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Computing phonons from first principles is typically considered a solved problem, yet inadequacies in existing
techniques continue to yield deficient results in systems with sensitive phonons. Here we circumvent this issue
using the lone irreducible derivative (LID) and bundled irreducible derivative (BID) approaches to computing
phonons via finite displacements, where the former optimizes precision via energy derivatives and the latter
provides the most efficient algorithm using force derivatives. A condition number optimized basis for BID
is derived which guarantees the minimum amplification of error. Additionally, a hybrid LID-BID approach
is formulated, in which select irreducible derivatives computed using LID replace BID results. We illustrate
our approach on two prototypical systems with sensitive phonons: the shape memory alloy AuZn and metallic
lithium. Comparing our resulting phonons in the aforementioned crystals to calculations in the literature reveals
nontrivial inaccuracies. Our approaches can be fully automated, making them well suited for both niche systems
of interest and high-throughput approaches.
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I. INTRODUCTION

The Born-Oppenheimer potential characterizes the total
energy of a collection of nuclei and electrons at zero tem-
perature, where the nuclei are localized at specific positions.
The second-order Taylor series for some reference configura-
tion provides a vibrational Hamiltonian for the nuclei, from
which the phonons may be constructed. Given the importance
of phonons for materials properties, precisely and efficiently
computing the Taylor series of the Born-Oppenheimer po-
tential from first principles is critical. While perturbative
approaches to computing phonons have their merits, finite-
displacement approaches are agnostic to the first-principles
methodology and their implementations [1]. Therefore, the
development of advanced finite-displacement methodologies
which can knowingly balance precision and efficiency is
paramount. Previously, we introduced approaches to com-
pute phonons and their interactions via irreducible derivatives
(IDs) [1], and here we focus exclusively on phonons and
introduce several important technical developments.

Our irreducible approaches begin by building a vibra-
tional Hamiltonian purely in terms of space group irreducible
derivatives, such that all space group symmetry and the ho-
mogeneity of space (e.g., acoustic sum rules) are satisfied by
construction. Each ID will then be associated with the smallest
commensurate supercell allowed by group theory, which will
require the use of nondiagonal supercells in general. At this
stage, the IDs may be constructed via finite difference using
either the second energy derivatives or the first force deriva-
tives. The use of energy derivatives implies that each ID is
measured independently, and the method which isolates IDs is
referred to as the lone irreducible derivative (LID) approach.
Alternatively, the use of force derivatives enables multiple
IDs to be measured simultaneously, and when the IDs are
computed in the fewest number of measurements and smallest
supercells allowed by group theory, this is referred to as the
hierarchical supercell bundled irreducible derivative (BID)

approach. BID may also be conducted in a single supercell
commensurate with all q points, although this is normally
not desirable given the scaling of typical first-principles ap-
proaches, and therefore, BID will always imply hierarchical
supercell BID. The LID approach can also be applied to force
derivatives, where one computes the smallest number of IDs
as possible in a given measurement, and therefore, LID with
forces can be viewed as a minimal bundling approach. We
refer to LID with energy derivatives as LID0 and that with
force derivatives as LID1. Given that energy derivatives nor-
mally converge faster than force derivatives with respect to
the convergence parameters, LID0 is normally more accurate
than LID1 and BID for a given set of convergence parameters.
Moreover, LID1 is normally more accurate than BID, given
that bundling combines many irreducible representations. Of
course, for a given set of convergence parameters, BID is
substantially more efficient than LID1, which is somewhat
more efficient than LID0. Therefore, it is always preferable to
use BID, but care is needed to ensure that proper convergence
is obtained. In this paper, we derive the best possible way to
numerically execute BID and outline a method to selectively
hybridize LID and BID if needed.

When performing a BID calculation, a measurement basis
is required to perform finite-difference calculations, and there
are an infinite number of choices. Previously, we introduced
the notion of a condition number optimized (CNO) measure-
ment basis [1], in which there is a minimum amplification of
error between the measurements and the irreducible deriva-
tives. However, we did not previously solve the problem of
how to find the measurement basis, and in this work we
present the solution for second order, demonstrating that zero
amplification of error can be achieved. It should be noted that
mainstream finite-displacement methods to compute phonons
[2–4] are a type of single-supercell BID (see [1] for a detailed
discussion). However, these approaches are not condition
number optimized with respect to the irreducible derivatives,

2469-9950/2023/107(17)/174302(8) 174302-1 ©2023 American Physical Society

https://orcid.org/0009-0002-8854-4215
https://orcid.org/0000-0003-3812-2751
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.174302&domain=pdf&date_stamp=2023-05-01
https://doi.org/10.1103/PhysRevB.107.174302


SASAANK BANDI AND C. A. MARIANETTI PHYSICAL REVIEW B 107, 174302 (2023)

which are the quantities that are most directly probed by
experiment (e.g., inelastic neutron scattering).

