
PHYSICAL REVIEW B 107, 174306 (2023)

Spectral features of polaronic excitations in a superconducting analog simulator
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We investigate the spectral properties of polaronic excitations within the framework of an analog quantum
simulator based on inductively coupled superconducting transmon qubits and microwave resonators. This
system emulates a lattice model that describes a nonlocal coupling of an itinerant spinless-fermion excitation
to dispersionless (Einstein-type) phonons through the Peierls and breathing-mode interaction mechanisms. The
model is characterized by a sharp, level-crossing transition at a critical value of the effective excitation-phonon
coupling strength; above the transition point, the ground state of this model corresponds to a heavily dressed
(small-polaron) excitation. Using the kernel-polynomial method, we evaluate the momentum-frequency resolved
spectral function of this system for a broad range of parameters. In particular, we underscore the ramifications
of the fact that the zero-quasimomentum Bloch state of a bare excitation represents the exact eigenstate of the
Hamiltonian of this system for an arbitrary excitation-phonon coupling strength. We also show that—based
on the numerically evaluated spectral function and its well-known relation with the survival probability of the
initial, bare-excitation Bloch state (the Loschmidt echo)—one can make predictions about the system dynamics
following an excitation-phonon interaction quench. To make contact with anticipated experimental realizations,
we utilize a previously proposed method for extracting dynamical-response functions in systems with local
(single-qubit) addressability using the multiqubit (many-body) version of the Ramsey interference protocol.
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I. INTRODUCTION

The field of quantum simulation [1] rose to prominence
over the past decade as a thriving research area at the inter-
section of the traditional fields of condensed-matter physics
and atomic, molecular, and optical physics, on the one hand,
and the rapidly developing field of quantum information pro-
cessing on the other. In particular, analog quantum simulators
provide valuable insights into various properties of complex
many-body systems [2–8], while at the same time typically
requiring much more modest quantum-hardware resources—
i.e., a smaller number of qubits—for their realization than
what will eventually be required for large-scale universal
quantum computation. Examples of physical platforms usu-
ally employed for implementing analog quantum simulators
are furnished by those based on cold neutral atoms in optical
lattices [9] or tweezers [10], trapped ions [11], cold polar
molecules [12], and superconducting (SC) quantum circuits
[13,14]. The latter usually entail transmon qubits [15] and SC
microwave resonators, the key building blocks of circuit quan-
tum electrodynamics (circuit-QED) systems [16–18]; analog
simulators with similar functionalities can also be realized
with flux qubits [19,20].

Analog simulators of quantum many-body systems are
typically designed with the aim of investigating their ground-
state (static) or dynamical properties [1]. On the other hand,
it was only recently that some attention was also dedi-
cated to elucidating spectral properties of such systems by
virtue of analog simulators [21,22]. Motivated in part by the
apparent dearth of studies pertaining to this important as-
pect of simulated many-body systems, the present work is
devoted to spectral properties of a one-dimensional system

that comprises an itinerant spinless-fermion excitation cou-
pled to dispersionless (zero-dimensional) phonons through
two nonlocal coupling mechanisms—more precisely, Peierls-
and breathing-mode type excitation-phonon (e-ph) interac-
tions [23,24]. The present study is framed within the context
of an analog SC quantum simulator, which was previously
proposed for studying both static [23] and dynamical [24]
properties of this coupled e-ph system. The principal building
blocks of this simulator are transmon qubits and microwave
resonators [14,25–28]. Importantly, the qubit-resonator cou-
pling in this simulator belongs to the class of indirect inductive
couplings [29], and the physical mechanism that enables it
entails a flux of the resonator (microwave-photon) modes that
pierces specially tailored coupler circuits connecting adja-
cent qubits. In this system, SC qubits are coupled through
nearest-neighbor XY -type (flip-flop) interaction whose effec-
tive strength depends dynamically on the resonator degrees of
freedom (i.e., photons), this dependence being equivalent to
that of the XY spin-Peierls model [30,31].

The quantity of primary interest in our present context
is the momentum-frequency resolved spectral function, this
last dynamical response function being closely related to the
Fourier transform of the single-particle retarded Green’s func-
tion [32]. This spectral function, which captures inter alia
the essential features of dressed polaronic excitations in the
strong-coupling regime of the system under consideration,
will be evaluated here in a numerically exact manner. To be
more specific, the kernel-polynomial method (KPM) [33]—
based on the expansion of the relevant spectral function in
Chebyshev polynomials of the first kind—will be utilized
here for computing the spectral function for various choices
of parameters characterizing the SC analog simulator under
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consideration. The KPM, pioneered by Silver and Röder [34],
was successfully employed in the past for evaluating both
zero- [35] and finite-temperature [36] dynamical response
functions in a variety of quantum many-body systems [33].
Motivated by the need to accurately compute spectral den-
sities of strongly interacting quantum many-body systems,
various generalizations of this method have also been pro-
posed [37].

What makes the proposed analysis of momentum-
frequency resolved spectral functions within the framework
of a SC analog simulator particularly pertinent is the avail-
ability of a method for the experimental measurements of such
quantities and their counterparts in the time domain [38]. This
method is based on a generalized, multiqubit version of the
Ramsey interference protocol [39] (recall that, when applied
to a single SC qubit, the Ramsey interference protocol is used
to determine its dephasing time T2 [40]) and is applicable
to all locally addressable systems [23]. In particular, being
amenable to experimental control at the single-qubit level,
the envisioned SC analog simulator constitutes a nearly ideal
platform for the practical demonstration of this method.

Heavily dressed quasiparticles formed in the strong-
coupling regime of systems that feature short-range interac-
tion of an itinerant excitation (electron, hole, exciton) with
dispersionless (Einstein-like) phonons are referred to as small
polarons. While the Holstein model [41], describing local e-
ph interaction [42–44], is the most common starting point for
investigating such quasiparticles, more realistic models that
involve nonlocal e-ph coupling mechanisms have come to the
fore over the past decade. These mechanisms—exemplified by
Peierls- [45] and breathing-mode-type [46] e-ph couplings—
are known to play important roles in certain classes of
narrowband electronic materials [47–56]. Moreover, models
involving Peierls-type coupling show sharp, level-crossing
transitions in the ground-state-related quantities at certain
critical values of the effective e-ph coupling strength [57];
such couplings, whose corresponding e-ph vertex functions
depend on both excitation and phonon quasimomenta, do not
belong to the realm of validity of the time-honored Gerlach-
Löwen theorem [58] that rules out such nonanalyticities for
most known e-ph interaction types. Finally, those models also
display nontrivial e-ph entanglement properties, both in the
ground [57,59] and excited states [60].

Several analog simulators of the Holstein model have as
yet been proposed that make use of physical platforms as
diverse as trapped ions [61], cold polar molecules [62], and
SC circuits [63]. On the other hand, models that involve non-
local (momentum-dependent) e-ph interactions have as yet
only been simulated using arrays of SC qubits and microwave
resonators [23,24], where photons in resonators play the role
of phonons. The previous studies covered both ground-state
[23] and dynamical [24] properties of small polarons in such
models, which motivates us to also investigate their spectral
properties in the present work.

