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Local structural power exponent as an indicator of elastic heterogeneity in glasses
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The origin of the nontrivial power-law relationships between atomic packing density and the related structural
properties is considered to be a key puzzle in understanding the nature of glasses. Here, we report the direct
link between the medium-range structural evolution and elastic heterogeneity by systematically investigating
the packing-density-dependent properties of various glasses based on extensive large-scale molecular dynamics
simulations. It is shown that the power exponent of the peaks corresponding to the medium-range orders on
the pair correlation function converges to the exponent of the first diffraction peak rather than the Euclidean
dimension. This exponent can be regarded as an indicator of heterogeneous mechanical properties. The global
power-law relationship results from intrinsic mechanical heterogeneity, with the nontrivial power-law response
being a local feature. Our finding provides a different perspective on order in disordered materials and sheds
some light on the structural-property relationship in glasses.
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I. INTRODUCTION

Metallic glasses (MGs) have attracted massive attention
because of their unique properties for potential widespread
applications [1–3]. These properties are believed to arise from
the nature of MG structure, in which there is no long-range
translational order or orientational order, but some degrees of
short- and medium-range order [4,5]. Previous studies have
identified minority-atom-centered clusters as the short-range
order in MGs [6]. So far, several structure models, from the
short to medium-range scales, have been proposed to describe
the structure of MGs, e.g., random packing of hard-sphere [7],
dense cluster packing model [5], packing of quasiequivalent
clusters [4], while the understanding of medium-range order
(MRO) remains incomplete. Recently, the fractal concept has
been introduced to describe the MRO by discovering the well-
known noncubic structural power law (SPL) in the reciprocal
and real space of MGs as their microscopic structure changes
in response to mechanical deformation [8] or composition
change [9]. Diffraction experiments [10] for metallic glasses
show that there is a general relationship between the mean
atomic volume per atom (va) or number density (ρ) and
the first diffraction peak position (FDP, q1): ρ ∝ qDq with
Dq

∼= 2.5 deviating from the Euclidean dimension (D = 3).
However, computational simulation [11] argued that the Dq is
in a range (2.5–4.0) for various model MGs and there is no
fractal behavior in real space by measuring the mass/density
distribution. Moreover, the SPLs with various Dq are also
found in different disorder systems, such as alloy liquids
[12,13], hard/soft sphere model [14], granular system [15],
and exhibit the pressure dependence [16,17], which indicates
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that the SPL deviating the Euclidean dimensions of samples
is a universal phenomenon in disorder systems.

For crystals, the FDP (q1) equals 2π/d0, representing the
maximum crystalline interplanar distance (d0) according to
Bragg’s law; while amorphous materials are generally be-
lieved to be derived from MRO of atomic structure, there is no
unified interpretation [18–21]. The q1 in network-forming ma-
terials, e.g., SiO2 [22], correlates with an intermediate-range
structure, such as the connection of local network-forming
motifs, reflecting the MRO in real space. However, for
MGs, e.g., Pd42.5Ni7.5Cu30P20, the FDP (q1) is approximately
2π/r1, where r1 is related to the mean nearest-neighbor dis-
tance of atoms in real space, corresponding to the structural
short-range order (SRO). Thus, how to relate the SPL in re-
ciprocal space to the structure change in real space is the key
to understanding the microstructure of atomic glasses, such as
MGs. Recent experiment [23] observed the SPL in real space
[ ρ ∝ ri

−Dri , ri is the ith peak position of the pair correlation
function g(r)] with Dri (i = 1, 2, 3, 4) approximately equal
to Dq (∼ 2.5) for the first four peaks of g(r) of Ti-Cu MGs.
However, theoretical simulations [11,14] show that the SPL
exponent (Dri ) in real space from short range to medium
range does not remain constant, but gradually converges to
a constant exponent. Thus, though the nontrivial SPLs in
disorder materials may arise from nonaffine deformation [11]
or ununiform local deformation [14] according to previous
studies, the ambiguous link between reciprocal space SPL and
real space SPL challenges further understanding of the atomic
structure and mechanical response of amorphous materials.