Given some first-principles theory, different methods for
computing phonons may yield different results due to sensi-
tivity, and each method will have a different trade-off between
efficiency and accuracy. In the context of density functional
theory (DFT), density functional perturbation theory (DFPT)
might be considered the definitive solution, but DFPT still
must be converged with respect to various discretization pa-
rameters such as k points and the basis set cutoff, which
may be nontrivial. While DFPT has been implemented using
the tetrahedron method [5], where convergence with respect
to k-point density has been extensively studied, nearly all
existing studies used smearing integration methods, which are
more difficult to properly extrapolate to zero discretization
given that both k-point density and a smearing parame-
ter must be varied. In any case, results from DFPT must
be properly converged in order to obtain numerically exact
solutions. Finite-displacement techniques utilize either the
energy or the forces, which must be converged with respect
to the same discretization parameters, but each observable
converges at a different rate. An additional consideration for
finite-displacement techniques is convergence with respect to
the finite-displacement discretization �. If � is excessively
small, impractical values of DFT convergence parameters
will be needed, while if � is excessively large, anharmonic
contributions will deviate from leading order. Therefore, it
is imperative to execute multiple � and resolve the known
leading-order behavior (e.g., quadratic for central finite differ-
ence), such that the derivative is precisely extrapolated to � =
0; we refer to this process as the construction of quadratic
error tails. The substantial gains in efficiency allowed by
our irreducible derivative methods can be converted to gains
in precision by properly converging finite-displacement cal-
culations in all regards. Moreover, sensitivities are often
associated with particular phonon modes (e.g., see Sec. III),
and our approaches inherently isolate such sensitivities; how-
ever, conventional approaches inherently mix them, making
the practical task of converging results much more challeng-
ing.

While the LID and BID methods were developed in the
context of computing symmetrized displacement derivatives,
they can be applied without modification to arbitrary-order
strain derivatives, which we refer to as ε-LID and ε-BID
(see Ref. [6] for up to fourth-order strain derivatives com-
puted using ε-LID). Here we focus on only second strain
derivatives (i.e., linear elastic constants). Given that the elas-
tic constants dictate the linear phonon dispersion at small q,
precisely computing the elastic constants is an integral com-
ponent of precisely computing the phonons. When applying
ε-LID and ε-BID, the strains are symmetrized according to
irreducible representations of the point group, such that the
usual group theoretical selection rules dictate the strain irre-
ducible derivatives a priori (i.e., intrinsic symmetrization [1]).
For ε-LID0, the elastic constants are computed using second
energy derivatives, while ε-LID1 and ε-BID use first stress
derivatives, and ε-BID measures all irreducible strain deriva-
tives in the fewest measurements possible via bundling. As in
the case of phonons, ε-LID0 will normally be the most precise
approach for a given set of convergence parameters as energy

derivatives are easier to converge than stress derivatives, but
ε-BID will be the most efficient. Conventional approaches
for performing high-throughput elastic constant calculations
are perhaps best considered a type of ε-LID1 [7], which is a
reasonable philosophy for high-throughput calculations, but
ε-LID0 should be used when a definitive answer is needed. In
this study, all elastic constants are computed using ε-LID0.

To illustrate our methodological developments, we perform
calculations on the shape memory alloy AuZn and bcc Li. We
study AuZn in both the cubic structure (space group 221) and
the low-symmetry trigonal phase (space group 143) [8], which
is formed in a martensitic transition at T = 64 K [9]. The
phonons have been extensively explored in the cubic phase
using DFT [10], although the results had numerous sensitiv-
ities based on the details of the computational approach. We
also study the phonons of Li, which have been measured using
inelastic neutron scattering [11]. Recent DFT calculations ex-
hibit anomalous features in the phonon dispersion which are
not present in experiment [12], and we will demonstrate that
the most substantial anomaly is due to a lack of numerical
precision.

