fig. 9(a)].

For increasing pump intensity, | f1|2 = 0.45, nonlinear ef-
fects start to be visible and the redshifted eigenfrequencies

FIG. 10. Density of thermal radiation versus detuning when
all temperatures are equal to 300 K for κ = 0.9, � = −1, and
φ = 4π/5. (a) | f1|2 = 0.1, (b) | f1|2 = 0.54, (c) | f1|2 = 1.0, and
(d) | f1|2 = 1.5. The red solid and blue dashed curves correspond
to left and right ports, respectively. Arrows indicate the location of
Bogoliubov modes.

cross the blueshifted ones [Fig. 7(b)]. The damping rates (real
parts) of the corresponding modes vary drastically [Fig. 7(a)]:
Two of the modes become more damped (more negative real
part), whereas the others follow the opposite trend. As a result,
the modes corresponding to λ1,2 are amplified, and the DTR
presents two peaks centered around the pump [Fig. 9(b)] with
larger amplitudes than in Fig. 9(a).

Continuing to increase the incoming power, | f1|2 = 1.05,
the redshifted mode λ3 becomes resonant with the pump. As
the blueshifted modes are symmetric around the pump, λ4

crosses the pump as well. Therefore, both modes share the
same frequency and the resonance with the pump leads to a
large amplification of the associated peak. Consequently, the
DTR at this power [Fig. 9(c)] presents a large peak at the pump
frequency, reaching more than 50kBT for the right port, as
well as two smaller peaks, symmetric around the pump for
modes 1 and 2. These two peaks are much smaller than the
one corresponding to λ4 because these modes are not resonant
with the pump and are, therefore, more damped than λ4.

Finally, for an even larger pump power (| f1|2 = 1.5, right-
most vertical line in Fig. 7), the eigenfrequencies continue to
red or blueshift. Therefore, the DTR exhibits [Fig. 7(d)] four
peaks that move farther apart as the incoming power continues
to increase. Each of these peaks corresponds to one of the
Bogoliubov modes.

To summarize, the two linear modes (1 and 3) lead to
two DTR peaks for small input power. Then, due to the
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nonlinear frequency redshifting, these peaks move toward
smaller frequencies until mode 3 becomes resonant with the
pump leading to a large amplification of the corresponding
peak. Finally, after crossing the pump, all four modes become
visible in the DTR. It happens because both redshifted modes
are beyond the pump frequency and blueshifted modes are
always mirrored around the pump. Therefore, one can expect
four peaks only after both redshifted modes have crossed the
pump frequency.

In what we have just analyzed (for a phase φ = π/5
and a detuning � = −1), all the steady states are stable,
independently of the input power [vertical yellow line in
Fig. 4(a)]. When we consider φ = 4π/5 (with the same de-
tuning), Fig. 4(c) indicates instead regions with parametric
instability or one-mode instability with consequences for the
DTR.

When φ = 4π/5 (Fig. 8), close to the linear regime
(| f1|2 = 0.1), the redshifting eigenmode frequencies (1 and
3) are both larger than the pump [Fig. 8(b)]. This is because
the effective detuning �′ is smaller than � (negative detuning
deviation in Fig. 2(b). The corresponding DTR presents two
peaks located close to the linear modes [Fig. 10(a)].

For larger pump intensity, when | f1|2 = 0.54, modes 1
and 2 cross the pump and become resonant with it. The
DTR, therefore, presents a large peak at the pump frequency
[Fig. 10(b)]. Just beyond this point, there is a narrow region
(gray vertical line in Fig. 8) where the system is one-mode
unstable, which means there are multiple steady states cor-
responding to one input power. Our analytical solution does
not work in such a situation because the noise in the system
can induce jumps between the steady state. Therefore, an
analytical solution should describe the transition probabilities
between these states to be able to accurately predict the DTR
spectra.

For an incoming power | f1|2 = 1.0, the redshifted mode
1 and blueshifted mode 4 merge (same imaginary part but
different real parts). Right after the imaginary parts of these
modes merge, the corresponding damping rates vary strongly
with the input power. As the modes are symmetric around
the pump, the same arises for modes 2 and 3. The damp-
ing rates of modes 1 and 2 are close to zero, meaning that
the system is close to a PU region. This region appears
in the stability map in Fig. 4(c). As the damping is very
small, the DTR presents very large and narrow peaks at
the eigenfrequencies [Fig. 10(c)], reaching around 4000kBT
for the left port. These two peaks are symmetric around
the pump.

