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Thermodynamic properties on the homologous temperature scale from direct upsampling:
Understanding electron-vibration coupling and thermal vacancies in bcc refractory metals
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We have calculated thermodynamic properties of four bcc refractory elements—V, Ta, Mo, and W—up to
the melting point with full density-functional-theory accuracy, using the recently developed direct-upsampling
method [J. H. Jung et al., npj Comput. Mater. 9, 3 (2023)]. The direct-upsampling methodology takes full account
of explicit anharmonic vibrations and electron-vibration coupling very efficiently using machine-learning poten-
tials. We have thus been able to compute highly converged free-energy surfaces for the PBE exchange-correlation
functional, from which accurate temperature dependencies of various thermodynamic properties such as the heat
capacity, thermal expansion coefficient, and bulk modulus are accessible. For all four elements, the electronic
contribution is large, including a strong coupling with the thermal vibrations. The atomic forces in W are even
affected by the temperature-consistent Fermi broadening, which alters the free energy by around 3 meV/atom
at the melting point. Trends within group V and group VI refractory elements are observed and explained by
qualitative differences in the electronic density of states. We also provide an estimate of the Gibbs energies of
vacancy formation and the vacancy contribution to the thermodynamics. Lastly and most importantly, our results
are analyzed in terms of the homologous temperature scale relative to theoretically predicted melting points (for
the PBE functional). The homologous temperature dependencies show a remarkable agreement with experiments
and reveal the predictive power of self-consistently determined ab initio thermodynamic properties.
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I. INTRODUCTION

The bcc refractory elements are characterized by very
high melting points, generally above 2000 ◦C (2273 K), high
densities, and hardness, making them appropriate for a wide
range of applications [1–5]. Their high radiation resistance
renders them potential candidates for nuclear reactor de-
sign [6]. In addition to the unary elements, refractory alloys
such as NbMoTaVW and TaVCrW are also used in sim-
ilar applications. A crucial requisite for materials design
for such applications is accurate high-temperature thermo-
dynamic data of the unary systems. With precise knowledge
of the end members, one can also design phase diagrams of
refractory high-entropy alloys [7].

Despite the importance of the refractory metals, and
the experimental difficulties in measuring high-temperature
properties, there have been relatively few attempts to com-
putationally model their unaries from first principles. A
compilation of the available studies that include temperature-
dependent thermodynamic properties is presented in Table I.
Most of the previous studies focused on W and Ta, report-
ing results within the quasiharmonic (QH) approximation.
While the QH approximation is computationally inexpensive
for simple unary systems, it neglects anharmonic vibra-
tional effects [8], particularly important for bcc systems [9].
An advancement over the standard 0 K QH approxima-
tion is to consider effective harmonic Hamiltonians [10] or
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renormalized phonon dispersions [11,12] fitted to molecular
dynamics at higher temperature. However, for bcc refractory
systems, even the use of such effective approaches cannot
fully account for the strong anharmonic effects [9,13].

Over the last decade, thermodynamic integration (TI)-
based techniques have been developed to accurately predict
properties up to high temperatures to density-functional-
theory (DFT) accuracy [8,27–29], including anharmonic,
electronic, and coupling effects. The emergence of machine-
learning interatomic potentials further reduced computational
costs [13,30,31] and allowed for accurate calculations even
for complex structures [26]. Most recently, as a culmina-
tion of the prior TI techniques, a streamlined procedure—the
direct-upsampling approach—was suggested [32], providing
an efficient and relatively straightforward way of computing
thermodynamic properties up to the melting point.

The direct-upsampling method combines machine-
learning moment tensor potentials (MTPs) [33] with TI
and free-energy perturbation (FEP) theory [34]. Out of the
four unary systems whose thermodynamic properties were
calculated with direct upsampling previously [32], niobium
(Nb) was the most challenging, with its high electronic
contribution, electron-vibration coupling, and high melting
temperature. The resulting thermodynamic properties were in
good agreement with experimental results. Nonetheless, the
electron-vibration coupling was not investigated explicitly,
the contribution of vacancies (potentially noticeable at high
temperatures) was not considered, and the inherent error due
to the exchange-correlation (XC) functional lead to some
deviation from experiments.
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TABLE I. Ab initio studies of the isobaric heat capacity (Cp), the thermal expansion coefficient (α) and the bulk modulus (B) for bcc V, Ta,
Mo, and W. The corresponding XC functionals and the potentials representing the core electrons are listed. The columns under “Contributions
to F” indicate which terms (0 K static energy “E0K”, electronic “el”, quasiharmonic “qh”, and anharmonic “ah”) were included to the total
free energy. For works that included an anharmonic contribution, the number of volume V and temperature T data points is mentioned. Studies
including the explicit anharmonic contribution up to all orders and to the accuracy of DFT are printed in boldface. The last three columns
indicate whether a heat capacity, expansion coefficient, or bulk modulus was presented including anharmonic contributions. All of the used
abbreviations are expanded in the Supplemental Material [14].

DFT methodology Contributions to F

Year Ref. Elements XC Potential E0K el qh ah Grid for ah Cah
p αah Bah

2001 [15] bcc W LDA NC x x
2006 [16] bcc Ta PBE FP-LMTO x x x
2006 [17] bcc Ta LDA PAW x x SMM
2006 [18] bcc V PBE LMTO x x x
2008 [19] bcc Mo LDA/PBE FP-LMTO x x x
2009 [20] bcc Ta PBE US x x x
2009 [21] bcc Ta PBE PAW thermal pressure 14V × 7T x
2010 [22] bcc Mo PW91 US x x x
2016 [23] bcc W PBE US x x x
2017 [24] bcc W PBEsol PAW x x x
2021 [25] bcc W PBE PAW x x
2022 [26] bcc W PBEsol PAW x x x TU-TILD+MTP 5V × 13T x x

2023 this paper bcc V, Ta, Mo, W PBE PAW x x x direct upsampling �10V × 11T x x x

In the present paper, we address all of the above challenges,
thereby further evolving the direct-upsampling methodology
and the knowledge on high-temperature thermodynamic prop-
erties. We do so by considering four other refractory elements
vanadium (V), tantalum (Ta), molybdenum (Mo), and tung-
sten (W), which are expected to pose similar challenges
as Nb. We perform free-energy calculations on very dense
volume-temperature grids—a necessity for highly converged
thermodynamic properties up to the melting point—within
the PerdewBurke-Ernzerhof (PBE) [35] XC functional. We
analyze in detail the effect of the electronic temperature on
the molecular dynamics (MD) forces. We break down both
the temperature-dependent vibrational and electronic free en-
ergies into a “pure” and a “coupling” part and study the
separate impact of the vibrations and thermal electronic exci-
tations on the free energies as well as their mutual interaction.
We attempt to compensate for the inherent error in the XC
functional by using a homologous temperature scale relative
to the PBE-predicted melting temperature. Additionally, we
estimate temperature-dependent vacancy formation Gibbs en-
ergies, and evaluate their contribution to the thermodynamic
properties. Finally, we investigate the robustness of the TI, in
terms of stability maps showing the probability to encounter
vacancy diffusion and Frenkel defect formation.