II. BID AND THE CNO MEASUREMENT BASIS

We begin by providing the formulation of BID at second
order. Consider a real function V (u1, . . . , uN ) invariant to
some group, where all independent second derivatives must
be extracted. Assume that evaluating V at some arbitrary
{u1, . . . , uN } has a nontrivial computational cost but also
provides all first derivatives { ∂V

∂ui
}, also denoted {Fi}, sub-

ject to random noise. First-order finite-difference calculations
may then be used to construct second derivatives, which
contain random noise from the first derivatives. A “measure-
ment vector” is defined as a vector in the N-dimensional
space of displacements. BID is the method which computes
all Nd independent second derivatives in the smallest num-
ber of measurements Nm. In the absence of symmetry, we
have Nd = N (N + 1)/2, but this number will be reduced
when the group contains operations other than the identity.
A measurement along the measurement vector θi will yield
N second derivatives which are then stacked into a vector
f i = ( ∂F1

∂θi
, . . . , ∂FN

∂θi
)ᵀ. A given f i can then be related to the

vector of irreducible derivatives it probes, denoted d i, via the
“chain rule matrix” Ci as f i = Cid i. The smallest number of
measurements which probe all irreducible derivatives is then
chosen, yielding Nm. There will be an infinite number of sets
of measurement vectors, and some criteria must be employed
to select an optimum choice.

Previously, we introduced the notion of a CNO mea-
surement basis [1], and in the present formulation the
measurement vectors {θ1, . . . , θNm} are condition number op-
timized if the condition number of all Ci is 1. The condition
number of a matrix can be computed as the ratio of the largest
and smallest singular values and is a measure of the maximum
error amplification when solving a linear system of equations.
The BID method at second order and the CNO measurement
basis are now formally defined, but we are still left with the
problem of how to determine the CNO basis.

In order to determine Nm and the CNO basis, we first
restrict ourselves to the case of an ambivalent group, where
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all irreducible representations can be chosen to be real, and we
generalize thereafter. We begin by symmetrizing the variables
{u1, . . . , uN } according to the irreducible representations of
the group, denoted as {u1, . . . , uN }. The symmetrized force
derivatives with respect to the measurement basis can be con-
structed using the chain rule as

∂Fj

∂θi
=

∑
k

∂2V

∂u j∂uk

∂uk

∂θi
, j = 1, . . . , N. (1)

At second order, the great orthogonality theorem [13] dictates
that there can be coupling only between the same row of the
same type of a given irreducible representation. Key quantities
of a given irreducible representation α are the dimension and
the number of instances, denoted as �α and aα , respectively.
Therefore, the matrix Vi j = ∂2V

∂ui∂u j
can be block diagonalized

with aα × aα blocks, where each element of the upper diag-
onal is an irreducible derivative, and each unique block will
repeat �α times. Given that different irreducible representa-
tions do not couple, they can always be bundled into a single
measurement, and therefore, the only question is how many
measurements are needed to extract all repeating irreducible
representations. Given n measurements, the chain rule for a
given row of the irreducible representation α can be written as

⎡
⎢⎢⎣

∂Fi1
∂θ1

. . .
∂Fi1
∂θn

...
. . .

...
∂Fiaα

∂θ1
. . .

∂Fiaα

∂θn

⎤
⎥⎥⎦ = V α

⎡
⎢⎢⎣

∂ui1
∂θ1

. . .
∂ui1
∂θn

...
. . .

...
∂uiaα

∂θ1
. . .

∂uiaα

∂θn

⎤
⎥⎥⎦, (2)

where V α is the subblock of V corresponding to the irre-
ducible representation α and {i1, . . . , iaα

} are labels of the
given row of the irreducible representation α. We first consider
the case of one-dimensional irreducible representations and
then generalize to the multidimensional case. If n � aα , then
V α can be solved for via matrix inversion given that the right-
most matrix in Eq. (2) is chosen to be full rank. Therefore, for
one-dimensional irreducible representations, we have Nm =
maxα aα . In the general case where there may be repeating
multidimensional irreducible representations, each row forms
an independent subspace with an identical aα × aα potential,
and therefore, one can bundle different rows of different in-
stances of a given irreducible representation, resulting in

Nm = max
α

�aα/�α�. (3)

To illustrate an application of Eq. (3), consider a three-
atom molecule invariant to C3v , such as H3

+ [14], where we
constrain the atoms to move in plane. The displacement repre-
sentation decomposes to 2E + A1 + A2, resulting in Nm = 1,
because the repeating multidimensional E irreducible repre-
sentations can be bundled into the same measurement. The
condition number of the chain rule matrix is naturally mini-
mized by taking equal weights of each row of each irreducible
representation present in a given bundle, where repeating rows
are bundled separately, yielding a condition number of 1 and
hence zero amplification of error. To prove this, consider θi =
(1/|s̃i|)

