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Dynamical freezing and switching in periodically driven bilayer graphene
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A class of integrable models, such as the one-dimensional transverse-field Ising model, responds nonmono-
tonically to a periodic drive with respect to the driving parameters and freezes almost absolutely for certain
combinations of the latter. In this paper, we go beyond the two-band structure of the Ising-like models studied
previously and ask whether such an unusual nonmonotonic response and near-absolute freezing occur in
integrable systems with a higher number of bands. To this end, we consider a tight-binding model for bilayer
graphene subjected to an interlayer potential difference. We find that when the potential is driven periodically,
the system responds nonmonotonically to variations in the driving amplitude V0 and frequency ω and shows
near-absolute freezing for certain values of V0/ω. However, the freezing occurs only in the presence of a constant
bias in the driving, i.e., when V = V ′ + V0 cos ωt . When V ′ = 0, the freezing is switched off for all values of
V0/ω. We support our numerical results with analytical calculations based on a rotating wave approximation.
We also give a proposal to realize the driven bilayer system via ultracold atoms in an optical lattice, where the
driving can be implemented by shaking the lattice.
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I. INTRODUCTION

Periodically driven quantum many-particle systems show-
case a variety of phenomena such as nonequilibrium quantum
phase transitions [1–4] and Floquet engineered topological
phases [5,6]. In this paper, we focus on another remark-
able aspect of coherent periodic driving known as dynamical
many-body freezing (DMF) wherein a system responds non-
monotonically to variations in the driving parameters and
freezes almost completely at certain combinations of the latter
[7–9]. DMF is a many-body manifestation of single-particle
phenomena such as the dynamical localization of a particle
moving on a lattice in the presence of an alternating electric
field [10,11] and the coherent destruction of tunneling of a
particle moving in a periodically driven double-well potential
[12,13].

Multiple aspects of DMF have been explored in recent
years. They include the effect of disorder [14], the emergence
of slow solitary oscillations [8], the effect of interactions
[15], and switching of the response by tuning parameters in
the Hamiltonian [16]. DMF has been experimentally demon-
strated in a periodically driven Ising chain [17]. For recent
reviews on DMF, see Refs. [18,19].

The question of whether quantum integrable systems could
freeze under periodic driving due to coherent cancellation of
transition amplitudes was first addressed in Ref. [7] using the
one-dimensional transverse-field Ising model as a concrete
example. When the magnetic field is driven harmonically at
high frequencies, for a fixed driving amplitude, the magneti-
zation (which is a measure of the degree of freezing) shows
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a nonmonotonic dependence on the frequency. Remarkably,
for certain combinations of the amplitude and frequency of
the drive, the entire system freezes almost absolutely into the
initial maximally polarized state.

The one-dimensional Ising model is integrable and is ex-
actly solvable via Jordan-Wigner transformation, which maps
the system to a two-band free fermion system. In this paper,
we look for DMF in a four-band system that has been stud-
ied extensively both theoretically [20–24] and experimentally
[25–27], viz., the bilayer graphene.

In bilayer graphene, an external electric field applied per-
pendicular to its plane induces a potential difference between
the two layers [28–30]. This results in an effective layer-
dependent chemical potential term in the Hamiltonian, which
opens a band gap. It has been experimentally shown that
the applied electric field can be used to tune the energy gap
[31,32].

In our model, we harmonically drive the layer-dependent
potential (−V for layer 1 and V for layer 2). We find that
DMF occurs only when a constant bias is added to the driving:
V (t ) = V ′ + V0 cos ωt . For nonzero V ′, the system responds
nonmonotonically to variations in V0 and ω and freezes for
certain combinations of the latter. When V ′ = 0, no freezing
occurs for any combination of V0 and ω, which is in contrast
to two-band models such as the Ising model studied earlier,
where freezing occurs without any bias in the driving. In the
model for bilayer graphene we have studied, the bias acts as a
switch for freezing.

Dynamical freezing, in general, requires high driving fre-
quencies and amplitudes, which may be difficult to achieve
with the gate voltage in bilayer graphene. However, it has
been shown that dynamical freezing can occur even at low
frequencies provided the driving amplitude is above the ther-
malization threshold [33]. Another way to overcome the
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FIG. 1. A-B bilayer graphene.

difficulty of achieving large values of drive parameters is to
simulate the dynamics in a moving frame in which none of
the couplings in the Hamiltonian is large [15]. Here we put
forward a proposal to realize the bilayer system in an opti-
cal lattice where the driving can be implemented via lattice
shaking. Dynamical localization in a one-dimensional opti-
cal lattice via lattice shaking has already been demonstrated
experimentally [34].

The rest of this paper is organized as follows. In Sec. II,
we briefly review bilayer graphene and its energy spectrum.
In Sec. III, we study the response of the system when the
interlayer potential is driven periodically. In Sec. IV, we give
a proposal to realize the driven bilayer system in an optical
lattice via lattice shaking. We conclude by discussing our
results in Sec. V.