II. METHODS

In order to numerically derive thermodynamic properties,
we calculate the total free-energy surface for the four bcc
refractory elements (V, Ta, Mo, and W). The free energies
are obtained using the recently developed direct-upsampling
methodology on a highly dense volume-temperature (V, T )
grid. An analysis of the direct-upsampling methodology can
be found in Ref. [32], with a detailed description of the proce-
dure provided in the Supplementary Information to Ref. [32].

The free energy is adiabatically decomposed as [36]

F (V, T ) = E0K(V ) + F el(V, T ) + F qh(V, T ) + F ah(V, T ).

(1)

Here, E0K(V ) represents the energy-volume (E − V ) curve
at 0 K, F el(V, T ) the electronic free energy, F qh(V, T ) an
effective QH free energy, and F ah(V, T ) the (remaining)
anharmonic contribution. The last two terms constitute the
vibrational free energy of the ions, F vib(V, T ) = F qh(V, T ) +
F ah(V, T ). Once computed via direct upsampling, the free-
energy surface is Legendre transformed to obtain the Gibbs
energy G(p, T ) at a pressure p as

G(p, T ) = F (V, T ) + pV, (2)

from which all thermodynamic properties can be obtained
using well-known thermodynamic relations [32].

The electronic free energy can be considerably affected by
thermal vibrations [37]. Likewise, the thermal ionic vibrations
can experience a change by the thermal electronic excitations,
although the effect is expected to be marginal. One aim of the
present study is to evaluate, in particular, the latter coupling
effect. The direct-upsampling methodology as described in
Ref. [32] is well suited for that purpose as it accounts for
all relevant terms: the full vibrational free energy including
explicit anharmonic contributions, the electronic free-energy
contribution through finite-temperature DFT [38], and the re-
spective coupling contributions between ions and electrons.
The details of the exact relations are given in Sec. II A.

Another aim of our paper is to evaluate the impact of ther-
mal, noninteracting vacancies on the bulk thermodynamics.
The direct-upsampling methodology is well suited for that
purpose as well. Specifically, in addition to the perfect bulk,
the Gibbs energy of a vacancy-containing supercell needs
to be computed including the free energy terms as given
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in Eq. (1). From the difference of the Gibbs energies of
the vacancy-containing supercell and the perfect bulk (with
proper normalization factors), the Gibbs energy of vacancy
formation G f

vac can be obtained. The contribution to the bulk
thermodynamics is then given by

G(p, T ) = Gperf (p, T ) − kBT exp

[
−G f

vac(p, T )

kBT

]
, (3)

where Gperf (p, T ) is the Gibbs energy of the ideal perfect
bulk without vacancies. The details of how we proceed in this
respect are given in Sec. II B.

A. Electron-vibration coupling terms

For the analysis and the discussion of the coupling terms,
it is useful to have specific expressions available. To derive
those, we write the free-energy difference �F between the
QH reference (without thermal electronic excitations) and the
fully anharmonic DFT system as

�F (T ) =
∫

dR dλ ρ(R; λ, T ) �E (R; T ), (4)

where R = {RI} denotes the set of atomic coordinates RI , λ

the coupling parameter between the QH and anharmonic sys-
tem, ρ(R; λ, T ) the probability distribution in configuration
space, and �E (R; T ) the energy difference between the QH
and anharmonic system for a particular ionic configuration.
The integral in Eq. (4) is multidimensional and includes an
integral over λ (from zero to one) and an integral over the
configuration space for each λ.

As defined, �F in Eq. (4) takes all thermodynamic effects
related to anharmonic vibrations and electronic excitations
into account and equals the sum of F el + F ah in Eq. (1).
However, the formulation in Eq. (4) is better suited to derive
explicit expressions for the coupling terms. To this end, we in-
troduce two temperatures, Tion and Tel, where Tion corresponds
to the thermal vibrations of the ions and Tel to the broadening
of the Fermi-Dirac distribution of the electrons. With these,
we rewrite Eq. (4) as

�F (Tion, Tel ) =
∫

dR dλρ(R; λ, Tion, Tel ) �E (R; Tel ).

(5)

Note that the probability density ρ depends on both Tion and
Tel. In the actual calculations, ρ is determined via MD and thus
via the forces acting on the atoms. The forces are controlled
by the thermostat with which we associate the temperature
Tion and they can additionally be affected by the electron
excitations, i.e., by Tel. In contrast to ρ, the energy difference
�E depends only on the Fermi broadening.

Next, we decompose �F into “pure” and “coupling” con-
tributions as follows. For the pure contributions we write

◦F ah(Tion )=
∫

dR dλρ(R; λ, Tion, Tel = 0) �E (R; Tel = 0),

(6)

and

◦F el(Tel ) =
∫

dR dλ δ(R − Rstatic, λ − 1) �E (R; Tel ),

(7)
where, respectively, the “nonrelevant” temperature is set to
zero, i.e., Tel = 0 K for ◦F ah and Tion = 0 K for ◦F el, and δ

is the Dirac delta function. The pure anharmonic free energy
◦F ah comes from atomic vibrations while the electronic tem-
perature is kept fixed at 0 K, such that neither the forces nor
the energies are affected by electronic excitations. The pure
electronic free energy ◦F el is simply the electronic free energy
of the ideal, static atomic structure (here corresponding to the
bcc lattice) with coordinates Rstatic and with the electronic
temperature turned on.