∑
j∈s̃i

u j , where s̃i is the set of labels of irreducible
displacements contained in the measurement θi. For j ∈ s̃i, the
partial derivatives of θi are ∂θi

∂u j
= 1/|s̃i|, and the pseudoinverse

is used to obtain ∂u j

∂θi
= 1. The chain rule matrix is therefore

the identity matrix, and the condition number is the identity.
The irreducible derivatives probed by θi are then obtain as

∂2V
∂uk∂u j

= ∂2V
∂uk∂θi

for j ∈ s̃i.
We consider several simple examples to illustrate the

preceding formulation, beginning with the classical cou-
pled oscillator with mirror symmetry, having potential V =
1
2 (γAu2

A + γBu2
B), where uA and uB are symmetrized modes

that transform like irreducible representations of the order 2
group, and Nd = 2. In this case, there is only one instance
of each type of irreducible representation, with both being
one-dimensional, and therefore, Nm = 1. The condition num-
ber optimized basis is then obtained by taking equal weights
of each irreducible vector, yielding θ1 = (uA + uB)/2. The
irreducible derivatives d = (γA, γB)ᵀ can be extracted from
the measurements f = ( ∂FA

∂θ1
, ∂FB

∂θ1
)ᵀ as d = f .

The preceding example does not have repeating irreducible
representations, so we now consider the three-atom oscil-
lator with mirror symmetry, where the potential in terms
of the symmetrized modes is V = 1

2 (γAu2
A + γBu2

B + γB′u2
B′ +

γBB′uBuB′ ) and Nd = 4. In this case, the one-dimensional B ir-
reducible representation repeats twice, and therefore, Nm = 2.
The irreducible derivative γA can be bundled into the measure-
ment of either γB, γBB′ or γB′ , γBB′ or both while maintaining
a condition number of 1. Therefore, a possible condition
number optimized basis is θ1 = (uA + uB)/2 and θ2 = uB′ .
The irreducible derivatives d1 = (γA, γB, γBB′ ) are extracted
from the measurement derivatives f 1 = ( ∂FA

∂θ1
, ∂FB

∂θ1
,

∂FB′
∂θ1

)ᵀ as
d1 = f 1. The irreducible derivatives d2 = (γB′ , γBB′ ) are ex-
tracted from the measurement derivatives f 2 = ( ∂FB′

∂θ2
, ∂FB

∂θ2
)ᵀ as

d2 = f 2.
The preceding formalism and examples all pertain to

ambivalent groups, which can always have real irreducible
representations. In general, the translation group is not am-
bivalent and will have complex irreducible representations.
However, we will demonstrate that the formulation for am-
bivalent groups can be applied with trivial modifications. The
basic idea is to apply the preceding formalism to the factor
group of the q point, denoted P(q) in the notation of Birman
[15], for each q point in the irreducible Brillouin zone. Given
that we are focused on hierarchical supercell BID, we need to
consider only q and q̄ pairs individually [1]. We consider the
simplest nontrivial example, which can then be extended to
the general case. Consider the one-dimensional chain with two
distinct atoms per unit cell and a system size of three unit cells.
There will be three q points: 	, �, and �̄. The translationally
symmetrized potential energy is given as

V = 1
2 do

	
o
	uo

	uo
	 + d a a

�̄�
ua

�̄
ua

� + d b b
�̄�

ub
�̄

ub
�

+ (
d a b

�̄�
ua

�̄
ub

� + c.c.
)
, (4)

where a and b label different instances of the identity repre-
sentation of the little group at the � point. While do

	
o
	 , d a a

�̄�
,

and d b b
�̄�

are real numbers, d a b
�̄�

is complex, and both the
real and imaginary parts must be computed. Given that atoms
can be displaced only on the real axis, a change of basis is
required when performing finite-displacement computations.
For q points with complex irreducible representations, a uni-
tary transformation to the real-q representation [1,16] is given
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as

uqc = 1√
2

(uq + uq̄), uqs = i√
2

(uq̄ − uq). (5)

The potential can be transformed to the real-q representation
as

V =1

2
do

	
o
	uo

	uo
	 + 1

2
d a a

�̄�

(
ua

�c ua
�c + ua

�s ua
�s

)

+ 1

2
d b b

�̄�

(
ub

�c ub
�c + ub

�s ub
�s

)

+ Re
(
d a b

�̄�

)(
ua

�c ub
�c + ua

�s ub
�s

)

+ Im
(
d a b

�̄�

)(
ua

�s ub
�c − ua

�c ub
�s

)
. (6)