Here we summarize five questions: (1) How does the SPL
in real space change from short range to medium range in
different glassy systems? (2) Does the SPL in real space quan-
titively correlate with the SPL in reciprocal space? (3) Does
the SPL generally hold in local scales? (4) Which physical
properties of static configuration affect the local SPLs? (5)

2469-9950/2023/107(17)/174207(9) 174207-1 ©2023 American Physical Society

https://orcid.org/0000-0001-8242-0188
https://orcid.org/0000-0002-7679-6768
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.174207&domain=pdf&date_stamp=2023-05-25
https://doi.org/10.1103/PhysRevB.107.174207


XUERUI WEI, WEIHUA WANG, AND PENGFEI GUAN PHYSICAL REVIEW B 107, 174207 (2023)

Can we represent the global SPL by the local SPLs? We
try to answer the five questions by systematically analyz-
ing the structure change at different length scales in various
glasses under mechanical compression. Quantitative relation-
ships among the reciprocal space SPL, the real space SPL, the
local SPLs, and local elastic heterogeneity in glassy materials
were established.

II. MATERIALS AND METHODS

A. Simulations of various MGs

We performed molecular dynamics simulation for Ta, Cu,
Cu50Zr50, and Zr50Cu40Al10 systems using LAMMPS [24]. The
interaction of atoms is described by corresponding embedded-
atom method (EAM) potentials Ta [25], Cu50Zr50 [26], and
Zr50Cu40Al10 [27]. The periodic boundary conditions (PBC)
were applied to all simulations. For the consideration of com-
puting resources, we prepared Ta, Cu, and Cu50Zr50 large
samples containing 1 million atoms by replicating small
samples. In comparison, the Zr50Cu40Al10 large sample was
obtained by quenching the melt containing 1 million atoms
directly. Following are the details of the sample preparation.

The small samples containing 8000 atoms in a cubic box
were prepared by quenching the equilibrium melt to 300 K
temperature with a high cooling rate of 10 K/ps (1 K/ps
for Cu50Zr50) and relaxed 1 ns at 300 K temperature. Sec-
ond, the small glassy samples were replicated five times in
three dimensions (5 × 5 × 5) and relaxed 100 ps at 2500 K
(1100 K for Cu and 900 K for Cu50Zr50). The large sam-
ples were relaxed at 1 K temperature for 100 ps to obtain
a low-temperature sample. For the Zr50Cu40Al10 system, the
sample was first equilibrated at 2000 K for 0.5 ns, followed
by quenching to 1 K with a cooling rate of 1 K/ps, and
further relaxed at 1 K for 0.5 ns. All quenching and re-
laxation processes were performed in an NPT (the number
of atoms and the external pressure keeps constant) ensem-
ble with zero pressure by Nose-Hoover [28] thermostat and
Parrinello-Rahman [29] barostat. The MD time step is 2 fs.
Moreover, we obtained the inherent structures (ISs) of Ta, Cu,
Cu50Zr50, and Zr50Cu40Al10 glassy samples by performing
energy minimization. These samples without thermal effect
will be used to analyze the evolution of atomic structure under
compressive deformation and study the SPL.

We performed athermal quasistatic (AQS) compression on
Ta, Cu, Cu50Zr50, and Zr50Cu40Al10 glassy samples in three
dimensions. After each strain step, �δ = 0.001%, the sys-
tem’s potential energy was minimized to local minima by a
conjugate gradient algorithm. The maximum linear strain is
−2%, where “−” denotes compressive deformation. During
the AQS compression, the five representative atomic configu-
rations corresponding to 0%, −0.5%, −1%, −1.5%, and −2%
strain states were collected for analysis of the evolution of
structure.