II. BILAYER GRAPHENE

Graphene is a single layer of graphite composed of car-
bon atoms forming a honeycomb lattice [35,36]. Bilayer
graphene—two connected layers of graphene—exists in two
different forms [37,38]: (1) AA, in which all atoms in the
top layer are placed directly above the atoms in the bottom
layer, and (2) AB, in which half the atoms in the top layer, all
belonging to the same sublattice, are placed above the centers
of the hexagons in the bottom layer while the atoms in the
top layer belonging to the other sublattice are placed directly
above the atoms belonging to one of the sublattices in the
bottom layer (see Fig. 1). There also exist stable structures
in which one layer is rotated with respect to the other, known
as twisted bilayer graphene [39–41]. The AB structure is more
stable than AA and has been widely studied experimentally
[42–46]. We consider the AB stacking first.

The unit cell contains four carbon atoms, labeled
A1, A2, B1, and B2, as shown in Fig. 1. The tight-binding
model we study has two types of hopping: in-plane nearest-
neighbor hopping with amplitude −u and interplane nearest-
neighbor hopping with amplitude u′ [38]. In addition, we also
consider an external electric field applied perpendicular to the
plane of the bilayer. This induces (after taking the screening
effect into account) an effective voltage difference V between

the layers. Then the Hamiltonian is given by [38]

H = − u
∑
〈i, j〉

[a†
i,1b j,1 + a†

i,2b j,2 + H.c.]

+ u′ ∑
i

[b†
i,1ai,2 + H.c.]

− V

2

∑
i

[a†
i,1ai,1 + b†

i,1bi,1] − a†
i,2ai,2 − b†

i,2bi,2], (1)

where a†
i,α (b†

i,α) is the electron creation operator at site i
in sublattice A (B) belonging to layer α. (Here we have
suppressed the spin index for notational simplicity.) In the
momentum basis, the Hamiltonian becomes

Hk =
∑

k

�
†
kHk�k, (2)

where �
†
k = [a†

k1, b†
k1, a†

k2, b†
k2], and

Hk =

⎡
⎢⎢⎢⎢⎣

−V
2 −u fk 0 0

−u f ∗
k −V

2 u′ 0

0 u′ V
2 −u fk

0 0 −u f ∗
k

V
2

⎤
⎥⎥⎥⎥⎦, (3)

with

fk = exp(−ia0kx )

[
1 + 2 exp

(
3ia0kx

2

)
cos

(√
3a0ky

2

)]
.

(4)

Here a0 is the distance between nearest-neighbor carbon
atoms within a layer. The energy dispersions have the form

εα
k = ± 1√

2

[
V 2

2
+ u′2 + 2u2| fk|2

± u′√−2V 2 + u′2 + 4u2| fk|2
] 1

2

, (5)

where α = 1, 2, 3, 4, respectively, correspond to the choices
(+,+), (+,−), (−,+), (−,−). When V = 0, the spectrum
is gapless at the six corners of the hexagonal Brillouin zone,
of which only two are inequivalent, which we can choose to
be

K = 2π

3a0

(
1,

1√
3

)
,

K′ = 2π

3a0

(
1,

−1√
3

)
. (6)

The chemical potential term opens up a gap in the dispersion
since for nonzero V , εα

k is no longer zero for any value of k.
We now periodically drive the potential V and study the

response of the system to variations in the driving parameters.

III. PERIODIC DRIVING

We choose u′ = 0.2 and u = 1, in accordance with their
experimentally determined values [38] and drive the potential
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FIG. 2. One-particle sector: Q(V0/ω) for N = 100 with (a) V ′ = 0 and (b) V ′ = 0.1 and q̃(t ) for specific values of ω for N = 100 with
(c) V ′ = 0 and (d) V ′ = 0.1. In all the cases V0 = 20.

harmonically:

V (t ) = V0 cos ωt . (7)

Our focus will be on the large-amplitude and high-frequency
regime, i.e., V0, ω � u, u′ [throughout this paper we work
with units in which h̄ = 1].

To study the response to the driving, we compute the long-
time average of the probability for each mode to remain in the
initial state. It is useful to define the following quantities:

qk(t ) = |〈ψk(0)|ψk(t )〉|2, (8)

q̃(t ) = 1

N

∑
k

qk(t ), (9)

q̄k = 1

T

∫ T

0
qk(t ) dt, (10)

Q = 1

T

∫ T

0
dt q̃(t ), (11)

where the initial state |ψk(0)〉 is chosen to be the ground
state corresponding to momentum k (with either one or two
particles) and N is the number of unit cells. Here qk(t ) is the
probability for the one- or two-particle state of the k mode(s)
to remain in the initial state at t , q̃(t ) is the above probability
averaged over all k, q̄k is the time average of qk(t ), and Q is
the latter averaged over both t and k.