Here we see that the real-q representation can be viewed as
doubling the dimension of the irreducible representation of
the little group, with the caveat that the repeating irreducible
representations have different phase conventions and different
rows of different instances of an irreducible representation
may now couple (e.g., ua

�c couples with ub
�s ). The fact that

d a b
�̄�

is complex precludes any gain from ui
� and ui

�̄
be-

ing complex conjugates, and the same conclusion holds in
the case of multidimensional irreducible representations of
the little group. Therefore, the number of measurements is
obtained by applying Eq. (3) to the irreducible representa-
tions obtained from symmetrizing according to P(�), and
one may bundle either the c or s vector as in the case of
the ambivalent group, with the caveat that the minus sign
in Eq. (6) must be accounted for. The irreducible deriva-
tive associated with the 	 point can be bundled within
the � point measurements given that 	 is commensurate
with all supercells. One choice for the condition number
optimized basis is θ1 = (uo

	 + ua
�s )/2 and θ2 = ub

�c . The
irreducible derivatives d1 = (do

	
o
	, d a a

�̄�
, Re(d a b

�̄�
), Im(d a b

�̄�
))

are extracted from the measurement derivatives f 1 =
( ∂F o

	

∂θ1
,

∂F a
�s

∂θ1
,

∂F b
�s

∂θ1
,

∂F b
�c

∂θ1
)ᵀ as d1 = f 1. The irreducible deriva-

tives d2 = (d b b
�̄�

, Re(d a b
�̄�

), Im(d a b
�̄�

)) are extracted from the

measurement derivatives f 2 = (
∂F b

�c
∂θ2

,
∂F a

�c
∂θ2

,
∂F a

�s
∂θ2

)ᵀ as d2 = f 2.
A general crystal will have more q points and more irreducible
representations at each q point, but given that each q point
corresponds to a different irreducible representation of the
translation group, each q/q̄ pair can be treated separately,
and thus, each piece of the problem maps onto the preceding
example.

In the preceding case, both the real and imaginary parts
of the cross derivatives between irreducible representations
must be measured. An appropriate gauge transformation can
make the cross derivative purely real, but this transforma-
tion cannot be known a priori in general. However, if the
space group has a point symmetry operation that maps q ↔
q̄, the proper phase convention can be determined a priori,
and then all irreducible derivatives will be real. In this case,
the real-q basis can be viewed as doubling the dimension
of the irreducible representation of the little group without
any caveat, and thus, the number of measurements is Nm =
maxα�aα/(2�α )�. To illustrate this reduction, consider the
potential from Eq. (6) but make the atoms equivalent, which
results in a mirror plane that maps � ↔ �̄. Therefore, a phase
convention can be chosen a priori such that Im(d a b

�̄�
) = 0 and

Nm = 1. A condition number optimized basis can be chosen
as θ1 = (uo

	 + ua
�c + ub

�s )/3. The irreducible derivatives d1 =
(do

	
o
	, d a a

�̄�
, d a b

�̄�
, d b b

�̄�
) are extracted from the measurement

derivatives f 1 = ( ∂F o
	

∂θ1
,

∂F a
�c

∂θ1
,

∂F b
�c

∂θ1
,

∂F b
�s

∂θ1
)ᵀ as d1 = f 1.

In the preceding we have outlined a condition number
optimized measurement basis, and now we present guidelines
for resolving a sensitivity associated with a given phonon
mode. In our CNO basis, each irreducible derivative can be
traced to a specific bundle, and the simplest solution will be to
reevaluate the choice of � and or increase the convergence
parameters for that particular bundle. However, given that
energy derivatives normally converge faster than force deriva-
tives, one could also recompute the problematic irreducible
derivatives using LID0 and use them in place of the erroneous
BID result, which we refer to as a hybrid LID-BID approach.