For the coupling terms we write

F el←vib(Tion, Tel ) =
∫

dRdλρ(R; λ, Tion, Tel=0)�E (R; Tel )

− ◦F ah − ◦F el, (8)

and

F vib←el(Tion, Tel ) =
∫

dR dλ ρ(R; λ, Tion, Tel ) �E (R; Tel )

− F el←vib − ◦F ah − ◦F el. (9)

Here, F el←vib is the change in the electronic free energy due
to the ionic vibrations at the given temperature, which is
reflected in a smoothening of the electronic density of states
as the thermal displacements of atoms increase [37]. On the
other hand, F vib←el is the effect of a temperature-consistent
Fermi smearing on the forces that determine the configura-
tional space distribution. Note here that the coupling terms are
related to the full vibrational effects (not only the anharmonic
ones), because we exclude all electronic temperature effects
in the QH reference energies. With the above definitions, we
have

�F (Tion, Tel ) = ◦F ah(Tion ) + ◦F el(Tel )

+ F el←vib(Tion, Tel ) + F vib←el(Tion, Tel ).

(10)

In the direct-upsampling methodology [32], the pure an-
harmonic contribution ◦F ah is obtained via the following two
steps: (1) Thermodynamic integration from the QH reference
to the MTP (�F qh→MTP), and (2) upsampling to DFT (�F up).
During these two steps the electronic temperature is turned
off. We thus have

F ah = ◦F ah = �F qh→MTP + �F up, (11)

and, as indicated, ◦F ah directly corresponds to F ah from
Eq. (1). The remaining terms from the above discussion are
captured within the direct-upsampling methodology via the
last upsampling step for the electronic free energy using the
FEP formula, i.e.,

F el = −kBT ln

〈
exp

(
−EDFT

el − EDFT

kBT

)〉
MTP

, (12)

where kB is the Boltzmann constant and EDFT
el and EDFT

are the DFT energies including and excluding electronic
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FIG. 1. Free-energy surfaces illustrating various quantities of relevance to the direct upsampling methodology: (1) the (V, T ) grids by
the crossings of the gray lines; (2) the probabilities for vacancy migration by the light blue contours; (3) the probabilities for Frenkel defect
formation by the red contours; (4) the thermal expansions at ambient pressure by the green lines; (5) the experimental melting points by the
hollow black circles; (6) the PBE-predicted melting points by the filled black circles (for Ta and Mo, these are estimates from our data); and
(7) the explicitly computed Gf

vac values at 0 K and at (p×, T ×) by the blue crosses. The probabilities of vacancy migration correspond to counts
of the onset of migration in 3 ps long MTP MD runs. For Frenkel defects, the probabilities correspond to counts of formation in 10 ps long
runs (in an ideal perfect bulk).

temperature, respectively. Thus, we can write

F el = ◦F el + F el←vib + F vib←el, (13)

where F el corresponds to the definition in Eq. (1). The
first-order approximation of the FEP formula in Eq. (12)
gives ◦F el + F el←vib, and the higher-order terms account for
F vib←el. Hence, each contribution to F el can be separately
calculated.

B. Vacancy formation Gibbs energies

Computation of the full pressure and temperature depen-
dence of the Gibbs energy of vacancy formation G f

vac(p, T )
is very demanding despite the effectiveness of the direct-
upsampling methodology. One reason for this is that the error
in G f

vac scales with the number of atoms in the vacancy-
containing supercell. Another reason is the tendency of the
vacancy to migrate during the MD runs, which challenges
a straightforward thermodynamic integration from the QH
reference. In order to circumvent these difficulties, we take an
approximate approach that reduces the computational effort
significantly, yet captures the main physical mechanism: the
strong (non-Arrhenius like) temperature dependence of G f

vac

due to anharmonic excitations [39,40].

Specifically, we first determine the perfect bulk free energy
surfaces (Fig. 1) and the corresponding thermal expansion
at ambient pressure (green lines). Next, we use the MTPs
to perform a set of representative MD runs on supercells
with a vacancy, to obtain information on the migration ten-
dency of the vacancy. This tendency is indicated by the light
blue lines in Fig. 1, which show the probability of the on-
set of migration of the vacancy. Based on this information
we determine a point (V ×, T ×) on the perfect bulk thermal
expansion line (thick blue crosses) that is high enough to
capture the effect of temperature on G f

vac(p, T ), but not too
high (such as to cause vacancy migration) in order to allow for
enough statistics during thermodynamic integration from the
fixed-lattice QH reference. Typically, there is less than 60%
probability of vacancy migration at the chosen (V ×, T ×). We
then apply direct upsampling to compute all free-energy con-
tributions from Eq. (1) for the vacancy-containing supercell
(with 53 atoms) at (V ×, T ×). We obtain the Gibbs energy of
the vacancy-containing supercell G(p×, T ×) by performing a
Legendre transformation. Here, we calculate the Gibbs energy
also at ambient pressure, and approximate the volume in the
vacancy-containing supercell with the volume of the perfect
bulk V ×. This amounts to neglecting the term related to the
volume of vacancy formation. We note that the pV term at
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5 ps 10 ps 15 ps

5 ps, relaxed 10 ps, relaxed 15 ps, relaxed

FIG. 2. Frenkel defect formation and kinetics in perfect bulk V
during an MTP MD run at 2339 K. The top row shows MD snapshots
and the bottom row the corresponding relaxed structures, seen along
the [001] direction. The arrows indicate displacement vectors of the
self-interstitial, which itself is shown by the red balls (dumbbell
configuration), while the square indicates the vacancy that is left
behind. After 15 ps of the self-interstitial formation, it comes back
to the vacancy site and the defects annihilate.

ambient pressure is small; for example, 0.01 meV/atom for
W with V × = 17.28 Å3/atom, thus validating our approxima-
tion. Eventually, we are able to compute the Gibbs energy of
vacancy formation G f

vac(p×, T ×) at the single point (p×, T ×).
In order to obtain the full temperature dependence of

G f
vac(p×, T ), we utilize the result of Ref. [39] where a

quadratic temperature dependence was found to well describe
the Gibbs energy of vacancy formation. Specifically, this de-
pendence is given by

G f
vac(p×, T ) = H f

0K + S′T 2

2
, (14)

where H f
0K and S′ are the two parameters to be determined. We

determine H f
0K by standard 0 K vacancy calculations (53-atom

supercell) with relaxed atomic coordinates and at the 0 K
equilibrium volume of the perfect bulk supercell (thus again
neglecting the volume of formation term). The S′ parameter is
obtained by utilizing the G f

vac(p×, T ×) value from the previ-
ous paragraph.