B. Structure factor S(q)

There are two equations to calculate the structure factor:

S(�q) = 1

N

N∑
j=1

N∑
l=1

〈exp[−i �q · (�r j − �rl )]〉, (1)

S(q) = 1 + ρ

∫ ∞

0
(g(r) − 1)

sin(qr)

qr
4πr2dr. (2)

Equation (1) indicates that the structure factor can be calcu-
lated directly from the position of all atoms (N is the number
of atoms), where �r j represents the position of the jth atom,
j = 1, . . . , N , and 〈· · · 〉 denotes the ensemble average. Equa-
tion (2) shows that the structure factor S(q) can be obtained by
calculating the Fourier transform of pair correlation function
g(r). We calculated the structure factor of Ta glass by two
methods. The shape of S(q) obtained by the two equations
has no difference approximately, while Eq. (2) produced a
smoother peak that is useful for determining the peak position
precisely. Therefore, we use Eq. (2) to calculate the S(q).

C. Microscopic mechanical properties

The procedure to calculate the atomic bulk modulus
(ABM) is similar to the local bulk modulus described by
Mizuno et al. [30]. In principle, the ABM includes three parts,
Ki = KB

i + KN
i + Kk

i , where Ki is the ABM and KB
i , KN

i , and
Kk

i represent the Born term, nonaffine term, and kinetic energy
term, respectively. The Kk

i equals zero at zero temperature and
KN

i shows a tiny contribution to the ABM. Therefore, Ki � KB
i

at zero temperature, and we can use the affine deformation
approach to calculate the ABM,

Ki = pi,1 − pi.0

−3ε
, (3)

where ε is the linear strain of isotropic affine deformation; the
trace of the stress tensor (σi) is atomic level pressure pi =
−(σ xx

i + σ
yy
i + σ zz

i )/3. σ xx
i is the component of the stress

tensor (σi) in the xx direction. pi,0 and pi,1 are the atomic level
pressure of the ith atom at the initial and small strain states.
In this work, we use 0.1% affine deformation to calculate the
ABM for these MGs.

III. RESULTS

A. SPLs in real space from SR to MR

We prepared three kinds of model MGs, i.e., monatomic
(Ta [25], Cu), binary (Cu50Zr50 [26]), and ternary (Zr50Cu40

Al10 [27]) MGs based on the embedded-atom method (EAM)
potentials. The related data of Ti62Cu38 bulk metallic glasses
(experiment) [23], the two-dimensional (2D) hard/hard sphere
(2DHH) models, 2D Week-Chandler-Andersen (2DWCA)
models, and 2D hard/soft sphere (2DSH) models [14] in pre-
vious works are also included for analyses.

The evolution of calculated g(r) under isostatic compres-
sion up to 2% linear strain is shown in Fig. 1(a) and in Figs.
S1(a)–S1(c) of the Supplemental Material [31]. The peak po-
sitions (ri) of g(r) are shrinking with the increase of strain,
indicating the decrease in average interatomic distance. The
SPL exponents (Dri ) of different peaks can be extracted by
fitting the relation between the density (ρ) and the related peak
positions of g(r), ri, as shown in Fig. 1(b) and Fig. S2 [31]. It is
clear that different peaks behave as distinct SPLs. Figure 1(c)
shows the Dri (i = 1, 2, 3, 4, 5, 6, 7) values extracted from
the model MG samples investigated by us, and other sys-
tems studied in previous works, including neutron diffraction
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FIG. 1. The structural power laws (SPLs) of real space. (a) Evo-
lution of pair correlation function g(r) of Ta glass at representative
strain states. (b) Scaling relationship between ln( ρ

ρ0
) and ln( ri,0

ri
) for

Ta glass, the SPLs in real space, where ρ is density, r1, r2, . . . , r7

correspond to the peak positions of g(r). The subscript “0” indicates
the initial state with zero strain. (c) SPLs of g(r) from r1 to r8 for
both metallic glasses and two-dimensional model systems. The Dri

exhibits a plateau at the medium range. We choose the Dri of the
maximum peak as a representative point of the SPL and named Dr .
The data of 2DSH, 2DHH, and 2DWCA systems comes from Zhang
et al. [14], and Ti62Cu38 from Li et al. [23]. The Dr2 of Cu50Zr50

and Zu50Cu40Al10 are not shown in here; since the position of second
peak of g(r) is nearly constant, in contrast the shape clearly presents
change under deformation.