III. RESULTS

We now illustrate LID, BID, and hybrid LID-BID in
several crystals where there are discrepancies from the exist-
ing literature, including AuZn and bcc Li. DFT calculations
were performed using the projector augmented wave (PAW)
method [17,18], as implemented in the Vienna Ab initio Simu-
lation Package (VASP) [19–22]. The Perdew-Burke-Ernzerhof
generalized gradient approximation (GGA) [23] was used
for results in the main text, and local density approximation
(LDA) [24] results for AuZn are provided in the Supplemental
Material [25]. Unless otherwise noted, a plane wave basis with
a kinetic energy cutoff of 1200 and 450 eV was employed
for Li and AuZn, respectively. A 	-centered k-point mesh of
30 × 30 × 30 was used in calculations of the primitive unit
cell in both AuZn and Li, and corresponding k-point densi-
ties were used in supercells. The k-point integrations were
done using the tetrahedron method with Blöchl corrections
[26]. The DFT energies were converged to within 10−6 eV,
while ionic relaxations were converged to within 10−5 eV. For
AuZn, we used the experimental lattice parameter a0 = 3.13
Å in order to make a comparison with previous calculations,
while energy minimization yielded a lattice parameter of
2.97 Å for Li, and the relaxed trigonal structure of AuZn is
provided in the Supplemental Material [25]. For the central
finite-difference calculations within LID and BID, quadratic
error tails were constructed using the best three out of at
least eight discretizations (i.e., � in Eq. (40) in Ref. [1]).
It should be noted that many phonon finite-difference cal-
culations are performed with forward finite difference and a
single discretization, and LID and BID can be executed in
this manner, although this choice would not extrapolate the
discretization error to zero. Elastic constants were measured
using ε-LID0, which uses second strain derivatives of the
energy. For LID and BID in Li and cubic AuZn, the Brillouin
zone is discretized using real-space supercells of 8 × 8 × 8
(i.e., multiplicity 512 and 512 atoms) and 6 × 6 × 6 (i.e., mul-
tiplicity 216 and 432 atoms), respectively, which are encoded
as ŜBZ = 81̂ and ŜBZ = 61̂. While LID and BID construct
all irreducible derivatives commensurate with ŜBZ = 81̂ and
ŜBZ = 61̂ in Li and cubic AuZn, respectively, all results are
extracted from supercells with multiplicity 8 and 6 [1,27].
For LID and BID in trigonal AuZn, the Brillouin zone is dis-
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FIG. 1. DFT phonon dispersion of cubic AuZn, where points
are computed values and lines are a Fourier interpolation. (a) LID0

results are shown in blue, the acoustic dispersion obtained from the
elastic constants is shown as black dashed lines, and the results
shown in purple are taken from Ref. [10]. (b) LID0, LID1, and BID
results are shown in blue, green, and red, respectively.

cretized using ŜBZ = 21̂ (i.e., multiplicity 8 and 144 atoms),
and all irreducible derivatives are extracted using supercells
with multiplicity 2. For phonon band structure plots, a table
of q-point labels is provided [25].

We begin by analyzing the cubic phase of AuZn, where
experiment dictates that there is a phase transition to the
trigonal structure, which is connected to the cubic structure
via a distortion along q vectors in the star of q = ( 1

3 , 1
3 , 0).

Inelastic x-ray scattering experiments at T = 200 K indicate
that there is a nearly soft phonon mode at q = ( 1

3 , 1
3 , 0) [9],

which can be identified as a B2 mode under the C2v little
group. There are two B2 basis modes at q = ( 1

3 , 1
3 , 0), and

each one can be purely constructed of either Au or Zn, while
the eigenmodes will be a linear combination. In order to study
the B2 eigenmodes, one must compute the second derivative of
each basis mode and the coupling between the two, resulting
in three real irreducible derivatives given that AuZn has inver-
sion symmetry. Therefore, when precisely computing the B2

eigenmodes, three error tails must be carefully scrutinized.
We proceed by presenting the phonons of the cubic phase

of AuZn computed using LID0 [see Fig. 1(a)]. Blue points
represent direct measurements of the phonons via LID0, solid
blue lines are Fourier interpolations, and dashed black lines
are the linear dispersion of the acoustic modes obtained inde-
pendently from the elastic constants computed using ε-LID0

(see [25] for error tails). Previously published results [10] us-
ing finite displacement are shown as purple lines for branches

with major discrepancies. Both sets of results contain all
derivatives within the same finite translation group defined
by a ŜBZ = 61̂ supercell, and therefore, values from Ref. [10]
are measured at the same discrete points as our calculations.
Along the plotted directions, the finite-displacement mea-
surements from Ref. [10] are in reasonable agreement with
our own results, with the major exception of a single spu-
rious point on the highest optical branch between 	 and X ,
highlighting the importance of constructing error tails. The
resulting Fourier interpolation in Ref. [10] yields imaginary
frequencies for the acoustic branches near the 	 point, indi-
cating that some elastic constant is negative. However, our
results clearly prove that the elastic constants are positive, and
therefore, the Fourier interpolation of the finite-displacement
results from Ref. [10] are likely contaminated by the spurious
measurement. The DFPT results from Ref. [10] differ sub-
stantially from our results for the lower B2 branch between
	 and M, and the q = ( 1

3 , 1
3 , 0) point is predicted to be soft.