Finally, when the pump amplitude is even larger, for ex-
ample | f1|2 = 1.5, the system enters the PU region and starts
a self-pulsing regime. For a steady input power, the cavity
energies oscillate periodically in time. The analytical solution
for the DTR does not capture this kind of regime, therefore,
numerical computations must be performed to obtain the spec-
tra. We see [Fig. 10(d)] that the DTR is a comb with the
main peaks corresponding to modes 1 and 2, and higher-order
modes spaced by one eigenfrequency. Indeed, as the left and
right DTR depend on the cavity energies, if these energies
vary periodically, this is translated into a comb in the DTR.
The frequency separating the peaks corresponds to the pulsa-
tion frequency [Im(λ1)] of this regime.

FIG. 11. Density of thermal radiation versus detuning when all
temperatures are equal to 10 K except TeL = 300 K for κ = 0.9, � =
−1, and φ = π/5. (a) | f1|2 = 0.1, (b) | f1|2 = 0.45, (c) | f1|2 = 1.05,
and (d) | f1|2 = 1.5. The red and blue curves correspond to left and
right ports, respectively. Arrows indicate the location of Bogoliubov
modes.

C. Varying the temperatures

In the previous Section, we examined nonlinear emission
spectra when all the temperatures are equal. However, parts of
the system could be cooled or heated independently, and we
noted this affects the spectra in the linear regime (Sec. VI A).
Indeed, the transmitted and reflected radiation by the cavities
can interfere and lead to minima in the DTR.

As an example, we show the DTR when the temperature of
the left port is 300 K, whereas the rest of the system is cooled
to 10 K, see Fig. 11 (other parameters the same as in Fig. 9).
Destructive interference takes place in the left port, leading
to dips for linear modes 1 and 3 at low power [red curve,
Fig. 11(a)] as well as for modes 1 and 2 for higher power,
when | f1|2 = 0.45 [red curve, Fig. 11(b)]. As the temperature
of the right port is not higher than the rest of the system, there
are no such dips for the DTR corresponding to the right port
[blue curves, Figs. 11(a) and 11(b)]. When a mode becomes
resonant with the pump, the contribution of destructive inter-
ference does not dominate, and the DTR still presents one
larger peak at the pump [Fig. 11(c)]. However, the amplitude
of this peak is reduced compared to the previous case where
all temperatures are equal [Fig. 9(c)]. Finally, for | f1|2 = 1.5
[Fig. 11(d)], the destructive interference only dominates for
the redshifted modes (λ1, λ3). The blueshifted ones (λ2, λ4)
still lead to peaks in the DTR, but their amplitudes are smaller
than when all temperatures are set to 300 K.
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VII. CONCLUSION

We study a system of coupled nonlinear photonic cavities
where the coupling arises only via the central waveguide, so
an effective coupling and detuning can be derived. With this
analysis, we predict the frequency of symmetric and antisym-
metric modes in the linear regime. We demonstrate that the
location of the eigenfrequencies differs from the frequencies
of maximum transmission. We present the conditions to ob-
serve two peaks of maximum transmission by comparing the
coupling and the effective damping rate.

Using a perturbative analysis, we derive the eigenfre-
quency and damping of the perturbed nonlinear modes. With a
stability analysis, one can distinguish stable, one-mode unsta-
ble, and parametrically unstable regions, based on the system
parameters. We show that parametrically unstable states do
not appear if the phase is equal to π/2 when the effective cou-
pling is minimum. We also derive a semianalytical solution
for the transmission peak location in the nonlinear regime.

Based on the perturbative analysis, we explore thermal ra-
diation from this system. We distinguish the thermal radiation
from the left and right ports. In the linear regime, we show
that the peaks in thermal radiation correspond to eigenmodes
and not to the transmission peaks. With asymmetric pump-
ing, both symmetric and antisymmetric modes are excited.
When the temperatures of the left and/or right ports are larger
than the rest of the system, destructive interference between
emitted and reflected radiation by the cavity leads to dips in
the DTR. Nonlinear absorption could be added to the model.
This effect was explored for a single-cavity situation [14],
leading to broader peaks but not yet for coupled systems. The
system could be implemented, for example, using a silicon
platform consisting of ring resonators coupled to a waveguide,
driven at milliwatt powers as derived for a single cavity [15].
Thermo-optic nonlinearities in this platform could be subdued
by working at lower temperatures, e.g., below 100 K, which
does not change the reported spectral shapes as displayed in
the Supplemental Material [31].