The outline of the remainder of this paper is as follows.
In Sec. II the spectral properties of dressed excitations are
briefly reviewed, starting with general features of momentum-
frequency resolved spectral functions. This is followed by
a brief summary of the Ramsey-protocol based method for
extracting spectral functions experimentally in Sec. III. In

Sec. IV, the analog simulator under consideration and its
governing Hamiltonian are introduced, along with a brief
description of the derivation of its effective Hamiltonian.
The numerical results obtained for the momentum-frequency
resolved spectral function of this system are presented and dis-
cussed in Sec. V. Finally, the paper is summarized, with some
general concluding remarks, in Sec. VI. Some mathematical
details pertaining to the form of the qubit-qubit interaction
in the system at hand, the truncation of the Hilbert space
of the system, and the use of the KPM for computing the
spectral function are relegated to Appendixes A, B, and C,
respectively.

II. MOMENTUM-FREQUENCY RESOLVED SPECTRAL
FUNCTION

Dynamical response functions, defined through Fourier
transforms of retarded two-time correlation functions, provide
a framework for characterizing excitations in many-body sys-
tems and are intimately related to their resulting magnetic,
optical, and transport properties [32]. Among the relevant
two-time correlation functions, a particularly important ex-
ample is furnished by the single-particle retarded Green’s
function, which conventionally describes the propagation of a
single electron (or a hole). Here this Green’s function will be
employed in the context of an itinerant spinless-fermion exci-
tation that interacts with zero-dimensional bosons residing on
sites of a one-dimensional lattice.

The single-particle retarded Green’s function of interest in
the problem under consideration is given by

GR
+(k, t ) = − i

h̄
θ (t )〈G0|[c†

k (t ), ck]+|G0〉. (1)

Here c†
k (t ) ≡ U †

H (t )c†
kUH (t ) is a single-particle creation op-

erator in the Heisenberg representation, where UH (t ) is the
time-evolution operator of the system, with H being its gov-
erning Hamiltonian; θ (t ) is the Heaviside step function, |G0〉
is the ground state of the system, and [· · · ]+ denotes an
anticommutator.

The last retarded Green’s function describes the linear
response of the system to the addition and removal of a
single fermion. To formally evaluate its Fourier transform,
a regularization factor limη→0+ e−η|t | ought to be included.
Accordingly, the regularized Fourier transform of GR

+(k, t ) is
given by

GR
+(k, ω) =

∫ ∞

−∞
GR

+(k, t )eiωt−η|t |dt (η → 0+), (2)

and—with the aid of Eq. (1)—leads to

GR
+(k, ω) = 〈G0|ck

1

h̄ω + i0+ + E0 − H
c†

k |G0〉

+ 〈G0|c†
k

1

h̄ω + i0+ − E0 + H
ck|G0〉, (3)

where E0 is the ground-state energy of the system.
The quantity of primary interest for the present work, the

momentum-frequency resolved spectral function, is given by

A(k, ω) = − 1

π
Im GR

+(k, ω). (4)
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This single-particle spectral function can be expressed ex-
plicitly in terms of the eigenstates and eigenvalues of the
Hamiltonian H , namely as

A(k, ω) =
∑

j

∣
∣
〈
ψ

( j)
k

∣∣c†
k

∣∣0〉∣
∣

2
δ
(
ω − E ( j)

k /h̄
)
, (5)

where |ψ ( j)
k 〉 are the eigenstates and E ( j)

k the corresponding
eigenvalues of the Hamiltonian H with quasimomentum k.
This spectral function satisfies the sum rule∫ ∞

−∞
A(k, ω)dω = 1 (6)

for each quasimomentum k.
In the coupled e-ph system to be addressed in what follows,

the last spectral function is intimately related to the sys-
tem dynamics following an e-ph interaction quench. Namely,
assuming the initial (t = 0) states to have the form of bare-
excitation Bloch states c†

k |0〉 at different quasimomenta k
(where |0〉 is the vacuum state of the system), the spectral
function A(k, ω) is given by the Fourier transform of the
matrix element 〈ψ (t )|c†

k |0〉 [where |ψ (t )〉 is the state of the
system at time t]—the amplitude for the system to remain
in the initial (bare-excitation) state at time t . This quantity
represents the special case of what is more generally referred
to as the Loschmidt amplitude, and its squared module (i.e.,
the survival probability of the initial state)

Lk (t ) ≡ |〈ψ (t )|c†
k |0〉|2 (7)

is known as the Loschmidt echo [64]. The latter constitutes the
most widely used quantity for characterizing nonequilibrium
quantum dynamics [65].

III. MEASUREMENT OF THE RETARDED GREEN’S
FUNCTION USING RAMSEY PROTOCOL

In the following, we first introduce the retarded single-
particle Green’s functions of relevance for the present work
(Sec. III A). We then recapitulate the basics of the method
for the experimental measurement of those Green’s functions
using a many-body (multiqubit) version of the Ramsey inter-
ference protocol (Sec. III B), which was proposed in Ref. [38]
and adapted for application in systems of the kind discussed
here in Ref. [23].

A. Retarded single-particle Green’s functions

While the anticommutator Green’s function [cf. Eq. (1)] is
the appropriate one to use for spinless-fermion excitations in
the problem under consideration, its commutator counterpart,

GR
−(k, t ) = − i

h̄
θ (t )〈G0|[c†

k (t ), ck]−|G0〉, (8)

is essentially equivalent in the problem at hand. Because here
|G0〉 = |0〉 is the vacuum state of the coupled e-ph system,
c†

k (t )ck|G0〉 = 0, implying that here GR
−(k, t ) = −GR

+(k, t ).
The real-space retarded (commutator) Green’s functions

GR
nn′ (t ) ≡ − i

h̄
θ (t )〈G0|[c†

n(t ), cn′ ]−|G0〉, (9)

which in systems with a discrete translational symme-
try depend only on n − n′, are obtained from the above
momentum-space ones [cf. Eq. (8)] via Fourier transforma-
tion:

GR
−(k, t ) = N−1

∑
n,n′

eik(n−n′ )GR
nn′ (t ). (10)

These real-space commutator Green’s functions can be
straightforwardly recast as [23]

GR
nn′ (t ) = − i

h̄
θ (t )〈G0|[σ+

n (t ), σ−
n′ ]−|G0〉, (11)

where we have switched from spinless-fermion to the
pseudospin-1/2 operators via the Jordan-Wigner (JW) trans-
formation [66]:

σ z
n = 2c†

ncn − 1,

σ+
n = 2c†

neiπ
∑

l<n c†
l cl . (12)

These last Green’s functions can succinctly be rewritten in
the form [23]

GR
nn′ (t ) = Gxx

nn′ + Gyy
nn′ − i

(
Gxy

nn′ − Gyx
nn′

)
, (13)

where Gαβ

nn′ (α, β = x, y) are retarded pseudospin correlation
functions, defined as [23]

Gαβ

nn′ ≡ − i

h̄
θ (t )〈G0|

[
σα

n (t ), σ β

n′
]
−|G0〉. (14)

[Note that, for the sake of notational simplicity, we omitted
the time argument and the superscript R in the notation for
these last correlation functions.]