The DFPT and finite-displacement results must agree when
both are converged. It should be noted that a different pseu-
dopotential was used in the DFPT calculation, which could
be the source of some differences. Additionally, the DFPT
results used a smearing k-space integration technique, and it
is not clear whether the results are converged with respect to
the k-point density. Our own DFPT calculations [28,29] using
the tetrahedron method indicate that the mode is not soft,
and the phonon energy is in reasonable agreement with our
LID0 results (see Fig. S2 [25]). While the GGA results using
the VASP PAWs and the experimental lattice parameter do not
yield a soft mode, using LDA under these conditions will yield
a soft mode [25]. Additionally, using GGA with the relaxed
lattice parameter will also yield a soft mode. Therefore, the
physics of the B2 mode is somewhat sensitive and requires
a detailed investigation to provide a robust comparison with
experiment.

Having established the precise phonon spectrum using
LID0, we now proceed to assess the precision of BID using the
CNO basis and LID1 [see Fig. 1(b)]. Given the importance of
the B2 modes at q = ( 1

3 , 1
3 , 0), we will retain the LID0 result

for the two-dimensional B2 block, and all other results will be
obtained from BID and LID1, respectively. We see that LID1

and BID introduce only small errors, although the magnitudes
of the errors are always larger in BID, as expected. Having
demonstrated the fidelity of BID, we use BID to compute the
phonons in the trigonal phase using C1 symmetry (see Fig. 2).
The only previous result in the literature that we are aware of
is a phonon DOS [30], but that study used a crystal structure
which was not fully relaxed.

We now consider the phonons of Li metal in the bcc phase,
and we begin by focusing on the lowest-frequency branch
between 	 and N [see Fig. 3(a)], as unusual results were
obtained in previously published DFT calculations [12]. It is
worth noting that this anomaly is not observed in inelastic
neutron scattering measurements at T = 98 K [11]. We follow
our protocol of investigating with LID0, ensuring proper error
tails are obtained and testing convergence with respect to
electronic k-point density. In Fig. 3(a), circles represent direct
measurements of the phonons via LID0 at various k-point
mesh densities for ŜBZ = 81̂ and ŜBZ = 101̂, the blue line is a
Fourier interpolation of ŜBZ = 81̂ using an electronic k-point
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M

FIG. 2. DFT phonon dispersion and DOS of trigonal AuZn com-
puted using BID.

mesh of 401̂, and the dashed black line is the linear dispersion
of the acoustic mode obtained from the ε-LID0 elastic con-
stants (see [25] for additional k-point densities). The results
of Ref. [12] using finite-displacement calculations with ŜBZ =
101̂ are shown as green diamonds and lines for the measured
and interpolated results, respectively. The results of Ref. [12]
are in reasonable agreement with our 201̂ k-point mesh results
with the exception of q = ( 1

5 , 0, 0). The most obvious differ-
ence between our LID0 calculations and those of Ref. [12] is
that our result uses second energy derivatives and quadratic
error tails, while the latter uses first force derivatives and a
single �. Both of these differences are likely to contribute to
the q = ( 1

5 , 0, 0) discrepancy of Ref. [12]. It is important to
explore the error tails of the discretized second energy deriva-
tives (Eq. (40) in Ref. [1]) in order to understand the potential
issues of using a single � [Figs. 3(b)–3(e)]. For a given �,
the amplitude of the real-space displacements modulates as
δ cos(2πq · t ) throughout the supercell [1], and the resulting
discretized second energy derivatives are plotted as a function
of δ. For the case of q = ( 1

2 , 0, 0) [Fig. 3(b)], the k mesh of
201̂ strongly deviates from a quadratic below δ = 0.1 Å, indi-
cating that fitting larger δ to a quadratic error tail is critical to
obtaining reasonable results at this k-point density. However,
increasing to 401̂ yields a clear quadratic behavior down to
δ = 0.02 Å. It is also instructive to evaluate the corresponding
LID1 force derivative for 401̂, which does not show signs of
quadratic behavior until large δ, demonstrating the limitation
of force derivatives. This case illustrates how using a single �

could yield nontrivial errors. For q = ( 3
8 , 0, 0) [see Fig. 3(c)],

201̂ has only three points falling onto a quadratic curve, while
401̂ has four consecutive points which are strongly quadratic.
The quadratic behaviors in q = ( 1