C. Frenkel defect formation

At very high temperatures and volumes, we have observed
Frenkel defect formation [41,42] in the perfect bulk systems
during the MTP MD runs. The probabilities of the defect
formation are indicated in Fig. 1 by the red contour lines.
Figure 2 illustrates the atomistic details of the Frenkel defect
formation and kinetics at different MD times. At first, a self-
interstitial is created leaving a vacancy behind. When relaxed,
the self-interstitial is seen to form a “dumbbell” configuration
with two atoms occupying a single lattice site (red balls). Both
the vacancy and the self-interstitial migrate through the lattice,
and it can happen that they annihilate after some time [43]. If
such defects occur too frequently during the MD run, the con-
vergence of the TI from a fixed-lattice QH reference becomes

inhibited. This is why it was not possible to obtain explicit
free energy values at some of the highest (V, T ) points, which
explains the few missing points in the third column of Fig. 3
(e.g., for Ta at 3525 K).

D. Computational details

For the DFT calculations, we used the projector-augmented
wave (PAW) method [44] as implemented in the Vienna ab
initio simulation package (VASP) [45,46]. We used PAW po-
tentials with the semi-core p-electrons included in the valence
band as provided in VASP 5.4.4. For W also the semi-core
s-electrons were treated as valence electrons. For the XC
functional, we used the generalized gradient approximation
(GGA) in the PBE parametrization [35].

The finite-temperature DFT was realized with a
temperature-consistent Fermi-Dirac distribution. For
calculations excluding the electronic temperature, we instead
used the first-order Methfessel-Paxton scheme [47] with a
smearing width of 0.2 eV, with the energy extrapolated to zero
smearing. The k-point meshes were constructed according to
Monkhorst-Pack [48].

We used moment tensor potentials (MTPs) fitted with the
MLIP code [33,49] as the intermediate, auxiliary potentials in
the direct-upsampling procedure. The same MTPs were used
for modeling both the perfect bulk and the vacancy-containing
supercell, for each element.

The (V, T ) grids used for the computation of the free
energy surfaces contained 9 × 14 (V), 14 × 15 (Ta), 12 × 11
(Mo), and 16 × 13 (W) points. These grids are indicated by
the gray lines in Fig. 1. Further details regarding direct up-
sampling, including the DFT parameters, the MTPs and the
effective QH references, can be found in the Supplemental
Material [14].

III. RESULTS AND DISCUSSION

A. Free energies

Figure 3 shows the Gibbs energies G(T ) at ambient pres-
sure (first column), free energies F (V ) at the experimental
melting temperature (second column), and the complete an-
harmonic free-energy surfaces F ah(V, T ) as a projection onto
the plane spanned by the volume and free-energy axes (third
column) for the four bcc refractory systems.

On the total scale, the computed Gibbs energies including
all finite temperature contributions (solid blue lines) follow
closely the experiment-based CALPHAD-SGTE data [50]
(open circles) for all elements. The zoom-ins to high tem-
peratures provided in the insets reveal, however, deviations
of a few tenths of meV/atom. For Ta, Mo, and W, the DFT
PBE data are lower than the CALPHAD data. Such a behavior
of the PBE functional was observed previously for other ele-
ments [32]. In contrast, the Gibbs energy for V is higher than
the CALPHAD data at high temperatures, which is an unusual
behavior for the PBE exchange-correlation functional. The
difference in behavior can be correlated with the 0 K equi-
librium lattice parameters. For Ta, Mo, and W, the calculated
lattice parameter is larger than the experimental one, as seen
in Table II. This is expected for PBE calculations [51]. For
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FIG. 3. Ab initio calculated Gibbs energy G(T ) at 100 kPa, free energy F (V ) at Tmelt, and anharmonic free energy F ah(V, T ), for the four
elements using the PBE XC functional. The G(T ) values are referenced to the minimum energy of the static lattice at 0 K. Results from
CALPHAD-SGTE data [50] (aligned to the ab initio values at room temperature) are shown in blue dots for comparison. The insets contain
the full ab initio Gibbs energy at high temperatures with respect to the CALPHAD-method values. For G(T ) and F (V, Tmelt ) curves including
the contributions from 0 K, the effective QH potential (qh), anharmonicity (ah), and electronic temperature (el) are shown. The vacancy
contribution (vac) is shown only for G(T ) as it is only evaluated at Vp(T ).

V, on the other hand, the PBE-predicted lattice parameter is
slightly underestimated as also reported previously [51,52].

In the second column, the importance of the different con-
tributions to the perfect bulk free energy becomes visible.
As is characteristic for the high-melting refractory elements
[37], the electronic contribution is large at the melting tem-
perature for all four elements, lowering the free energy by
more than −100 meV/atom. The equilibrium volume at

the melting point (corresponding to the minimum of the
curve) is slightly increased by the electronic contribution
for all the elements. The anharmonic contribution seen as
the difference between the orange and yellow lines for the
melting temperature in the second column, or explicitly for
all temperatures in the third column, is likewise relatively
large for these bcc refractory systems. The magnitude of
the anharmonic free energy goes up to about 60 meV/atom,
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TABLE II. PBE-predicted and experimental lattice parameters
and melting points for the systems.

aPBE
0K (Å) aexp

0K (Å) T PBE
melt (K) T exp

melt (K)

V 2.998 3.024a 2154b 2183c

Ta 3.320 3.299a 3000d 3290c

Mo 3.160 3.141a 2750d 2895c

W 3.186 3.160a 3330b 3687c

aRecited from Ref. [51]
bFrom Ref. [53].
cFrom Ref. [54].
dEstimated based on fit to the CALPHAD [50] heat capacity.

which is significantly larger than the magnitude observed
previously for fcc systems [8]. A qualitative difference is
seen in the anharmonic free energy between the group
5 and group 6 elements. The group 5 elements V and
Ta both have a positive anharmonic free-energy contri-
bution. This is similar to the values obtained for the
other group 5 element Nb [32]. Contrarily, the group
6 elements Mo and W have a large and negative anharmonic
free-energy contribution. This difference in trend has recently
been explained in terms of opposite effects of the renormaliza-
tion of phonons on the electronic density of states (eDOS) and
force constants in group 5 and group 6 elements, respectively
[9].

The dense (V, T ) grids for F ah shown in the third column
of Fig. 3 are a prerequisite for obtaining converged thermody-
namic properties, which rely on derivatives of the free-energy
surface. It is also important that the grids extend beyond the
volume range of interest (V0K to Vmelt) and above the high-
est target temperature (here experimental melting points). A
sufficiently high-order polynomial is needed to capture the V
and T dependence of the thermodynamic properties, and this
polynomial requires a sufficiently dense and extended (V, T )
grid to avoid overfitting.