We derive an analytical solution for the description of the
DTR under the stable steady-state assumption. This model
presents an excellent agreement with numerical simulations
based on coupled mode theory and the Langevin framework.
Using this model and by analyzing the perturbed modes, we
present a rich variation of thermal emission spectra. When a
mode becomes resonant with the pump, it leads to supernar-
row thermal radiation around the pump. Moreover, close to
parametrically unstable regions, the system exhibits supernar-
row peaks for the two redshifted modes, symmetric around
the pump. In the self-pulsing regime, the DTR adopts a comb
shape with peaks spaced by the frequency of perturbed modes.

Finally, we explore the role of temperatures on the DTR.
As in the linear regime, changing the relative temperatures
modifies the shape of the emission spectra. In particular, when
the left or right ports have larger temperatures, destructive
interference can lead to dips in the DTR. However, in a regime
with supernarrow peaks, the contribution of these interfer-
ences does not dominate, and the amplitude of the peaks is just
slightly smaller. In the end, the large variety of observed spec-
tra offers interesting opportunities for fully tailorable thermal
radiation via coupled nonlinear photonic resonators.
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APPENDIX A: ROTATING FRAME

In order to obtain Eqs. (1)–(4), we proceed to a rotating
frame at the pump frequency ωp. Let ai be the field amplitude
in the cavity i with normalization such that |ai|2 represents the
energy in the cavity. Moreover, let f ′

i and b′
i be the forward

(backward) fields in a waveguide such that | f ′
i |2 (|b′

i|2) repre-
sents the power going forward (backward) in the waveguide.
In such a situation, the temporal coupled mode equations de-
scribing the system are as follows:

da1

dt
= [ j(ω0 − α|a1|2) − γ ]a1 + je j(φ/2)√γe

(
f ′
1 + ξ ′

eL

)
+ je j(φ/2)√γe

(
b′

2 + ξ ′
eC

) +
√

2γdξ
′
d1

(A1)

b′
1 = e jφ

(
f ′
1 + ξ ′

eL

) + j
√

γee j(φ/2)a1 (A2)

da2

dt
= [ j(ω0 − α|a2|2) − γ ]a2 + je j(φ/2)√γe

(
f ′
2 + ξ ′

eC′

)
+ je j(φ/2)√γe

(
b′

3 + ξ ′
eR

) +
√

2γdξ
′
d2

(A3)

f ′
3 = e jφξ ′

eR
+ j

√
γee j(φ/2)a2. (A4)

In these equations, the noise sources are real with variance
�(ω, Tk ) where k ∈ {eL, eC, e′

C, eR, d1, d2}. As the pump is
monochromatic, f ′

1(t ) = f ′
1e jωpt meaning that all the fields

will oscillate at ωp. Taking ψi(t ) = √
α/γ ai(t )e− jωpt , fi(t ) =√

αγe/γ 3 f ′
i (t ), and the same for backward fields, one obtains

with τ = γ t , Eqs. (1)–(4).
Now, due to the rotating frame, the noise sources are com-

plex with uncorrelated real and imaginary parts due to the fast
oscillation of 〈Re(ξk )Im(ξk )〉 [28]. The noise sources follow
the correlation relations given in Eqs. (7) and (8).

APPENDIX B: ORIGINAL FREQUENCY
AND DISSIPATION RATE

As the eigenvalues λk satisfy

dψi

dτ
= λkψi, k ∈ {+,−} and i ∈ {1, 2}, (B1)

and because ψi(t ) = √
α/γ ai(t )e− jωpt , one can show that

dai

dτ
= γ (λk + jωp)ai (B2)

resulting in Eqs. (14) and (15).

APPENDIX C: FIELDS IN THE CENTRAL WAVEGUIDE

In the central waveguide we consider two reference planes
2 and 2′, see Fig. 1. The backward and forward fields are
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related via

f2 = e jφb2 + jκe j(φ/2)ψ1 (C1)

b2′ = e jφ f2′ + jκe j(φ/2)ψ2 (C2)

f2′ = e jθ f2 (C3)

b2 = e− jθ b2′ (C4)

where θ is a phase term that depends on the distance between
the planes. With the correct central waveguide length, so plane
choice, θ can be a multiple of 2π resulting in e jθ = e− jθ = 1
and b2 = b2′ , f2 = f2′ . Therefore, one obtains

f2 = e jφb2 + jκe j(φ/2)ψ1, (C5)

b2 = e jφ f2 + jκe j(φ/2)ψ2, (C6)

which can be combined to give Eqs. (5) and (6).
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