8 , 0, 0) and q = ( 1
5 , 0, 0) for

201̂ and 401̂ are comparable, although the overall change in
the intercepts is modest [see Figs. 3(d) and 3(e)]. Therefore,
the large difference observed in Ref. [12] is likely connected
to a discretization error associated with finite displacements.
Additionally, we have demonstrated that there is some sensi-
tivity associated with the electronic k-point mesh density for
the lowest branch along 	-N . It is worth noting that previous

FIG. 3. (a) DFT phonons of Li for the lowest branch along 	-N
computed using LID0, where points are computed values and lines
are a Fourier interpolation using ŜBZ = 81̂. LID results are provided
for electronic k-point meshes of 201̂ and 401̂, and results from
Ref. [12] are shown in green. (b)–(e) Select discrete second energy
derivatives for the lowest branch vs displacement magnitude, where
δ is the real-space amplitude, which is modulated throughout the
supercell as δ cos(2πq · t ). Each line is a fit to a quadratic for the
three points which yield the smallest error, and the intercept yields
the irreducible derivative of the respective mode. LID1 results are
included in (b).

DFPT calculations did not suggest any sensitivity for the
aforementioned branch [31] (also see Ref. [32]), although our
own results using DFPT [28,29] demonstrate that there is a
sensitivity (see Fig. S7 [25]).

We now proceed to compute the entire phonon spectrum
using LID0 [see Fig. 4(a)]. Given the sensitivity observed
in Fig. 3, we retain the highest-precision 401̂ k-point mesh
results for the irreducible derivatives in this branch, and we
use 301̂ otherwise. We see that the results are in good agree-
ment with the linear acoustic dispersions from the elastic
constants at small q. Having established the LID0 results, we
now proceed to assess the precision of LID1 and BID using
the CNO basis [see Fig. 4(b)]. Once again, we retain the
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FIG. 4. DFT phonon dispersion of bcc Li, where points are com-
puted values and lines are a Fourier interpolation. (a) LID0 results are
shown in blue, and the acoustic dispersion obtained from the elastic
constants is shown by black lines. (b) LID0, LID1, and BID results
are shown in blue, green, and red, respectively.

highest-precision 401̂ LID0 results for the irreducible deriva-
tives in the branch studied in Fig. 3. We begin by exploring
LID1 to isolate the effect of using first derivatives of the
forces in place of second derivatives of the energy. We see
that LID1 introduces only small changes, such as near the H
point. These differences are small enough for our purposes,
but they could be reduced further by increasing the various
convergence parameters of the calculation. In the BID result,
where the effect of bundling can be seen by comparing the red
curve with the green curve, we can see that the magnitude of
the changes is on the same scale as the effect of using forces.
Here we see that the large reduction in computational cost is
achieved without any appreciable loss in fidelity.

IV. CONCLUSION

In summary, we have shown how to accurately and effi-
ciently compute phonons from first principles using the LID
and BID approaches. In previous work, we defined the notion
of a condition number optimized bundled basis but did not
provide a method to find an optimal solution [1]. Here we
derived an optimal solution at second order, enabling BID
to provide irreducible derivatives in the smallest number of
computations with zero amplification of error. Typically, one
will use BID to compute all irreducible derivatives. If there
are known sensitivities or if BID error tails are deficient,
LID0 (i.e., using energy derivatives) can be used to compute
the problematic irreducible derivatives, replacing the BID re-
sult. This hybrid LID-BID approach balances accuracy and
efficiency as needed, which is particularly important when
computing phonons using beyond DFT methods such as hy-
brid functionals [33,34], variational quantum Monte Carlo
[35,36], and DFT plus dynamical mean-field theory [37].

We demonstrated the fidelity of our irreducible approaches
by addressing sensitive phonons from the literature. In the
cubic phase of AuZn, we computed the phonons, demon-
strated consistency with the computed elastic constants, and
resolved discrepancies in previously published calculations.
We also computed the phonons in the trigonal phase of AuZn.
In elemental Li, we computed the phonons and found that
the lowest phonon branch between 	 and N is somewhat
sensitive to the electronic k-point mesh density. Additionally,
we demonstrated the important role of properly extrapo-
lating the finite-displacement discretization error to zero.
While we studied metallic systems in this paper, LO-TO
splitting in polar insulators can be treated via the standard
dipole-dipole approach [38,39] in conjunction with finite-
displacement approaches (see Appendix A in Ref. [6] for a
discussion and applications), and therefore, our irreducible
derivative approaches can be applied universally. Moreover,
a recent extension of the dipole-dipole approach which in-
cludes higher-order multipoles [40] can also be employed
using finite-displacement approaches.
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