Based on the approach taken to compute the impact of
thermal vacancies (Sec. II B), we have the full temperature-
dependent contribution to G(T ) at ambient pressure available.
This contribution corresponds to the difference between blue-
dashed and blue lines in the first column of Fig. 3. However,
it is not recognizable due its extremely small value at all
temperatures, which is below 1 meV/atom even at the melting
point for any of the elements.

B. Thermodynamic properties

Figure 4 shows the calculated heat capacity, linear ther-
mal expansion coefficient, and bulk modulus for the four
systems. The electronic and the anharmonic contributions
play an important role in the final, predicted properties, as
they significantly alter the outcome of the QH approximation.
The electronic contribution affects thermodynamic properties
similarly in all the four elements, i.e., it increases the heat
capacity and the expansion coefficient and decreases the bulk
modulus (change from red dashed to blue dash-dotted lines).
Contrarily, the opposite sign of the anharmonic free energy
in the group 5 and group 6 elements (discussed in the previ-
ous section) affects the thermodynamic properties in opposite

ways. For example, the expansion coefficient decreases in V
and Ta, as compared to Mo and W, when including the anhar-
monic vibrations (change from yellow dotted to red dashed
lines). The vacancy contribution is almost negligible in the
thermodynamic properties (solid blue and dashed blue lines
fall almost on top of one another), with only a small effect
seen in the heat capacity very close to the melting point.

The solid blue curves include all contributions to the free
energy. For Ta, Mo, and W, the heat capacity and expansion
coefficient are overestimated in comparison to CALPHAD
and experimental data, and the bulk modulus for Mo and W
is underestimated. The trend is opposite for V. This can again
be correlated with the difference in the predicted lattice pa-
rameters inherent to the GGA-PBE functional, in comparison
to experimental values. Ta, Mo, and W show a softening as
expected by the overestimated lattice parameter, while V is
correspondingly stiffer.

Even though the agreement with experimental data is
satisfactory, there are still discrepancies between the PBE-
predicted properties including all contributions and the
experimental values, especially as the temperature nears the
experimental melting point. We foresee this as an inherent
error in the ab initio-predicted values coming from the XC
functional. To compensate for the discrepancy, one possible
approach would be to calibrate the thermodynamic properties
by utilizing the experimental 0 K equilibrium lattice param-
eters and bulk moduli [65]. However, since we are mainly
interested in the accuracy of the thermodynamic properties
at high temperatures and since we prefer a self-contained
theoretical approach, we propose to rescale the temperature
dependence of the properties with the melting temperature, as
described next.

C. Properties on the homologous temperature scale

Figure 5 shows the calculated thermodynamic properties
including all contributions on the homologous temperature
scale. The homologous temperature scale uses a relative
temperature normalized with respect to a consistent melting
temperature. For the experimental and CALPHAD data, the
experimental melting points as given in Table II are used to
rescale the temperature axis. For the ab initio results, for V and
W, the ab initio-predicted PBE melting points are used instead
for the rescaling. The PBE melting points were calculated us-
ing the TOR-TILD approach [53,66] and are listed in Table II.
The TOR-TILD calculations have so far been performed only
for unary V and W.

The agreement with experiments for V and W is remark-
able on the homologous temperature scale. For Ta and Mo,
we rely on the excellent agreement seen for V and W, and
estimate the PBE melting temperatures by rescaling the PBE
heat capacities to match the CALPHAD ones. Our estimates
agree very well with recent predictions of the PBE melting
temperature using machine-learning interatomic potentials
[67]. We then use our estimated melting points to obtain the
homologous temperature scale for Ta and Mo. In the third
column in Fig. 5, instead of the absolute bulk modulus, we plot
the relative bulk modulus with respect to its corresponding
0 K value on the homologous temperature scale, to achieve a
similar relative comparison.
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FIG. 4. Ab initio calculated Cp(T ), α(T ), and BS (T ) up to the melting point for V, Ta, Mo, and W at ambient pressure. Calculations are
compared to CALPHAD or experimental results shown in blue symbols. Results considering different excitation mechanisms [effective QH
(qh), including anharmonic (ah), electronic (el), and from vacancies (vac)] are shown. The following CALPHAD or experimental references
are used for comparison: Cp [50] and [55] (Ta); α(T ) [56,57]; and BS (T ) [58] and [59] (V), [60,61] (Ta), [62,63] (Mo), and [64] (W).

On the homologous temperature scale, the differences seen
between the ab initio values and the experimental values in
Fig. 4 are redeemed to a large extent. The agreement between
the ab initio-predicted properties and the experimental ones is
much stronger on the homologous scale. The changes in the
thermodynamic plots on the homologous temperature scale
are less evident for V compared to the other elements. This
is because the predicted melting point for V estimated by the
PBE functional is very close to the experimental one. Hence,
the results remain almost the same as on the absolute tem-
perature scale. Therefore the PBE results for V still slightly
underestimate the heat capacity and thermal expansion coef-
ficient compared to the experimental data. This discrepancy
may be related to a missing paramagnetic contribution, the
determination of which is beyond the scope of our paper. We

further note that the temperature dependence of the relative
bulk moduli (third column in Fig. 5) is in excellent agreement
with the experimental data for all elements.

The overall outstanding agreement of our results to experi-
mental data on the homologous temperature scale warrants the
use of the ab initio data to evaluate and resolve experimental
discrepancies. For example, this can be illustrated using the
expansion coefficient of Ta in Fig. 5. The ab initio results fall
almost on top of one set of experimental data (represented by
blue circles), whereas the other set of data (light blue plus
marks) diverge above 0.5 T/Tm. Given the overall reliability
of our data, we can say with good conviction that the second
set of experimental data is inaccurate, either coming from
challenging experimental conditions at high temperature, or
from approximations in the measurement.
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FIG. 5. Ab initio calculated Cp(T ), α(T ), and BS (T )/BS (0) including all contributions on a homologous temperature scale, compared to
CALPHAD/experimental data [50,55–64]. The melting points used for the homologous scale are (1) PBE-predicted values for ab initio V and
W, (2) estimated values for ab initio Ta and Mo based on rescaling to the corresponding CALPHAD heat capacities, and (3) experimental values
for CALPHAD/experimental data. The melting temperatures used are specified in Table II. The third column is the relative bulk modulus,
where BS (0) is the corresponding 0 K value.