B. Multiqubit Ramsey interference protocol

The many-body (multiqubit) Ramsey interference proto-
col is applicable to systems in which addressability at the
single-qubit (spin) level is feasible. This protocol yields the
real-space and time-resolved commutator Green’s functions
of spin (or, in the case of qubits, pseudospin-1/2) operators
[38].

The protocol entails a special type of Rabi pulses, which
can quite generally be parametrized as

Rn(θ, φ) ≡ 12 cos
θ

2
+ i

(
σ x

n cos φ − σ y
n sin φ

)
sin

θ

2
, (15)

with θ = �τ (where � is the corresponding Rabi frequency
and τ is the duration of the pulse), and φ being the phase of
the laser field. The special type of such pulses of relevance for
the Ramsey protocol is the one with θ = π/2 and an arbitrary
φ, which is hereafter denoted as Rn(φ).

Generally speaking, the Ramsey-interference protocol en-
tails, as its first step, a local π/2-rotation at site n (with the
value φ1 of the parameter φ); this step is followed by an
evolution of the system over the time interval of duration t and
a local π/2-rotation at site n′ or global π/2-rotation (with the
value φ2 of the parameter φ). As its final step, this protocol
requires a measurement of σ z

n′ , i.e., the z-component of the
pseudospin at site n′. Consequently, the final measurement
result is given by [38]

Mnn′ (φ1, φ2, t ) = 〈S(t )|σ z
n′ |S(t )〉, (16)
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where |S(t )〉 is the state obtained from |G0〉 after carrying out
the first three steps of the Ramsey protocol:

|S(t )〉 ≡ Rn′ (φ2)UH (t )Rn(φ1)|G0〉. (17)

It is straightforward to demonstrate that for a system that
has the U (1) symmetry under pseudospin rotations around the
z axis and the one under reflections with respect to the z axis,
the expression for the final measurement result in the Ramsey
protocol [cf. Eq. (16)] reduces to [23]

Mnn′ (φ1, φ2, t ) = − 1
4

[
sin(φ1 − φ2)

(
Gxx

nn′ + Gyy
nn′

)
− cos(φ1 − φ2)

(
Gxy

nn′ − Gyx
nn′

)]
. (18)

From this last result, it can be inferred that the terms Gxx
nn′ +

Gyy
nn′ and Gxy

nn′ − Gyx
nn′ required to determine GR

nn′ (t ) [cf. Eq. (13)]
are given by Mnn′ (φ1, φ2, t ) for two different choices of the
angles φ1 and φ2 (namely, for φ1 − φ2 = ±π/2 and φ1 = φ2,
respectively).

Once the Green’s functions GR
nn′ (t ) [cf. Eq. (13)] are

obtained using the above scheme, the commutator Green’s
function GR

−(k, t ) [cf. Eq. (8)] for an arbitrary quasimomen-
tum k can be determined using a spatial Fourier transfor-
mation, whereby its anticommutator counterpart GR

+(k, t ) [cf.
Eq. (1)] is straightforward to recover. Finally, having obtained
GR

+(k, t ), using Eq. (4) one can compute the spectral function
A(k, ω) for a broad range of frequencies through a numerical
Fourier transform to the frequency domain.

IV. SIMULATOR AND ITS GOVERNING HAMILTONIAN

In what follows, we first briefly describe the layout of the
SC analog simulator to be considered in the remainder of this
work (Sec. IV A). We follow this up with a detailed derivation
of its underlying effective Hamiltonian and its mapping to a
coupled e-ph model with Peierls- and breathing-mode type e-
ph interactions (Sec. IV B).

A. Layout of the analog simulator

The main building blocks of the envisioned simulator,
depicted in Fig. 1, are SC qubits (Qn), resonators (Rn),
and coupler circuits (Bn) with three JJs (n = 1, . . . , N). The
pseudospin-1/2 degree of freedom of the qubit is represented
by the operators σn, while microwave photons in the res-
onators, created (annihilated) by the operators a†

n (an), mimic
Einstein (zero-dimensional) phonons. The Hamiltonian of the
nth repeating unit of the simulator, which consists of the qubit
Qn with the energy splitting εz and the resonator Rn with the
photon frequency ωc, is given by

H0
n = εz

2
σ z

n + h̄ωca†
nan. (19)

Qubit Qn interacts with its nearest neighbors Qn−1 and
Qn+1 through coupler circuits Bn−1 and Bn, which represent
a generalization of a SQUID loop. The total energy of Bn is
given by

HJ
n = −

3∑
i=1

Ei
J cos ϕi

n, (20)

FIG. 1. Layout of the envisioned analog simulator [23], which
consists of SC qubits Qn (with single-qubit charging and Josephson
energies Es

C and Es
J , respectively), resonators Rn, and coupler circuits

Bn. Here φl
n and φu

n are the respective total magnetic fluxes threading
the lower and upper loops of Bn.

where ϕi
n (i = 1, 2, 3) are the phase drops on the three JJs

and Ei
J their respective Josephson energies; it will hereafter

be assumed that junctions 1 and 2 have the same energy (i.e.,
E1

J = E2
J ≡ EJ ), while the third one is different from the first

two (i.e., E3
J = EJb �= EJ ). The qubit and resonator degrees of

freedom are mutually coupled in this system through the flux
of the resonator modes piercing the upper loops of coupler
circuits [67]. Apart from this inductive-coupling mechanism,
those circuits are also driven by a microwave radiation (ac
flux) and with an external dc flux through their lower loops.

In the following, φu
n and φl

n will be used to denote the
total magnetic fluxes in the upper- and lower loops of Bn,
respectively. [Note that hereafter all the fluxes in the problem
will be expressed in units of �0/2π , with �0 ≡ hc/(2e) being
the flux quantum.] The flux φu

n in the upper loop includes ac-
driving contribution π cos(ω0t ) and a dynamically fluctuating
one from the resonator modes an and an+1; the latter is pro-
portional to the difference of the photon displacement fields
of resonators n + 1 and n, i.e., φn,res = δθr[(an+1 + a†

n+1) −
(an + a†

n)], with the constant of proportionality δθr whose
value depends on the geometric properties of the specific
resonator [23]. The lower-loop counterpart φl

n of φu
n also in-

cludes an ac contribution, which is given by −(π/2) cos(ω0t ).
Finally, the lower-loop flux is also assumed to have a dc
part φdc. This dc flux constitutes—aside from ω0—the only
tunable parameter in this system, hence being the principal
experimental knob.

B. Effective system Hamiltonian

Due to the explicit time dependence of the ac-driving, it
is favorable to switch to the rotating frame of the drive. This
change of frames not only leads to a shift in the resonator
(photon) frequency (ωc → δω ≡ ωc − ω0) but also causes
the Josephson-coupling term to acquire a time dependence.
However, it can straightforwardly be demonstrated that this
time dependence can safely be disregarded due to its rapidly
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oscillating character, i.e., based on the rotating-wave approxi-
mation (RWA). After dropping those terms, the remaining part
of the Josephson-coupling term is given by

H̄J
n = −EJ

n cos(ϕn − ϕn+1), (21)

where ϕn is the gauge-invariant phase variable corresponding
to the SC island of the nth qubit [25] and

EJ
n = EJb(1 + cos φdc) − EJJ1(π/2)φn,res, (22)

where Jn(x) are Bessel functions of the first kind. The specific
form of the last equation results from the assumption that EJb

is chosen, without significant loss of generality, to be given by
2EJJ0(π/2).