The parameter Q measures the degree of freezing, with
Q = 1 indicating absolute freezing. We first calculate Q by

numerically solving the Schrödinger equation and then in-
terpret our results within the framework of a rotating wave
approximation valid at high frequencies.

We consider the system at half filling; then, at t = 0, the
two negative-energy lower bands are filled. Due to the lattice
symmetry, the dynamics for a given k will be restricted to the
corresponding six-dimensional two-particle sector. However,
since the Hamiltonian is noninteracting, the two-particle dy-
namics will be determined by the dynamics of the one-particle
sector, which we consider first.

A. One-particle sector

At t = 0, we occupy the lowest energy state for each k with
one particle. Since V0 � u, u′, we can approximate the initial
state to be the ground state of Hk [Eq. (3)] with u = u′ = 0.
Then,

|ψk(0)〉 = 1√
2

⎡
⎢⎢⎣

1
| fk|
fk

0
0

⎤
⎥⎥⎦. (12)

Starting with the above state, we let the system evolve under
the periodic drive [Eq. (7)] and numerically evaluate qk(t ) for
varying driving frequency ω, keeping the amplitude V0 fixed.

Figure 2(a) shows Q [which is qk(t ) averaged over both
k and t] as a function of the dimensionless parameter V0/ω.
We have fixed V0 = 20 and varied ω, and the time evolution
is calculated for a duration of T = 2000. Q(V0/ω) has a value
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close to 0.5 (dashed line) for almost all values of ω, except
around three points where it shows some deviation from the
constant value. In particular, around ω = 8.3 (V0/ω = 2.4)
the system appears to be freezing. For the three special fre-
quencies (ω = 2.3, 3.6, and 8.3), we have evolved the system
for a longer time (T = 50000); Fig. 2(c) shows plots of the
corresponding q̃(t ). Q obtained by averaging over the longer
duration are, respectively, 0.48, 0.49, and 0.49, which are
closer to the constant value of 0.5 we obtained for other
frequencies. Therefore, at large times, the system does not
freeze at any value of the frequency.

To gain a better understanding of why there is no freezing
at any frequency, as has been the case for two-band models
such as the Ising model, and to find possible routes towards
freezing, we next analyze the dynamics using a rotating wave
approximation.

1. Rotating wave approximation

To implement the rotating wave approximation (RWA)
[47,48], we first carry out the following time-dependent uni-
tary transformation that takes us to a rotating frame (in the
interaction picture):

U = exp

{
−i

∫ t

0
HV (t ′)dt ′

}
, (13)

where HV is the time-dependent part of Hk:

HV = − V0

2ω
cos (ωt ) σ z ⊗ I. (14)

Substituting for HV , we get

U = exp

{
i

(
V0

2ω
sin (ωt )

)
(σ z ⊗ I )

}
, (15)

and then the effective Hamiltonian, H ′
k = UHkU † + i∂tUU †,

is

H ′
k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −u fk 0 0

−u f ∗
k 0 u′e2iθ 0

0 u′e−2iθ 0 −u fk

0 0 −u f ∗
k 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (16)

where θ = (V0/2ω) sin ωt .
Expanding exp[i(V0/ω) sin(ωt )] in terms of einωt , n ∈ Z,

we get

exp

[
i

(
V0

ω

)
sin(ωt )

]
=

∞∑
n=−∞

Jn

(
V0

ω

)
einωt , (17)

where Jn(V0/ω) are the Bessel functions of the first kind. In
the RWA, for large ω, we retain only the n = 0 term, neglect-
ing all the faster-oscillating terms [47]. Then the Hamiltonian

becomes

H ′
k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −αk 0 0

−α∗
k 0 β 0

0 β 0 −αk

0 0 −α∗
k 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (18)

where αk = u fk and β = u′J0(V0/ω).
Evaluating qk(t ) [Eq. (8)], the probability for a particle

with momentum k to remain in the initial state at time t , we
obtain [see Eq. (A6)]

qk(t ) = 1

4
[cos(λ1t ) + cos(λ2t )]2

+ 16u2 f 2
k

[
λ1

N1
sin(λ1t ) + λ2

N2
sin(λ2t )

]2

, (19)

where

λ1 = − 1
2 (β +

√
4|αk|2 + β2), (20)

λ2 = 1
2 (β −

√
4|αk|2 + β2), (21)

N1 = 8(|αk|2 + λ2
1), and N2 = 8(|αk|2 + λ2

2). The time aver-
age of qk(t ) is then [Eq. (A7)]

q̄k = 1

4
+ |αk|2

4|αk|2 + β2
. (22)

The maximum of q̄k occurs when β = 0. Thus, q̄k � 1/2
for all k. We can also obtain a lower bound by noting that q̄k
has its lowest value when β2 takes its maximum value and |αk|
takes its minimum. From Eq. (4) it follows that |αk|min = u,
and βmax = u′ [since J0(V0/ω) � 1]. With our choice of values
for the parameters (u = 1, u′ = 0.2), we get q̄k � 0.4975.
Putting the two bounds together,

0.4975 � q̄k � 0.5. (23)

Thus, according to the RWA, q̄k ≈ 0.5 for all k, independent
of V0 and ω. Consequently, Q(V0/ω), the average of q̄k over
k, is also approximately 0.5 for all values of V0/ω; there is no
freezing.