D. Gibbs energies of vacancy formation

We have shown that the effect of thermal vacancies on
the Gibbs energy, and eventually to the thermodynamic
properties of the bulk, is very small and almost negligible.
Nevertheless, calculating the temperature-dependent vacancy
formation Gibbs energy G f

vac(p, T ) is crucial in studying
vacancy diffusion, which is relevant, e.g., for phase transfor-
mations. The procedure to obtain G f

vac(p, T ) was outlined in
Sec. II B. As a first step, we calculate the 0 K enthalpy of
vacancy formation H f

vac.
Table III shows a list of previously calculated H f

vac val-
ues from literature [and one high-temperature G f

vac(T )].
Evidently, there is scatter in the existing literature data,

originating from different XCs, methodologies and approx-
imations used for the calculations. Likewise, experimental
values (not shown here) determined from positron anni-
hilation spectroscopy or resistivity measurements possess
large uncertainties that range at least several hundreds of
meV/vacancy [72]. This is because Arrhenius-type temper-
ature dependencies are fit to high-temperature experimental
data, and the model does not extrapolate well to 0 K [39].

In the penultimate row in Table III, we show our cur-
rently calculated values of H f

vac, determined to high accuracy
within the PBE XC functional. Additionally, in the last row
in the table, we also show the Gibbs energy of formation
G f

vac at (p×, T ×) [see Sec. II B for how (p×, T ×) is cho-
sen]. Using the H f

vac value at 0 K and the G f
vac value at
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TABLE III. Vacancy formation enthalpies (H f
vac) at 0 K and Gibbs energies (Gf

vac) at finite temperatures in eV/vacancy. For the finite-
temperature results of this paper, also the bounds for the 95% confidence intervals resulting from the thermal averaging in the direct-upsampling
procedure are presented. All of the used abbreviations are expanded in the Supplemental Material [14].

Ref. Method XC T V Ta Mo W

[68] FP-LMTO LDA unrelaxed 0 K 3.06 3.49 3.13 3.27
[69] FP-LMTO LDA unrelaxed 0 K 2.20 2.41 2.50 3.04
[70] NC LDA 0 K 2.48 3.20 2.85 3.35
[70] FP-LMTO/NC LDA 0 K 2.65 3.20 3.00 3.64
[70] FP-LMTO/NC PW91 0 K 2.55 3.20 2.90 3.60
[41] PAW PBE 0 K 2.04 2.86 2.79 3.22
[41] PAW AM05 0 K 2.61 3.17 3.11 3.62
[71] PAW AM05 2481 K 2.51a

This paper PAW PBE 0 K 2.42 2.91 2.84 3.36
This paper PAW PBE 70–85% Tmelt 2.04 ± 0.06 2.35 ± 0.08 2.15 ± 0.07 2.42 ± 0.06

aEstimated from the temperature dependent energy of formation in their results.

(p×, T ×) in Eq. (14), we obtain S′ and thus the tempera-
ture dependence of the Gibbs energy of vacancy formation
G f

vac(p, T ).
Figure 6 shows the such-obtained Gibbs energies of

vacancy formation on the absolute and the homologous tem-
perature scales. The points used to determine the quadratic
temperature dependencies according to Eq. (14) are rep-
resented with cross marks. For comparison, in Fig. 6(a),
we also show the Gibbs energy of vacancy formation
for three fcc systems (Al, Cu, and Ni) from previous
studies [39,40].

A strong deviation from an Arrhenius-type temperature
dependence of the Gibbs energy of vacancy formation was
proven earlier for the fcc systems. A linear model was unable
to simultaneously capture both high-temperature experimen-
tal Gibbs energies, and computed 0 K vacancy formation
enthalpies. A quadratic temperature dependence was thus for-
malized in Ref. [39]. The breakdown of the Arrhenius-type
behavior was shown to arise from explicit anharmonic behav-
ior, especially seen in the direction from the nearest neighbor
towards the center of the vacancy in the fcc systems. In the
bcc refractories, with a much stronger anharmonicity, it thus
becomes necessary to use such a quadratic behavior of the
vacancy formation Gibbs energy.

The S′ parameter that quantifies the temperature depen-
dence in Eq. (14) falls in a similar range between 0.0018
and 0.0036 kB K−1 for both the previously calculated fcc
unaries and the current bcc refractories. Since we use the
same quadratic formulation, the temperature dependence of
G f

vac [Fig. 6(a)] is also similar in the bcc refractories to the fcc
systems, but 2–3 times higher in magnitude. The temperature-
dependent vacancy concentration for the bcc refractories is
also calculated from G f

vac(p, T ), and is shown in the inset to
Fig. 6(b). At Tm, the vacancy concentration lies between 10−3

and 10−4 vacancies per atom, which is in the same order of
magnitude as typical experimental values [72].

E. Electron-vibration coupling

The strong contribution of the electronic free energy has
been highlighted for all four refractory systems in the second
column of Fig. 3 (difference between red and blue lines).
The electronic free energy can be decomposed into “pure”
and “coupling” contributions, where the coupling includes
both the effect of thermal vibrations on the electronic free
energy F el←vib, and the electronic temperature on the atomic
forces F vib←el. Each of these terms was individually defined
in Sec. II A. Here, we separately analyze their contribution to

FIG. 6. Calculated vacancy formation Gibbs energies (a) on an absolute temperature scale compared to fcc elements from Refs. [39,40] up
to the experimental melting points, and (b) on the homologous temperature scale relative to the PBE-predicted melting temperature. The crosses
represent the calculated data points and the lines are the temperature dependencies using Eq. (14). The inset in (b) shows the corresponding
vacancy concentrations.
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FIG. 7. Temperature dependence of the coupling contributions to the free energy at ambient pressure for the bcc refractory systems,
including Nb data from Ref. [32]. (a) F el←vib; the difference between the electronic contribution calculated from configurations with ionic
temperature and that from the ideal 0 K lattice. (b) F vib←el; the effect on the vibrational free energy, from using finite-temperature DFT
(Tel = Tion) as compared to the Methfessel-Paxton smearing scheme (Tel = 0 K).

the above-mentioned strong, total electronic free energy [F el

in Eq. (13)] for the four refractory metals in focus so far, and
additionally for bcc Nb.

Figure 7(a) shows F el←vib(T ). The contribution of F el←vib

was already calculated for Nb and W in Ref. [37]. Having cal-
culated the results here for more refractory elements, we can
infer that there are two classes with either a strong increase
(V, Nb, Ta) or a strong decrease (Mo, W) of F el←vib(T ) with
temperature. These two classes reflect the group structure of
the periodic table. The elements with increasing F el←vib(T )
belong to the group 5 elements, and the ones with a decreas-
ing F el←vib(T ) to the group 6 elements. Interestingly, on an
absolute temperature scale as utilized in Fig. 7(a), we observe
a rather similar temperature dependence of the magnitude of
F el←vib(T ) for all five elements. The strongest contribution of
≈ − 46 meV/atom is observed for W at its melting point.