In the relevant regime for transmon qubits (Es
J 	 Es

C ,
where Es

C and Es
J are the charging and Josephson ener-

gies of a single qubit, respectively), it is permissible to
expand cos(ϕn − ϕn+1) up to the second order in ϕn − ϕn+1,
where this expansion is controlled by the small parameter
δϕ2

0 ≡ (2Es
C/Es

J )1/2 (the quantum displacement of the gauge-
invariant phase); for a typical transmon qubit (Es

J/Es
C ∼ 100)

one finds δϕ2
0 ∼ 0.15. Importantly, higher powers of ϕn −

ϕn+1 in that expansion can be neglected not only because of
the smallness of this phase difference, but also due to the
rapidly decreasing coefficients in the expansion, which are
proportional to higher powers of δϕ2

0 . By switching to the
pseudospin-1/2 operators σn, cos(ϕn − ϕn+1) can be rewrit-
ten (up to an additive constant, which is irrelevant for our
present purposes) in the form (for a detailed derivation, see
Appendix A)

cos(ϕn − ϕn+1) ≈ δϕ2
0

[
σ+

n σ−
n+1 + σ−

n σ+
n+1 − σ z

n + σ z
n+1

2

]
.

(23)

The first term on the right-hand side of the last equation cor-
responds to an XY -type coupling between two adjacent
transmons, while the second one—being of the same form
as the σ z

n term in Eq. (19)—describes a shift in their (single-
qubit) frequency.

It is worthwhile mentioning that in the derivation of
Eq. (23), the terms of the type σ+

n σ+
n+1 and σ−

n σ−
n+1 have been

neglected. While this is conventionally done—by virtue of
the RWA—even in the most general (multilevel) treatment
of transmons, in the problem at hand there is an even more
rigorous argument for doing so. Namely, here we are con-
cerned with a single-excitation polaron problem. Therefore,
the part of the total Hilbert space of relevance for this problem
consists of states with a single spinless fermion, which in the
pseudospin-1/2 (qubit) language translates into states with
precisely one qubit in the logical state |1〉. Accordingly, the
terms σ−

n σ−
n+1 and σ+

n σ+
n+1 both yield zero when acting on an

arbitrary state in the relevant part of the Hilbert space of the
system.

At this point, it is pertinent to recast the problem at hand
in terms of the spinless-fermion operators {cn, c†

n} (instead of
the pseudospin-1/2 operators σn) via the JW transformation
[cf. Eq. (12)], whereby σ+

n σ−
n+1 + σ−

n σ+
n+1 → c†

ncn+1 + H.c.
This allows us to write the effective system Hamiltonian in

the form of a lattice model that describes an itinerant spinless-
fermion excitation interacting with zero-dimensional bosons
(phonons) through two different e-ph coupling mechanisms.

The noninteracting (free) part H0 of the effective system
Hamiltonian consists of the free-excitation (hopping) and
free-phonon terms

H0 = −t0(φdc)
∑

n

(c†
ncn+1 + H.c.) + h̄δω

∑
n

a†
nan, (24)

where t0(φdc) ≡ EJbδϕ
2
0 (1 + cos φdc) plays the role of the

effective bare-excitation hopping amplitude. This hopping
amplitude can be tuned by varying the dc flux φdc. [Strictly
speaking, H0 also contains diagonal terms c†

ncn, which orig-
inate from the terms with σ z

n in Eq. (19), as well as from
the expansion of cos(ϕn − ϕn+1). Yet, these terms can be
disregarded as they only lead to a band offset for spinless
fermions.] On the other hand, the interacting part includes two
e-ph coupling terms and is given by [68]

He-ph = gh̄δωl−1
0

∑
n

[(c†
ncn+1 + H.c.)(un+1 − un)

− c†
ncn(un+1 − un−1)], (25)

where g is the dimensionless e-ph coupling strength and un ≡
l0(an + a†

n), with l0 being the zero-point length of the Ein-
stein oscillator with frequency δω. The first term corresponds
to the Peierls-coupling mechanism, which accounts for the
lowest-order (linear) dependence of the effective (phonon-
modulated) hopping amplitude between sites n and n + 1
on the difference un+1 − un of the corresponding phonon
displacements [45]. The second term corresponds to the
breathing-mode type coupling [46], i.e., the antisymmetric
coupling of the excitation density c†

ncn at site n with the
phonon displacements on sites n ± 1.

When recast in momentum space, He-ph assumes the form
N−1/2 ∑

k,q γe-ph(k, q)c†
k+qck (a†

−q + aq), where

γe-ph(k, q) = 2igh̄δω[sin k + sin q − sin(k + q)] (26)

is the corresponding e-ph vertex function [note that here
quasimomenta are expressed in units of the inverse lattice con-
stant, thus the quasimomenta from the Brillouin zone belong
to (−π, π ]]. For the most general (momentum-dependent)
vertex function γe-ph(k, q), the effective e-ph coupling strength
is given by

λeff = 〈|γe-ph(k, q)|2〉
2te h̄ωph

, (27)

where te is the excitation hopping amplitude, ωph is the
phonon frequency, and 〈· · · 〉 stands for the Brillouin-zone
average over quasimomenta k and q:

〈|γe-ph(k, q)|2〉 ≡ 1

(2π )2

∫ π

−π

∫ π

−π

|γe-ph(k, q)|2dkdq. (28)

In the problem at hand—where te → t0, ωph → δω, and the
vertex function is given by Eq. (26)—the effective coupling
strength evaluates to λeff ≡ 3g2h̄δω/t0 and depends on φdc.

The fact that the vertex function in Eq. (26) depends
both on q and k implies that the Hamiltonian Heff = H0 +
He-ph does not belong to the realm of applicability of the
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Gerlach-Löwen theorem [58], which rules out a nonanalytic
behavior of ground-state-related quantities. It was already
demonstrated that the ground state of this Hamiltonian dis-
plays a sharp (level-crossing) transition at a critical value of
the effective coupling strength (tuned here by varying φdc)
[23]. Whereas below the critical value the system has a zero-
quasimomentum ground state—that is, the energy minimum
corresponds to the eigenvalue K = 0 of the total quasimomen-
tum operator

Ktot =
∑

k

kc†
kck +

∑
q

qa†
qaq, (29)

above this critical value Heff has a twofold-degenerate
ground state. This unconventional, degenerate ground state
corresponds to the pair of equal and opposite (nonzero) quasi-
momenta ±Kgs, where Kgs reaches the value of π/2 for a
sufficiently strong coupling (i.e., sufficiently large λeff).

It is worthwhile pointing out that the system at hand has
the peculiar property that the k = 0 Bloch state |�k=0〉 ≡
c†

k=0|0〉e ⊗ |0〉ph of a bare excitation is an exact eigenstate of
Heff for an arbitrary coupling strength, regardless of the value
of λeff. This fact has profound consequences for the resulting
spectral function (cf. Sec. V below). Moreover, for effective
coupling strengths λeff below the critical one, |�k=0〉 is the
lowest-energy eigenstate of Heff, i.e., its ground state. The
state |�k=0〉, when recast in terms of pseudospin-1/2 (qubit)
degrees of freedom via the JW transformation [cf. Eq. (12)],
corresponds to an N-qubit W state [68]; more generally, the
bare-excitation Bloch state |�k〉 with quasimomentum k cor-
responds to a twisted N-qubit W state [69].