The RWA value of Q(V0/ω) ≈ 0.5 is in good agreement
with our numerical calculations [Fig. 2(a)], except around the
three specific values of ω we discussed earlier. The deviation
of Q from its RWA value for these frequencies can be under-
stood as follows. In Eq. (19), for qk(t ), there are terms of the
form cos (λ1 − λ2)t and sin (λ1 − λ2)t . The time average of
such terms over an interval T will vanish if T � (λ1 − λ2)−1.
However, as J0(V0/ω) → 0, (λ1 − λ2)−1 → ∞; therefore, for
q̄k to converge to its long-time average, the time over which
the averaging is done should approach ∞. Consequently,
around those values of V0/ω for which J0(V0/ω) = 0, the
convergence of Q to its RWA value will be extremely slow.
In Fig. 2(a), the spikes in Q(V0/ω) occur around V0/ω =
2.30, 3.60, and 8.30, whereas the zeros of J0(V0/ω) are at
2.40, 5.52, and 8.65.

When J0(V0/ω) = 0, and therefore β = 0, the initial state
[Eq. (12)] becomes an eigenstate of H ′

k [Eq. (18)] for all
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k, which would then imply that the state is stationary and
therefore q̄k = 1. However, when β = 0, the initial state also
becomes degenerate with the state

|ψ ′
k〉1p = 1√

2

⎡
⎢⎢⎣

0
0
1

| fk|
fk

⎤
⎥⎥⎦, (24)

both having the eigenvalue −|u fk|. Then, for arbitrarily small
values of β, which couples these two degenerate states, there
will be full oscillation between the two states. Therefore, we
must take the limit β → 0 of the general expression for q̄k
[Eq. (22)] to get its physically correct value instead of directly
putting β = 0 in the Hamiltonian. Taking the limit, we get

lim
β→0

q̄k = 1
2 , (25)

and therefore, Q = 1/2 as well. That is, there is no freezing
even for those values of ω at which β = 0.

It is the degeneracy in the rotating wave Hamiltonian that
prevents the system from freezing even as β → 0. A simple
way to lift the degeneracy is to introduce a constant bias in
driving, which we consider next.

2. Periodic driving with bias

Adding a constant term, the potential becomes V (t ) =
V ′ + V0 cos(ωt ). As before, going to the rotating frame via
the transformation

U = exp

[
i

(
V0

2ω
sin (ωt ) + V ′t

2

)
(σ z ⊗ I )

]
(26)

and then applying the rotating wave approximation, we obtain
the effective Hamiltonian as

H̃k =

⎡
⎢⎢⎣

0 −αk 0 0
−α∗

k 0 βeiV ′t 0
0 βe−iV ′t 0 −αk
0 0 −α∗

k 0

⎤
⎥⎥⎦. (27)

The rotating wave Hamiltonian can be made time independent
by yet another transformation that takes |3〉 → e−iV ′t |3〉 and
|4〉 → e−iV ′t |4〉 and leaves |1〉 and |2〉 invariant. The resultant
effective Hamiltonian is then

H ′′
k =

⎡
⎢⎢⎣

0 −αk 0 0
−α∗

k 0 β 0
0 β −V ′ −αk
0 0 −α∗

k −V ′

⎤
⎥⎥⎦. (28)

When β = 0 [i.e., when J0(V0/ω) = 0], the initial state
[Eq. (12)] is again a stationary state, but in the presence of V ′
the corresponding eigenvalue is no longer degenerate. Then,
q̄k → 1 as J0(V0/ω) → 0, and the system freezes.

For V ′ = 0.1, we have numerically calculated the dynam-
ical freezing factor Q(V0/ω) by varying ω, keeping V0 fixed
at 20 [Fig. 2(b)]. The system freezes almost completely at
V0/ω = 2.394, 5.509, and 8.620. These values of V0/ω are in
good agreement with the three zeros of J0(V0/ω), which are at
V0/ω = 2.405, 5.520, and 8.654, respectively. In Fig. 2(d), we
plot the response function q̃(t ) for those values of ω at which
Q(V0/ω) peaks; in all cases q̃(t ) ≈ 1 at all times.