The difference in trends in F el←vib [Fig. 7(a)] can be
explained in light of recent discussions [9,37]. We take Ta
(group 5) and W (group 6) as examples. Figure 8 shows the
impact of temperature on their eDOS’. The blue curves show
the eDOS for the static, ideal bcc lattice and the black dashed
curves are the average eDOS’ for snapshots from an MD run
at T melt (excluding the impact of electronic temperature). The
Fermi level in Ta lies close to a peak in the static eDOS,
whereas in W it lies in a valley. The eDOS’ are significantly
flattened due to thermal vibrations, as seen by the black
dashed curves. In Ta, this lowers the value of the eDOS at the
Fermi level, leading to a decrease in magnitude in F el and thus
to a positive F el←vib. In W, on the other hand, thermal vibra-
tions increase the eDOS at the Fermi level, thereby increasing
the magnitude of F el (i.e., negative F el←vib).

Including also electronic temperature by applying the
Fermi-Dirac distribution in the self-consistent DFT calcu-
lations has a negligible impact on the eDOS’, as seen by
comparing the orange curves to the black dashed ones in
Fig. 8. Nevertheless, there is an influence of the electronic
temperature on the free energy. This effect is described by
F vib←el(T ), which we show in Fig. 7(b). The F vib←el contri-
bution is calculated from the higher-order terms of the FEP
formula [Eq. (12)] on snapshots generated by the MTP. As
can be observed, it is significantly smaller than F el←vib, and
negative for all the bcc refractory systems. Only in the case
of W, near its melting point, does the contribution reach

an appreciable magnitude of −2.7 meV/atom. Since the
contribution is evaluated from the higher-order terms of the
FEP formula, this contribution will by definition always be
negative.

To understand the effect of Tel on the vibrations in the
refractory systems, we first analyze the impact of Tel on
MD forces. Figure 9 shows the correlation between forces
computed with the Methfessel-Paxton smearing and forces
resulting from Fermi-broadened self-consistent calculations
for the same snapshots. We see a good correlation with small
standard deviations for all refractory metals. A slight increase
of the standard deviation is observed for the heavier elements

FIG. 8. Electronic density of states (eDOS) for Ta and W as
a function of energy relative to the Fermi level. The blue curves
correspond to the 0 K ideal bulk, and the black dashed and the orange
curves correspond to the average from randomly chosen snapshots
at Tmelt excluding and including the electronic temperature, respec-
tively. The standard deviation is marked by the orange shaded area.
The insets show detailed views around the Fermi level, which are of
relevance to the convergence properties discussed in the Supplemen-
tal Material [14]. The solid gray lines indicate the Fermi broadening
of the electronic occupancies at the melting temperature.
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FIG. 9. Correlation between forces with ( fTion;Tel ), and without
( fTion;Tel=0) the impact of electronic temperature Tel. The top right
corner shows the corresponding difference in forces ( fTion;Tel=0 −
fTion,Tel ). The red lines are trend lines (linear fits) to guide the eye
and the root-mean-square difference is denoted in the lower right
corners. Note that the configurations are generated without electronic
temperature.

and for the group 6 elements. This trend is better visible in
the smaller plots in the top right part of the figure, where the
difference in forces (without and with electronic temperature)
is plotted. The difference plots reveal another interesting fea-
ture that is highlighted by the red lines, which reflect linear
fits to the data. For V, Nb, and Ta (group 5), when including
Tel the average forces become slightly stiffer (negative slopes
for the red lines). This can also be explained by comparing
the dashed black and orange lines in the insets in Fig. 8. For
Ta (and for group 5 elements), the effective decrease in the
eDOS due to the partial occupancy around the Fermi level,
where the slope is negative (see Fig. 8), leads to an increased
relative stability of the structure. In contrast, the electronic
temperature occupancy for Mo and W (group 6) leads to an
effective increase in the eDOS around the Fermi level (where
the slope is positive), and gives instead softer forces (positive
slope for the red lines in Fig. 9).

The effect of Tel on the atomic vibrations is further unveiled
by analyzing the nearest-neighbor distributions during MD
simulations with and without the electronic temperature. We
demonstrate this for W in Fig. 10. The first row shows (a)
the first-nearest-neighbor (1NN) and (b) the second-nearest-

FIG. 10. Distribution density histograms of first [(a),(b)], and
second [(c),(d)] nearest-neighbor (1NN and 2NN) distances pro-
jected onto the (1̄10) plane for W at Tmelt and close to Vmelt without
Fermi smearing [(a),(c)] and with Fermi smearing [(b),(d)]. (e)
Distribution densities, ρ, corresponding to (a, b, c and d) with
applied Gaussian smearing with standard deviation 0.05 Å. They
are projected onto the [111] and [001] vector, for 1NN and 2NN,
respectively. (f) Effective 1D potentials, veff , constructed from the
distribution densities. For Ta the effect is smaller, see Fig. S4 in the
Supplemental Material [14].

neighbor (2NN) distribution contours projected on the (1̄10)
plane during an MTP MD run at Tmelt with Tel = 0 K. The
corresponding contours in the second row [(c) and (d)] are
from an MD run with an MTP trained to DFT that includes the
electronic temperature. In the 2D contour plots no differences
are visible. Thus we additionally plot the 1D distribution
densities and the corresponding effective 1D potential (veff =
−kBT ln ρ) in (e) and (f) for the 1NN and 2NN, respectively.
When Tel is included, the softer forces seen for W (see also
Fig. 9) lead to a broader distribution (solid blue curves), which
is slightly more apparent in the 2NNs. In Ta (group 5), there is
almost no visible effect of Tel on the distributions (cf. Fig. S4
in the Supplemental Material [14]), which is consistent with
the much smaller impact of Tel on the forces seen in Fig. 9 and
the smaller F vib←el(T ) values in Fig. 7(b).