The dimensionless e-ph coupling strength g [cf. Eq. (25)]
is given by gh̄δω = δϕ2

0EJJ1(π/2)δθr . While g itself does not
depend on ω0 and φdc, λeff inherits the dependence on the
latter parameter from t0 and can thus be tuned by varying φdc.
More precisely, the effective e-ph coupling strength has the
following dependence on the dc flux:

λeff(φdc) = 3

2
g

J1(π/2)δθr

J0(π/2)(1 + cos φdc)
. (30)

For a typical SC microwave resonator, the value of δθr is
around 3.5 × 10−3, while the effective phonon frequency δω

can be taken to be in the range δω/2π = 200–300 MHz. By
choosing the Josephson energy EJ such that the condition
δϕ2

0EJ/2π h̄ = 100 GHz is satisfied, one obtains gδω/2π =
198 MHz.

The system under consideration allows one to access both
the adiabatic (t0 > h̄δω) and antiadiabatic regime (t0 < h̄δω)
of small-polaron physics by varying φdc/π in the fairly narrow
range 0.95–0.99. For the choice δω/2π = 200 MHz of the
effective phonon frequency, for instance, the onset of the an-
tiadiabatic regime is for φdc/π ≈ 0.980. For the same choice
of parameters, the sharp ground-state transition takes place
for φdc/π ≈ 0.968, the corresponding value of the effective
coupling strength λeff being approximately equal to 1.24. Im-
portantly, in the same narrow range of values for φdc, λeff can
assume both values within the weak-coupling regime (e.g., for
δω/2π = 200 MHz and φdc/π = 0.95, one finds the effective
coupling strength λeff = 0.51) and in the strong-coupling one

(e.g., for δω/2π = 200 MHz and φdc/π = 0.98 one obtains
λeff = 3.17).

Both bare-excitation and dressed-excitation Bloch states
can be prepared in the system at hand, starting from the ini-
tial state |G0〉, using a microwave-driving protocol proposed
in Ref. [23]. This protocol, which is based on the discrete
translational symmetry of the system and energy conservation,
allows the preparation of the desired Bloch states within times
3–4 orders of magnitude shorter than the currently achievable
decoherence times T2 of SC qubits.

V. RESULTS AND DISCUSSION

Using the KPM (for the essential aspects of this compu-
tational scheme, see Appendix C), the single-particle spectral
function [cf. Eq. (5)] was evaluated for a system with N = 10
sites and the total of Nmax

ph = 18 phonons in the truncated
phonon Hilbert space; the dimension of the latter Hilbert space
is Dph = 43, 758 (for general aspects of the Hilbert-space
truncation, see Appendix B). To achieve a good resolution,
we evaluated as many as 105 Chebyshev moments (cf. Ap-
pendix C) in the expansion of the desired spectral function
A(k, ω).

Our KPM-based evaluation of the momentum-frequency
resolved spectral function was carried out on a 64-core, 7 GHz
AMD Ryzen Threadripper PRO 5995WX workstation, with a
total of 527GB of main memory. The runs that were needed to
obtain the results presented in this section consumed around
50 h.

The evaluation was carried out for three different values of
the dc flux φdc, the main experimental knob in the system, two
of which belong to the antiadiabatic regime (φdc/π = 0.95
and 0.97) and one to the adiabatic one (φdc/π = 0.98). The
resulting frequency dependence of the spectral function for six
different quasimomenta (k = 0, π/5, 2π/5, 3π/5, 4π/5, π )
in the positive half of the Brillouin zone, consistent with
periodic boundary conditions, is depicted in Figs. 2–4. In each
particular case, it was numerically verified that the obtained
spectral function satisfies the sum rule in Eq. (6).

To understand the obtained results, it is useful to recall
some general properties of the energy spectra of models de-
scribing a short-range coupling of an itinerant excitation with
dispersionless phonons; the strong-coupling regime of such
models is characterized by the presence of heavily dressed
excitations (small polarons). Regardless of the specific form
of the e-ph interaction, the center of the small-polaron Bloch
band is situated at an energy Eb below that of a bare excitation,
this last energy being referred to as the small-polaron binding
energy.

At a fixed quasimomentum k, the sum over eigenstates
that contributes to the spectral function includes the discrete
states (i.e., those that belong to coherent polaron Bloch bands)
and their respective continua; importantly, the energetic width
of each of those continua is equal that of the respective po-
laron Bloch band. In particular, the one-phonon continuum
represents the inelastic-scattering threshold—i.e., the mini-
mal energy that a phonon-dressed excitation ought to have
to be capable of emitting a single phonon. This one-phonon
continuum sets in at the energy h̄ωph above the ground-state
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FIG. 2. Momentum-frequency resolved spectral function A(k, ω)
for six different quasimomenta k in the Brillouin zone, evaluated for
a range of frequencies. The parameter values used are δω/(2π ) =
200 MHz and φdc/π = 0.95; the corresponding effective coupling
strength is λeff = 0.51. The obtained spectral function satisfies the
sum rule in Eq. (6).

energy, where ωph is the phonon frequency [70] (recall that in
the system at hand, the role of the effective phonon frequency
is played by δω). For a sufficiently weak e-ph coupling, a
coupled e-ph system only has one discrete Bloch state |ψ ( j=0)

k 〉
at quasimomentum k, and its corresponding continuum of
states pertains to a dressed excitation with quasimomentum
k − q and an unbound phonon with quasimomentum q.

As the e-ph coupling strength is increasing, additional co-
herent polaron bands—i.e., additional discrete states at each
quasimomentum k in the Brillouin zone—start to emerge
below the aforementioned one-phonon continuum. The first
such excited polaron state at quasimomentum k—split off
from the continuum—corresponds to a polaron bound with an
additional phonon, their total quasimomentum being equal to
k. For even stronger e-ph coupling there is another, second
excited state, which represents a bound state of a polaron

FIG. 3. Momentum-frequency resolved spectral function A(k, ω)
for six different quasimomenta k in the Brillouin zone, evaluated for
a range of frequencies. The parameter values used are δω/(2π ) =
200 MHz and φdc/π = 0.97; the corresponding effective coupling
strength is λeff = 1.41. The obtained spectral function satisfies the
sum rule in Eq. (6).

and two additional phonons (again, with the same total
quasimomentum k). Those states, along with their respective
continua, provide additional contributions to the spectral func-
tion A(k, ω) [71].

For the lowest value used (0.95) of the parameter φdc/π ,
the system is in the weak-coupling regime—below the sharp
ground-state transition. As pointed out in Sec. IV B, its ground
state corresponds to a bare-excitation Bloch state at quasi-
momentum k = 0, which explains the presence of a single
discrete peak of the spectral function A(k = 0, ω) in Fig. 2.
For larger quasimomenta k, new peaks, which correspond to
excited dressed-excitation (polaron) Bloch states, gradually
appear.