B. At half filling

Next, we consider the dynamics of the ground state at
half filling, which, as mentioned earlier, lies in the two-
particle sector. We can compute the two-particle Hamiltonian
Hk,2p directly from its one-particle counterpart Hk [Eq. (3)].
Choosing the two-particle basis states as

|1〉2p = 1√
2

(|1〉1p ⊗ |2〉1p − |2〉1p ⊗ |1〉1p),

|2〉2p = 1√
2

(|1〉1p ⊗ |3〉1p − |3〉1p ⊗ |1〉1p),

|3〉2p = 1√
2

(|1〉1p ⊗ |4〉1p − |4〉1p ⊗ |1〉1p),

|4〉2p = 1√
2

(|2〉1p ⊗ |3〉1p − |3〉1p ⊗ |2〉1p),

|5〉2p = 1√
2

(|2〉1p ⊗ |4〉1p − |4〉1p ⊗ |2〉1p),

|6〉2p = 1√
2

(|3〉1p ⊗ |4〉1p − |4〉1p ⊗ |3〉1p), (29)

where | j〉1p ( j = 1 to 4) are the canonical one-particle basis
states, we obtain

Hk,2p =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−V u′ 0 0 0 0
u′ 0 −αk −αk 0 0
0 −α∗

k 0 0 −αk 0
0 −α∗

k 0 0 −αk 0
0 0 α∗

k α∗
k 0 u′

0 0 0 0 u′ V

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (30)

where αk = u fk, as defined earlier.

1. Numerical analysis

As in the one-particle case, we numerically compute qk(t ),
the probability of the two-particle state in the sector with
momentum k to remain in the initial ground state at a later
time t . For V0 � 1, the initial ground state is (1, 0, 0, 0, 0, 0).
We first consider the case with V ′ = 0.

Figure 3(a) shows Q(V0/ω) obtained by averaging q̃(t )
over the duration T = 2000, keeping V0 = 20 and varying ω.
As we anticipate from the one-particle case, there is no freez-
ing at any value of ω, with Q having a nearly constant value,
which is close to 0.375 (dashed line). Moreover, Q again
deviates from the constant value around three specific fre-
quencies; for ω = 2.3, 3.6, and 8.3, Q is, respectively, 0.281,
0.285, and 0.806. As before, this deviation disappears when
the averaging is done over longer times. Figure 3(c) shows
q̃(t ) corresponding to the above three values of ω. When the
time averaging is done over T = 50 000, the respective values
of Q become 0.3430, 0.3461, and 0.3391, which are closer to
the constant value of 0.375 we obtained for generic values of
frequency.

Next, we consider the case with bias. We plot Q(V0/ω) in
Fig. 3(b). The peak values of Q are very close to 1, showing
that the system is almost completely frozen at those frequen-
cies. In Fig. 3(d) we show q̃(t ) for the three frequencies that
correspond to the peaks in Q(V0/ω). In all three cases, q̃(t )
remains close to 1 at all times.
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FIG. 3. Two-particle sector: Q(V0/ω) for N = 100 with (a) V ′ = 0 and (b) V ′ = 0.1 and q̃(t ) for various values of ω for N = 100 with
(c) V ′ = 0 and (d) V ′ = 0.1. In all the cases, V0 = 20. In (a), Q(V0/ω) appreciably deviates from 0.375 around V0/ω ≈ 2.4, 5.6, and 8.7.

2. Rotating wave approximation

We now generalize the RWA calculations to the two-
particle sector. For driving without bias, i.e., V (t ) = V0 cos ωt ,
the rotating wave Hamiltonian becomes

H ′
k,2p =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 β 0 0 0 0
β 0 −αk −αk 0 0
0 −α∗

k 0 0 −αk 0
0 −α∗

k 0 0 −αk 0
0 0 α∗

k α∗
k 0 β

0 0 0 0 β 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (31)

where β = u′J0(V0
ω

). Then the probability to remain in the
initial state is [Eq. (A11)]

qk(t ) =
{

1

2
cos βt+ 1

N2
1

[4|αk|2+β2 cos(
√

4|αk|2 + β2t )]

}2

,

(32)

and the long-time average of qk(t ) becomes [Eq. (A12)]

q̄k = 1

8
+ 1

8

[
32 + x2

k

(4 + xk )2

]
, (33)

where xk = (β2/|αk|2). q̄k is a function of only xk and has
a minimum value of 5/24 at xk = 8. Further, q̄k → 1/4 as
xk → ∞, and q̄k has its maximum value of 3/8 at xk = 0.
[Here we note that when fk is exactly zero, directly from the
Hamiltonian, we obtain q̄k = 1/2, different from the value
of 1/4 obtained by taking the limit fk → 0. This is because
an arbitrarily small fk introduces a nonzero matrix element
between the initial state and the state degenerate with it.]