It should be stressed that, although there is a small differ-
ence in trend in the atomic forces while including Tel between
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FIG. 11. (a) Difference in the QH vibrational free energy for bcc W at constant volume as a function of ionic temperature Tion for different
electronic temperatures Tel. The difference is with respect to the QH free energy at Tel = 0 K. The orange lines correspond to several different,
fixed Tel and the green line to Tel = Tion. (b) Difference in the QH vibrational free energy at Tmelt and close to Vmelt (green bars) for all four
elements and additionally for fcc Rh [73], compared to F vib←el (black bars). The black bars are scaled with a factor of five for visibility. The
absolute values are denoted at the edge of each bar.

group 5 and group 6 refractories, there is always a decrease
in F el. That is, when the correct forces corresponding to the
energies are taken into account, the free energy will always
decrease, in consistency with the higher-order terms of the
FEP always being negative.

F. Exaggerated impact of electronic temperature
in the quasiharmonic approximation

Based on the accurate F vib←el data [Fig. 7(b)], we can
evaluate the possibility to approximate this term by its
QH counterpart, analogously labeled F qh←el. We determine
F qh←el by varying the electronic temperature (up to the
melting point) in the calculation of the forces from which
the dynamical matrix is derived. The forces correspond to
snapshots from a 20-K MD run according to the standard pro-
cedure within the direct-upsampling methodology. Defined in
this way, F qh←el captures the impact of electronic temperature
on the low-temperature-QH free energy.

Figure 11(a) shows a detailed analysis of the F qh←el contri-
bution for W. The orange lines correspond to the change in the
QH free energy for different fixed electronic temperatures Tel

(indicated by the orange numbers). The green line shows the
change in the QH free energy as the electronic temperature
changes correspondingly with the ionic temperature (Tel =
Tion). As Tel increases, the QH free energy becomes more and
more negative. This means that the electronic temperature has
a softening effect on the forces and the dynamical matrix in W.
When Tel = Tmelt, the impact is strongest and almost amounts
to −40 meV/atom. This F qh←el value is more than an order
of magnitude more negative than the more accurate F vib←el

value of −2.6 meV/atom for bcc W. Similarly exaggerated
F qh←el values at Tmelt are found also for bcc Mo, V, and Ta as
displayed in Fig. 11(b). The exaggerated F qh←el values can be
negative as seen for W and Mo, or positive as for V and Ta,
but in any case, they deviate from the physically more relevant
F vib←el values.

We note that the strong impact of the electronic tempera-
ture on the low-temperature-QH free energy may be a feature
of the present bcc refractory systems. A previous study [73]
showed a much smaller impact for fcc Rh, in the range of a

few meV/atom as indicated in Fig. 11(b). In another study
[74], it was found that the impact is negligible also for hcp Fe.

IV. CONCLUSIONS

The key finding in this paper is the exceptional agreement
of the thermodynamic properties with experimental data on
the homologous temperature scale. By plotting on such a self-
consistent scale, it is possible to remove the main shortcoming
of the exchange correlation (XC) functional. The resulting
strong agreement with experimental data provides confidence
in the predictive power of density-functional theory, even
when using the traditionally underbinding PBE XC func-
tional. In particular, our finding suggests that the deficiency of
the PBE functional is confined to an overall underestimation
of the bond strength, while higher-order interactions and cor-
relation functions—responsible for the detailed temperature
dependencies of the thermodynamic properties—are very well
described as compared to experiment. Preliminary calcula-
tions indicate that these findings extend to the LDA functional
as well. The agreement with experimental data puts us in a
position to use the ab initio results to evaluate ambiguities
in experimental measurements of heat capacities and expan-
sion coefficients, which are especially difficult to measure at
near-melting temperatures. We can also confidently predict
highly accurate thermodynamic properties for various systems
in regions where it is difficult or not possible to perform
experiments.

For example, direct upsampling was previously applied
to a refractory TaVCrW HEA, to predict properties up to
DFT accuracy [31], but was not validated due to the lack of
experimental data. In an ongoing work [53], the melting point
of the TaVCrW alloy is being calculated, also to ab initio
accuracy. By using the predicted melting point, we will be able
to plot the previously calculated thermodynamic properties on
a corresponding homologous temperature scale. The results
could then be used to ascertain high-temperature experimental
measurements of the TaVCrW alloy in the future.

In order to achieve such superior accuracy in thermody-
namic properties, two crucial points need to be kept in mind:
(1) A dense sampling of the free-energy surface to obtain
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highly-converged derivatives, and (2) inclusion of all relevant
free-energy contributions. Both of the above are achieved
with the direct-upsampling methodology. Anharmonic free
energies contribute up to 60 meV/atom in magnitude in the
bcc refractories, which is much larger than for fcc elements.
Different trends between the group 5 and group 6 elements
are observed in the anharmonic behavior, which have been
explained by comparing the static and high-temperature elec-
tronic density of states.

We have also derived explicit expressions for the
temperature-dependent coupling between electronic and
atomic vibrations. The effect of vibrations on the elec-
tronic free energy is quite strong in bcc refractories, in the
range of several tens of meV/atom. Once again, there is
a group trend (different in group 5 and group 6) in the
direction in which the electronic free energy changes. On
the other hand, the effect of electronic temperature on the
vibrational free energy is smaller by an order of magni-
tude (<3 meV/atom). Although a group trend exists in the
effect of electronic temperature on the atomic forces, the
change in free energy is always negative as it is calcu-
lated from higher-order terms of the free-energy-perturbation
formula.

We have also analyzed vacancy contributions to the
free energy, which can be mostly neglected in terms of
the bulk thermodynamic properties. However, the Gibbs
energy of vacancy formation shows a strong temperature
dependence. Here, we have used a previously-proposed non-
Arrhenius-type temperature-dependence formulation. Such a
formulation was shown to efficiently capture the key physical
mechanism. Upon using it, we have found bcc refractories
to have 2–3 times higher vacancy formation Gibbs ener-
gies compared to fcc elements, but with a similarly strong
temperature dependence. Small changes in the vacancy for-
mation Gibbs energy will affect vacancy kinetics, and thereby
phase transformations, and hence an accurate prediction is
crucial.

In conclusion, we have further refined our understanding
of different contributions to the free energy. We have also
improved the direct-upsampling methodology by additionally
including contributions from vacancies, and comparing results
on a homologous scale. In addition to the four previously

investigated elements [32], we have now also added four
refractory elements, further expanding the ab initio-based
thermodynamic database.

The necessary data are available in the DaRUS Repository
and can be accessed via the repository [75]. The repository
contains the training sets (VASP OUTCAR files), the low-
MTPs and high-MTPs, the effective QH potentials, and the
final thermodynamic database (properties) for the four unar-
ies. In addition also the Gibbs energies of vacancy formation
are included.
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