In keeping with general characteristics of energy spectra of
coupled e-ph systems, for increasing values of φdc/π , which
in the system under consideration translate into a larger value
of the effective e-ph coupling strength [cf. Eq. (30)], one can
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FIG. 4. Momentum-frequency resolved spectral function A(k, ω)
for six different quasimomenta k in the Brillouin zone, evaluated for
a range of frequencies. The parameter values used are δω/(2π ) =
200 MHz and φdc/π = 0.98; the corresponding effective coupling
strength is λeff = 3.17. The obtained spectral function satisfies the
sum rule in Eq. (6).

notice an increasing number of discrete peaks. In particular,
it can be inferred from Figs. 3 and 4 that up to the largest
effective coupling strength considered (λeff = 3.17), there are
up to five such peaks, accompanied by their corresponding
continua.

The salient feature of the obtained results for the spectral
function at k = 0 for all four values of φdc/π is the ab-
sence of the one-phonon continuum. This, seemingly peculiar,
result is a direct consequence of the fact that—due to equal
Peierls- and breathing-mode coupling strengths in the system
at hand—the free-excitation Bloch state with quasimomen-
tum k = 0 represents an exact eigenstate of the total system
Hamiltonian at an arbitrary coupling strength (cf. Sec. IV B).
In other words, while only for φdc/π below the critical value
of around 0.968 is this state the ground state of the system,
it represents an eigenstate even above the transition point
where the ground state itself no longer corresponds to the

FIG. 5. Time dependence of the Loschmidt echo for four dif-
ferent initial free-excitation quasimomenta (k = 2π/5, 3π/5, 4π/5,
and π ). The parameter values used are the same as in Fig. 3.

total quasimomentum K = 0 but instead to a pair of nonzero
quasimomenta ±π/2. This last circumstance also explains
why in Figs. 3 and 4 the only discrete peak for k = 0 [part
(a) of the respective figure] appears at a higher energy than
the lowest-lying peaks at other quasimomenta [parts (b)–(f)
of the respective figure].

Having described the obtained results for the spectral func-
tion, it is useful to point out the connection between the
computed spectral properties and nonequilibrium dynamics
of the coupled e-ph system [72]. As mentioned above (cf.
Sec. II), the spectral function A(k, ω) is simply related—by
a Fourier transform in time—to the Loschmidt amplitude
〈ψ (t )|c†

k |0〉 for the system to remain at time t in the ini-
tial, bare-excitation state with quasimomentum k. In a typical
situation—with a few discrete δ-like peaks (i.e., Bloch bands
of a dressed excitation) accompanied by their respective con-
tinua, approximately represented as Lorentzians—this can
allow one to get a qualitative picture of the system dynamics.

Namely, knowing that the Fourier transform to the time
domain of a frequency-space Lorentzian is the bilateral ex-
ponential function e−|t |/τ [where τ is the inverse half-width
at half-maximum (HWHM) of the Lorentzian], one can
straightforwardly find the survival probability of the original
bare-excitation state with quasimomentum k (the Loschmidt
echo) Lk (t ) at time t [cf. Eq. (7)]. For instance, in the simplest
case of a single sharp peak and its corresponding continuum,
the latter is given by a sum of a constant (time-independent)
term, an exponentially decaying one, and an exponentially
damped oscillatory term. In cases with multiple peaks and
their respective continua, the resulting expression for the
Loschmidt echo is more complicated, as it involves multiple
oscillatory terms, but it is still straightforward to derive.

The typical decaying oscillatory behavior of the Loschmidt
echo is illustrated in Fig. 5. The rapid decay of this quantity
as a function of time t after an e-ph interaction quench reflects
the fact that the initially bare itinerant excitation becomes
increasingly phonon-dressed over time. On the other hand,
the oscillatory features of this quantity originate from the fact
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that the initial bare-excitation Bloch state c†
k |0〉 at a generic

quasimomentum k is not an eigenstate of the coupled e-ph
Hamiltonian of the system (i.e., the Hamiltonian describing
the postquench dynamics), but is rather given by a linear
combination of multiple eigenstates of this Hamiltonian
(recall, however, that the system at hand has a rather uncon-
ventional property that the k = 0 bare-excitation Bloch state
is its exact eigenstate for an arbitrary e-ph coupling strength;
consequently, the dynamics for k = 0 are completely trivial).
This oscillatory behavior of the Loschmidt echo can be re-
covered more accurately by directly solving the Schrödinger
equation for a phonon-dressed excitation using a Chebyshev
expansion of its time-evolution operator [24].

For completeness, it is of interest to comment on the
capability of the proposed SC system for accurate measure-
ments of the momentum-frequency resolved spectral function
of dressed excitations in the underlying coupled e-ph model
(cf. Sec. II) and, by extension, elucidating quantum dynamics
of the small-polaron formation. The actual resolution with
which the retarded single-particle Green’s function can be
determined using the many-body version of the Ramsey in-
terference protocol (cf. Sec. III B) is certainly setup-specific,
i.e., dependent on the specific data-acquisition capabilities
available. Accordingly, the frequency resolution that can be
achieved in an experimental realization of our proposal for
measuring the spectral function will also be dependent on
the specific setup. However, a general argument can be
provided as to why accurate measurements of the spectral
function—as well as drawing quantitative conclusions about
the small-polaron formation dynamics—in the proposed sys-
tem is conceivable with existing technology.

Namely, the characteristic energy scales in the proposed
SC analog simulators are three to four orders of magnitude
smaller than their counterparts in solid-state systems. For
instance, the frequencies of microwave photons that emulate
phonons in this system are of the order of 0.1GHz, while a
typical optical-phonon frequency in the solid state is of the
order of a few THz. As a result, the dynamics of our proposed
system are three to four orders of magnitude slower than that
of its solid-state counterparts, which—in fact—is the principal
reason why such analog simulators can be put to good use
in elucidating complex dynamical processes. For this reason,
assuming similar technological capabilities in both cases, we
can conclude that it should actually be more straightforward
to measure the relevant dynamical response functions accu-
rately in the proposed synthetic SC system than in naturally
occurring electronic materials.

VI. SUMMARY AND CONCLUSIONS

In this paper, we proposed a scheme for investigating the
spectral properties of polaronic excitations using a supercon-
ducting analog simulator based on an array of inductively
coupled superconducting qubits and microwave resonators.
This system emulates a model describing an itinerant spinless-
fermion excitation coupled to dispersionless phonons via
Peierls- and breathing-mode type excitation-phonon interac-
tions. Using the kernel polynomial method, we computed
the momentum-frequency resolved spectral function of this
system for several different choices of its parameters, covering

both the adiabatic and antiadiabatic regimes of this model.
In addition, we indicated how this spectral function can be
recovered experimentally using the many-body version of the
Ramsey interference protocol.

We found implications of strong, nonlocal excitation-
phonon coupling in the investigated system for its spectral
properties. A salient feature of this system—resulting from
the fact that Peierls’ and breathing-mode coupling strengths
in this system are equal—is that its single-particle spectral
function does not show a one-phonon continuum at zero
quasimomentum. This is a direct implication of the fact that
the bare-excitation Bloch state with zero-quasimomentum is
an exact eigenstate of the coupled excitation-phonon Hamilto-
nian of the system for an arbitrary excitation-phonon coupling
strength.