For our choice of parameter values (u = 1 and u′ = 0.2),
β2 � 0.04 [since |J0(V0/ω)| � 1]. Therefore, xk  1 unless
| fk|2  0.04. Now | fk| = 0 when k = K or K′ [Eq. (6)].
Expanding | fk| around these points, it follows that the con-
dition xk  1 is violated only within circles of radius |a0k| ∼
0.133 around the two gapless points. Consequently, for any
frequency ω, q̄k attains a value close to 3/8 (its maximum,
which corresponds to xk = 0) for most values of k. Then
Q is also approximately 3/8, independent of ω. The RWA
calculation of Q(V0/ω) is again in good agreement with the
numerical values. In Fig. 3(a), the dashed line corresponds to
Q(V0/ω) = 0.375, its RWA value.

In the two-particle case, the deviation of Q from the con-
stant RWA value at the three specific frequencies is due to the
slowing down of dynamics as J0(V0/ω) (and, correspondingly,
β) approaches zero, as can be seen from Eq. (32).
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FIG. 4. Q(V ′) for N = 100, V0 = 20, and ω = 8.3: (a) one-particle sector and (b) two-particle sector.

For nonzero bias, i.e., V ′ �= 0, the rotating wave Hamilto-
nian becomes

H ′′
k,2p =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 β 0 0 0 0
β −V ′ −αk −αk 0 0
0 −α∗

k −V ′ 0 −αk 0
0 −α∗

k 0 −V ′ −αk 0
0 0 −α∗

k α∗
k −V ′ β

0 0 0 0 β −2V ′

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (34)

When J0(V0/ω) = 0 and, correspondingly, β̃k = 0, as in the
one-particle case, the initial state becomes an eigenstate of the
rotating wave Hamiltonian for all k, and the system freezes.
Numerically, the peaks of Q(V0/ω) occur at V0/ω = 2.407,
5.525, and 8.639 [see Fig. 3(b)], which again compares well
with the zeros of J0(V0/ω): 2.404, 5.520, and 8.654, respec-
tively.

C. Switching of response

We have shown above that freezing occurs at special val-
ues of V0/ω, but only when the driving has a nonzero bias.
There is no freezing (for any combination of frequency and
amplitude) when V ′ = 0. In Fig. 4, the quantity Q is plotted
against V ′ for V0 = 20 and ω = 8.3, a combination of values
at which freezing occurs for nonzero V ′. Q drops sharply to its
nonfreezing value as V ′ approaches zero. A similar switching
of response by tuning a parameter was found earlier in the
transverse-field X -Y model [16].

IV. REALIZATION VIA AN OPTICAL LATTICE

In this section, we give a proposal for an optical lattice real-
ization of the bilayer Hamiltonian using cold atoms, where the
driving can be implemented via lattice shaking. By oscillating
the optical lattice potential, the atoms experience an effective
periodic force [49]. Dynamical localization via lattice shaking
has been achieved in a one-dimensional optical lattice [34].
Optical lattice shaking has also been used to dynamically
control quantum phase transition between a Mott insulator and
a superfluid [50] and to study coherent resonant ac-induced
tunneling [51], to name a few other applications.

Optical lattices are created by counterpropagating laser
beams, appropriately aligned along different directions, which

create a periodic potential that can trap atoms at its minima
[52,53]. Atoms can then hop between neighboring potential
minima, with the hopping amplitudes determined by the depth
of the potential wells. When the potential wells are sufficiently
deep, only hopping between the nearest-neighbor sites needs
to be considered.

Since the two layers are identical in the AA-stacked bilayer
[38], its implementation is more straightforward compared to
the AB-stacked bilayer, and therefore, we consider the former.

A honeycomb optical lattice is created by three counter-
propagating laser beams, resulting in the following potential
[54,55]:

V (x, y) =
∑

j=1,2,3

V0 sin2[kL(x cos θ j + y sin θ j )], (35)

where θ1 = π/3, θ2 = 2π/3, θ3 = 0, and kL is the optical
wave vector in the xy plane.

To create the bilayer, two sets of counterpropagating laser
beams in the z direction with wave vector components kz

L and
2kz

L are introduced, which results in a confining double-well
potential in the z direction [56]:

V (z) = VL sin2
(
kz

Lz
) − VS sin2

(
2kz

Lz + φ0
)
, (36)

where VL and VS are the amplitudes of the long and short
lasers. The phase difference φ0 between the two terms creates
an asymmetric double-well potential [57], as shown in Fig. 5.
By appropriately choosing the amplitudes VL and VS the atoms

FIG. 5. Asymmetric double-well potential along the z direction.

174301-7



SOUMYA SASIDHARAN AND NAVEEN SURENDRAN PHYSICAL REVIEW B 107, 174301 (2023)

can be confined to a single double-well along the z direction.
Then, the minima of the sum of two potentials V (x, y) and
V (z) in Eqs. (35) and (36) form an AA-stacked bilayer honey-
comb lattice.