The present study of spectral properties can be extended to
other types of analog simulators [73]. Namely, essentially the
same coupled e-ph model can be experimentally realized as an
analog simulator based on an array of neutral atoms in opti-
cal tweezers that interact through Rydberg-dressed resonant
dipole-dipole interaction [74]. Therefore, the same experi-
mental investigation of the spectral properties of polarons
born out of the interplay of Peierls’ and breathing-mode type
e-ph interactions can also be carried out using that atomic
system, with the added benefit that this last system allows one
to independently vary both coupling strengths.
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APPENDIX A: DERIVATION OF EQ. (23)

In what follows, we provide the derivation of the approxi-
mate expression for cos(ϕn − ϕn+1) [Eq. (23) in Sec. IV B] in
the regime of interest for transmon qubits.

We start from the quantization of the gauge-invariant phase
variables ϕn in terms of bosonic operators [17]

ϕn = δϕ0(bn + b†
n), (A1)

where δϕ0 ≡ (2Es
C/Es

J )1/4. In the regime of relevance for
transmons (Es

J/Es
C ∼ 100), it is pertinent to expand cos(ϕn −

ϕn+1) to the second order in the phase difference ϕn − ϕn+1,
where δϕ0 plays the role of the small parameter controlling the
expansion. In this manner, by also making use of Eq. (A1), we
readily obtain

cos(ϕn − ϕn+1) ≈ 1 − 1
2δϕ2

0 [(bn + b†
n)2 − (bn+1 + b†

n+1)2].

(A2)

By exploiting bosonic commutation relations for the operators
bn, b†

n, bn+1, and b†
n+1, we further find

cos(ϕn − ϕn+1) ≈ 1 − δϕ2
0

2
(b†

nbn + b†
n+1bn+1 + 1)

+ δϕ2
0

2
(bnbn+1 + bnb†

n+1 + b†
nbn+1

+ b†
nb†

n+1). (A3)
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While up to this point the transformations were com-
pletely general, i.e., consistent with the multilevel treatment
of transmon qubits, we now resort to the two-level approxi-
mation and switch from the bosonic operators bn, b†

n to the
pseudospin-1/2 operators σn representing transmons; in the
two-level approximation, the bosonic occupation numbers are
constrained to 0 and 1. This transformation from constrained
bosonic to pseudospin operators can be seen as an inverted
version of the Holstein-Primakoff transformation in solid-
state physics [75]. In the lowest order of this transformation
in the spin-1/2 case, we have

bn → σ+
n , b†

n → σ−
n , b†

nbn → 1
2

(
1 − σ z

n

)
. (A4)

Using this last transformation, Eq. (A3) can be recast as

cos(ϕn − ϕn+1) ≈ 1 − δϕ2
0

4

(
4 − σ z

n − σ z
n+1

)
+ δϕ2

0

2
(σ+

n σ+
n+1 + σ+

n σ−
n+1

+ σ−
n σ+

n+1 + σ−
n σ−

n+1). (A5)

The terms σ+
n σ+

n+1 and σ−
n σ−

n+1 in the last expression can
be neglected by virtue of the RWA. While this is convention-
ally done even in the most general (multilevel) treatment of
transmons, in the single-fermion problem at hand such terms
invariably yield zero when they act on states in the relevant
part of the Hilbert space of the system (i.e., multiqubit states
with only one qubit in the logical |1〉 state). By also disregard-
ing the constant term 1 − δϕ2

0 in Eq. (A5), which is immaterial
in the present physical context, we obtain the final expression
for cos(ϕn − ϕn+1) [cf. Eq. (23)]:

cos(ϕn − ϕn+1) ≈ δϕ2
0

[
σ+

n σ−
n+1 + σ−

n σ+
n+1 − σ z

n + σ z
n+1

2

]
.

(A6)

APPENDIX B: HILBERT-SPACE TRUNCATION AND
SYMMETRY-ADAPTED BASIS

The basis of the Hilbert space He-ph = He ⊗ Hph of the
coupled e-ph system under consideration is given by |n〉e ⊗
|m〉ph, with the states |n〉e ≡ c†

n|0〉e that correspond to the ex-
citation localized at the site n (n = 1, . . . , N) and the phonon
state |m〉ph with the occupation numbers m ≡ (m1, . . . , mN )
at different sites:

|m〉ph =
N⊗∏
n=1

(b†
n)mn

√
mn!

|0〉ph. (B1)

Given that the phonon Hilbert space is infinite-dimensional,
we restrict ourselves to the truncated phonon Hilbert space.
The latter includes states with the total number of phonons
m = ∑N

n=1 mn (where 0 � mn � m) not larger than Nmax
ph .

Consequently, the dimension of the total e-ph Hilbert
space is D = De × Dph, where De = N and Dph = (Nmax

ph +
N )!/(Nmax

ph !N!).
The problem of diagonalizing the Hamiltonian of the

coupled e-ph system under consideration can further be sim-
plified by exploiting the discrete translational symmetry of
this system. This symmetry is mathematically expressed by

the commutation [Heff, Ktot] = 0 of the Hamiltonian Heff of
the system and the total quasimomentum operator Ktot. Due
to this symmetry, one has to diagonalize Heff in the sectors
of He-ph that correspond to the eigensubspaces of Ktot; the
dimension of each of those K-sectors of the total Hilbert space
is equal that of the truncated phonon space, i.e., DK = Dph.
Accordingly, one makes use of the symmetry-adapted basis,

|K, m〉 = N−1/2
N∑

n=1

eiKn Tn(|1〉e ⊗ |m〉ph), (B2)

of He-ph, where Tn are the discrete-translation operators; the
action of these operators has to comply with the periodic
boundary conditions. The last equation can be rewritten in the
form

|K, m〉 = N−1/2
N∑

n=1

eiKn |n〉e ⊗ T ph
n |m〉ph, (B3)

with the operators T ph
n representing discrete translations in

the phonon Hilbert space. If |m〉ph is defined by a set of
occupation numbers

|m〉ph = |m1, m2, . . . , mN 〉ph, (B4)

it is straightforward to show that T ph
n |m〉ph ≡ |T ph

n m〉 is given
by ∣∣T ph

n m
〉 = |mN−n+1, mN−n+2, . . . , mN−n〉ph. (B5)

APPENDIX C: SPECTRAL-FUNCTION EVALUATION
USING THE KPM

1. Basic aspects of the KPM

In the following, we briefly recapitulate the basic aspects of
the kernel polynomial method (KPM) [34], as well as the most
relevant details of our concrete implementations thereof. A
more detailed introduction into the KPM and its applications
in many-body physics can be found in Ref. [33].

In the following, we summarize the basic aspects of the
KPM along with the most relevant details of our own im-
plementation of this approach for the purpose of calculating
momentum-frequency resolved spectral function.