Allowing for only nearest-neighbor hopping, the momen-
tum space Hamiltonian for AA stacking is

Hk =

⎡
⎢⎢⎢⎣

−V ′
2 −u fk u′ 0

−u f ∗
k −V ′

2 0 u′

u′ 0 V ′
2 −u fk

0 u′ −u f ∗
k

V ′
2

⎤
⎥⎥⎥⎦, (37)

where, as in the case of AB stacking,

fk = exp(−ia0kx )

[
1 + 2 exp

(
3ia0kx

2

)
cos

(√
3a0ky

2

)]
.

(38)

2V ′ is the potential difference between the two layers arising
from the asymmetry. The only difference between the above
Hamiltonian and that of AB stacking [Eq. (3)] is in the position
of u′.

Periodic driving via lattice shaking

We now periodically drive the system by shaking the lat-
tice. We show that shaking the lattice in the direction normal
to the plane of the lattice is exactly equivalent to driving the
interlayer potential difference.

Lattice shaking can be achieved by introducing a small
difference in frequency �ν between the two counterpropa-
gating laser beams and then varying �ν sinusoidally: �ν =
�νmax sin ωt [34]. Here we shake the lattice along the z di-
rection (i.e., perpendicular to the plane of the lattice). Then
the lattice moves with velocity v(t ) = a0�νmax sin ωt ẑ, which
results in the atoms experiencing the periodic force

F(t) = mωa0�νmax cos ωt ẑ. (39)

Here m is the mass of an atom, and a0 is the lattice spacing.
In the lattice frame of reference, this results in the following
additional term in the Hamiltonian [49]:

V (t ) =
∑

j

w j (t )n̂ j, (40)

where j denotes a lattice site, n̂ j is the corresponding number
operator, and

w j (t ) = −r j · F(t ), (41)

where r j is the lattice vector at site j. Applying the gauge
transformation

U (t ) = exp

⎧⎨
⎩i

∑
j

χ j (t )n̂ j

⎫⎬
⎭, (42)

where

χ j (t ) = −
∫ t

0
w j (t

′)dt ′, (43)

the hopping terms transform as follows:

a†
j a j′ → ei(χ j−χ j′ )a†

j a j′ . (44)

Since the driving force is in the z direction, only the interlayer
hopping terms transform nontrivially. Eventually, we obtain
the momentum space Hamiltonian as

Hk =

⎡
⎢⎢⎢⎢⎣

−V ′
2 −u fk ũ′ 0

−u f ∗
k −V ′

2 0 ũ′

ũ′∗ 0 V ′
2 −u fk

0 ũ′∗ −u f ∗
k

V ′
2

⎤
⎥⎥⎥⎥⎦, (45)

where ũ′ = u′ei(K/ω) sin ωt and K = mωa2
0�νmax. The above

Hamiltonian has the same form as the one we obtained earlier
by driving the voltage difference between the layers, which
for AA stacking [after modifying Eq. (16)] is

H ′
k =

⎡
⎢⎢⎢⎢⎣

−V ′
2 −u fk u′e2iθ 0

−u f ∗
k −V ′

2 0 u′e2iθ

u′e−2iθ 0 V ′
2 −u fk

0 u′e−2iθ −u f ∗
k

V ′
2

⎤
⎥⎥⎥⎥⎦, (46)

where θ = (V0/2ω) sin ωt and V ′ is the constant bias. The
two Hamiltonians are identical when V0 = K . In other words,
driving the interlayer potential difference is mathematically
equivalent to shaking the lattice in the z direction.

State preparation

Our initial state is the ground state corresponding to large
V0. In order to replicate this situation in the optical lattice,
we start with a strongly asymmetric potential V (z) by appro-
priately choosing the phase difference φ0 in Eq. (36). The
ultracold atoms are then loaded into the layer at the lower
potential. If we now start shaking the lattice while keeping
the asymmetry on, then the system will freeze at frequencies
for which J0(K/ω) = 0. On the other hand, if we switch off
the asymmetry before starting the lattice shaking, there is no
freezing at any ω.

V. SUMMARY AND DISCUSSION

We have studied the response of bilayer graphene to har-
monically driving the interlayer potential difference. When
the driving is unbiased, i.e., when the induced potential varies
symmetrically about zero, the system does not freeze for any
combination of the driving amplitude and frequency. Using
a rotating wave analysis, we have shown that for freezing to
occur, ground state degeneracy in the rotating frame should
be lifted, which we achieve by introducing bias to the driving.
Then the system freezes almost absolutely for certain values
of the ratio between the amplitude and frequency of driving.
We supported our numerical results with analytical calcula-
tions based on the rotating wave approximation.