At the heart of the KPM lies the problem of approximating
a real-valued function f (x) [76] defined on the interval [−1, 1]
by a finite series of Chebyshev polynomials Tn(x) of the first
kind (n = 0, . . . , NC − 1):

f (NC )(x) = 1

π
√

1 − x2

[
μ(0) + 2

NC−1∑
n=1

μ(n)Tn(x)

]
. (C1)

The coefficients μ(n) in the above expansion, referred to as
Chebyshev moments, are given by

μ(n) =
∫ 1

−1
f (x)Tn(x)dx. (C2)

For a sufficiently smooth function f (x) the last series con-
verges uniformly to f on any closed subinterval of [−1, 1]
that excludes the end points ±1.
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When the function to be approximated is not continuous
or—as is very common in physics applications such as the
present one—has peaks associated with quasiparticle states
with infinite lifetime, the series in Eq. (C1) cannot converge
uniformly. Namely, it fails to converge in the vicinity of a
discontinuity, showing instead rapid oscillations whose am-
plitude does not decrease as the number of terms in the series
goes to infinity (the Gibbs phenomenon) [77].

In particular, it was proven that the problem arising from
the Gibbs phenomenon is solved for Chebyshev expansions.
Namely, for any fixed number NC of terms in the expansion
it is possible to specify a set of attenuation factors gNC

n (n =
0, . . . , NC − 1), such that the modified finite-series approxi-
mants

f (NC )(x) = 1

π
√

1 − x2

[
gNC

0 μ(0) + 2
NC−1∑
n=1

gNC
n μ(n)Tn(x)

]

(C3)

do not display the Gibbs phenomenon, providing instead ac-
curate approximations to a broad class of functions. In other
words, the introduction of the attenuation factors gNC

n damps
out high-frequency oscillations—that would otherwise cause
spurious results—and constitutes the essential ingredient of
the KPM.

In the problem at hand, we utilize factors gNC
n derived from

the Jackson kernel [78]. The explicit form of those factors
reads [79]

gNC
n = 1

NC + 1

{
(NC − n + 1) cos

(
nπ

NC + 1

)

+ sin

(
nπ

NC + 1

)
cot

(
π

NC + 1

)}
. (C4)

2. Evaluation of the spectral function A(k, ω)

In the present work, the KPM is utilized to evaluate the
momentum-frequency resolved spectral function, given by
Eq. (4). To this end, the spectrum of the total Hamiltonian
Heff = H0 + He-ph of the system ought to be mapped to the
interval [−1, 1]. This is accomplished by rescaling this Hamil-
tonian, i.e., by introducing

H̃ = (1 − ε)
2

Emax − Emin

(
Heff − Emax + Emin

2
1

)
, (C5)

where Emax and Emin denote the largest and smallest eigen-
values of Heff, respectively; those two eigenvalues can be
obtained using the Lanczos algorithm [80]. At the same time,
the parameter ε is introduced to avoid stability problems at the
boundaries of the spectrum; we hereafter set ε = 0.01.

By inserting the last definition of H̃ into the general ex-
pression for the spectral function [cf. Eq. (5)], one arrives at

A(k, ω) = 2h̄(1 − ε)

Emax − Emin

∑
j

∣∣〈ψ ( j)
k

∣∣ c†
k

∣∣0〉∣∣2
δ
(
ω̃ − Ẽ ( j)

k

)
, (C6)

where Ẽ ( j)
k represent the eigenvalues of H̃ , and the rescaled

frequency, given by

ω̃ = 2(1 − ε)

Emax − Emin

(
h̄ω − Emax + Emin

2

)
, (C7)

complies with the rescaling of the Hamiltonian in Eq. (C5).
It is worthwhile to recast Eq. (C6) more succinctly as

A(k, ω) = 2h̄(1 − ε)

Emax − Emin
fk (ω̃), (C8)

where the function fk (x) is defined as

fk (x) ≡ 〈0| ckδ(x − H̃ )c†
k |0〉 . (C9)

The delta distribution δ(x − H̃ ) can now be expanded in
terms of Chebyshev polynomials Tn(x) and approximated by
f (NC )
k (x) with a large order NC, as introduced in Eq. (C3). For

the sake of obtaining a good resolution, we evaluate as many
as NC = 105 moments.

The Chebyshev moments can be derived based on the
general definition in Eq. (C2), which leads to the sought-after
expression for the Chebyshev moments:

μ
(n)
k = 〈0| ckTn(H̃ )c†

k |0〉 (n = 0, . . . , NC − 1). (C10)

To compute these moments efficiently, it is pertinent to make
use of the recurrence relation for Chebyshev polynomials of
the first kind [77]:

Tn+1(x) = 2xTn(x) − Tn−1(x) (n � 1). (C11)

Motivated by this recurrence relation, we define the states
|α(0)

k 〉 ≡ c†
k |0〉 and |α(1)

k 〉 ≡ H̃ |α(0)
k 〉, as well as∣∣α(n+1)

k

〉 ≡ 2H̃
∣∣α(n)

k

〉 − ∣∣α(n−1)
k

〉
, (C12)

for n = 2, . . . , NC − 1.
It is worthwhile noting that the states in Eq. (C12) auto-

matically occur when applying the recurrence relation (C11)
to Eq. (C10). Moreover, they render the computation of the
Chebyshev moments rather straightforward. Namely, starting
from μ

(0)
k = 1 and μ

(1)
k = 〈α(1)

k |α(0)
k 〉, one arrives at the fol-

lowing expressions:

μ
(2n)
k = 2

〈
α

(n)
k

∣∣α(n)
k

〉 − μ
(0)
k ,

μ
(2n+1)
k = 2

〈
α

(n+1)
k

∣∣α(n)
k

〉 − μ
(1)
k . (C13)

This procedure allows a resource-friendly computation, as the
states |α(n)

k 〉, being subject to Eq. (C12), can successively be
overwritten. As a matter of fact, only three states |α(n)

k 〉 have
to be stored at each computational step.

It is pertinent at this point to comment on the final steps in
the evaluation of the spectral function. In the interest of nu-
merical efficiency, it is worthwhile to consider the following
special choice of values for the rescaled frequency:

ω̃ j = cos

[
π

NC

(
j + 1

2

)]
( j = 0, . . . , NC − 1). (C14)

By inserting this last expression for ω̃ j into Eq. (C3) and mak-
ing use of the identity Tn(cos y) = cos(ny) for y ∈ [−1, 1], we
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obtain the following result for f (NC )
k (ω̃ j ):

f (NC )
k (ω̃ j ) = 1

π sin
[

π
NC

(
j + 1

2

)]
×

{
μ

(0)
k g0 + 2

NC−1∑
n=1

μ
(n)
k gn cos

[
n

π

NC

(
j + 1

2

)]}
.

(C15)

It is worthwhile to mention that this last expression gives
rise to a discrete Fourier transformation that can be carried
out with a modest computational effort—more precisely, with
O(NC log2 NC) operations—using the well-known fast Fourier

transformation (FFT) algorithm [81]. This represents the key
benefit of using Chebyshev polynomials of the first kind in the
problem at hand.

Having carried out the computation of f (NC )
k (ω̃ j ), it remains

to insert the obtained result into the approximated form

A(k, ω j ) ≈ 2h̄(1 − ε)

Emax − Emin
f (NC )
k (ω̃ j ) (C16)

of Eq. (C8) and rescale the energy values as

ω j = Emax − Emin

2h̄(1 − ε)
ω̃ j + Emax + Emin

2h̄
, (C17)

which follows directly from Eq. (C7).
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(1999).
[44] L.-C. Ku, S. A. Trugman, and J. Bonča, Phys. Rev. B 65, 174306
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B 81, 041408(R) (2010).
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