We have put forth a proposal to realize the bilayer system
using ultracold atoms in an optical lattice. We have further
shown that driving the interlayer potential can be simulated
by shaking the lattice in the direction normal to the lattice
plane. Dynamical localization via lattice shaking in a one-
dimensional system has already been demonstrated in the
laboratory [34], showing that the parameter regime in which
dynamical freezing occurs is achievable.
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APPENDIX: RWA CALCULATION OF q̄k FOR V ′ = 0

1. One-particle sector

The rotating wave Hamiltonian is

H ′
k =

⎡
⎢⎢⎢⎣

0 −αk 0 0
−α∗

k 0 β 0
0 β 0 −αk

0 0 −α∗
k 0

⎤
⎥⎥⎥⎦, (A1)

where αk = u fk and β = u′J0(V0
ω

). The eigenvalues of H ′
k are

λ1 = 1
2 (−β −

√
4|αk|2 + β2),

λ2 = 1
2 (β −

√
4|αk|2 + β2),

λ3 = 1
2 (−β +

√
4|αk|2 + β2),

λ4 = 1
2 (β +

√
4|αk|2 + β2), (A2)

and the corresponding eigenbras are, respectively,

〈λ1| = 1

N1
[−αk λ1 −λ1 α∗

k],

〈λ2| = 1

N2
[α∗

k −λ2 −λ2 αk],

〈λ3| = 1

N2
[−α∗

k −λ2 −λ2 αk],

〈λ4| = 1

N1
[α∗

k λ1 λ1 αk], (A3)

where N1 =
√

2(|αk|2 + λ2
1) and N2 =

√
2(|αk|2 + λ2

2).
Writing the initial state |ψk(0)〉 in terms of the eigenkets,

we get

|ψk(0)〉 =
4∑

n=1

Cn(0)|λn〉, (A4)

where

C1(0) = −1√
2N1

[
α∗

k − λ1
| fk|
fk

]
,

C2(0) = 1√
2N2

[
α∗

k − λ2
| fk|
fk

]
,

C3(0) = −1√
2N2

[
α∗

k + λ2
| fk|
fk

]
,

C4(0) = 1√
2N1

[
α∗

k + λ1
| fk|
fk

]
. (A5)

Then,

qk(t ) = |〈ψk(0)|ψk(t )〉|2 = 1

4
[cos(λ1t ) + cos(λ2t )]2

+ 64|αk|2
(

λ1

N1
sin(λ1t ) + λ2

N2
sin(λ2t )

)2

. (A6)

Finally, taking the time average, we obtain (for λ1 �= λ2)

q̄k = lim
T →∞

1

T

∫ T

0
qk(t )dt = 1

4
+ |αk|2

4|αk|2 + β2
. (A7)

2. Two-particle sector

In the two-particle sector, the rotating wave Hamiltonian is

H ′
k,2p =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 β 0 0 0 0
β 0 −αk −αk 0 0
0 −α∗

k 0 0 −αk 0
0 −α∗

k 0 0 −αk 0
0 0 −α∗

k −α∗
k 0 β

0 0 0 0 β 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (A8)

Eigenvalues of H ′
k,2p can be written in terms of the eigenvalues

of the one-particle Hamiltonian [Eqs. (A2)]:

μ1 = λ1 + λ4 = 0,

μ2 = λ2 + λ3 = 0,

μ3 = λ1 + λ3 = −β,

μ4 = λ2 + λ4 = β,

μ5 = λ1 + λ2 = −
√

4|αk|2 + β2,

μ6 = λ3 + λ4 =
√

4|αk|2 + β2, (A9)

and the corresponding eigenbras are

〈μ1| = 1

N1
[2α∗

k 0 β β 0 2αk],

〈μ2| = 1

N2
[0 0 β −β 0 0],

〈μ3| = 1

2

[−1 1 0 0 − αk
α∗

k

αk
α∗

k

]
,

〈μ4| = 1

2

[
1 1 0 0 − αk

α∗
k

− αk
α∗

k

]
,

〈μ5| = 1√
2N1

[
−β μ6 2αk 2αk

αkμ6

α∗
k

−αkβ

α∗
k

]
,

〈μ6| = 1√
2N1

[
β μ6 −2αk −2αk

αkμ6

α∗
k

αkβ

α∗
k

]
,

(A10)

where N1 =
√

8|αk|2 + 2β2 and N2 = √
2β. The initial state

|ψk(0)〉2p = |1〉; therefore,

〈ψk(0)|ψk(t )〉 =
∑

j

|x1, j |2e−iμ j t

= 1

2
cos μ3t + 1

N2
1

[4|αk|2 + β2 cos μ5t].

Then,

qk(t ) = |〈ψk(0)|ψk(t )〉|2

=
[

1

2
cos μ3t + 1

N2
1

[4|αk|2 + β2 cos μ5t]

]2

. (A11)

Taking the long-time average of qk(t ), we get

q̄k = lim
T →∞

1

T

∫ T

0
dt qk(t )

= 1

8
+ 1

8

[
32|αk|4 + β4

(4|αk|2 + β2)2

]
. (A12)
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