experiment [23] and numerical simulations of 2D models [14].
With the increase of ri, the Dri value of each system converges
to a plateau. However, the convergence value of Dri (defined
as Dr) is different for each system: Dr of systems Cu50Zr50

and Zr50Cu40Al10 is ∼ 3, Dr of systems 2DHH and 2DWCA
is ∼ 2, and Dr of systems Ta, Cu, Ti62Cu38, and 2DSH is
3.10, 3.31, 2.48, and 1.39, respectively. It reveals that the ex-
ponents of the power laws from the medium-range real-space
structures do not always result in the trivial Dr = d = 3 or 2
[11,14], which is the Euclidean dimension of system. The
various SPLs in real space from short range to medium range
reflect the distinct mechanical responses of disorder structure
at different length scales.

B. From real space to reciprocal space

Taking the advantage of MD simulation and the Fourier
transform, we can directly calculate the pair correlation func-
tion g(r) and establish the quantitative link between the
real-space atomic structure and the reciprocal-space structural
factor S(q) that can be directly measured from diffraction
experiment. To detect the contributions of real-space struc-
ture at short and medium ranges to the SPL in reciprocal
space, we select different integral ranges of r in the Fourier
transform and obtain the corresponding S(q). The selected
integral ranges are Rc,1 ([0, 4.0 Å]), Rc,2 ([0, 6.6 Å]) and Rc,3

([0, 9.0 Å]), which respectively correspond to the real-space

FIG. 2. The SPL of reciprocal space and the shift of the FDP.
(a) FDP of reduced structure factor S(q) − 1 at five kinds of cutoff
distances. The solid black line is the total structure factor, while the
peaks with green and blue color represent the FDP of short- (Rc,1 =
4 Å) and medium-range structure (Rc,4 > 4 Å), respectively. (b) Shift
of FDP at 0% and −2% strain states (the “−” represents compressive
strain). The blue triangle curve is the FDP induced by the evolution
of medium-range structure (Rc,4) under compressive deformation.
(c) SPL of Ta metallic glass. The black square line is the sample’s
SPL, while the red circle and blue triangle lines indicate the SPLs of
short- and medium-range structures, respectively. The q and ρ are the
peak position of FDP and the density of the sample, respectively. (d)
Evolution of SPLs, Dq,rc , within the increasing cutoff distance (rc).
The solid blue line is the pair correlation function g(r) of Ta metallic
glass, as a comparison with the Dq,rc . The red horizontal line denotes
the plateau of Dq,rc , at a medium-range scale.

length scale up to the first three minima of g(r), and Rc,4

([4.0, 20.0 Å]) which excludes the contribution of short-range
structure information. The corresponding S(q) are denoted as
SRc,1 (q), SRc,2 (q), SRc,3 (q), and SRc,4 (q), respectively. The S(q)
integrated from the range Rc,0 ([0, 20.0 Å]) is regarded as
the total structural factor ST (q). Figure 2(a) shows the FDP
of the reduced structure factor [S(q) − 1] integrated from five
regions. As the upper bound of the integral range (rc) increases
from 4.0 to 20.0 Å, the intensity of the FDP is enhanced
monotonously. However, the peak position of the FDP is al-
most the same; the FDP of SRc,1 (q) and SRc,4 (q) are equal to
2.64 and 2.67 Å−1, respectively. It indicates the same hidden
order in the real space structure of MGs from short range and
medium range.

The previous studies suggest that the FDP corresponds to
medium-range atomic correlation in real space [32,33], and
the other peaks at high-q represent SRO [9,34]. Recently,
Salmon et al. [22] found that the MGs and amorphous network
materials all exhibit diffraction peak at q ≈ 2π/r1, where r1

is the mean interatomic distance and approximately the first
peak position of g(r). However, this peak is the FDP of MGs,
but the second or third diffraction peak of amorphous network
materials. This means that the amorphous network materials
can exhibit medium-range order in the range of q < 2π/r1,
whereas the position of FDP (q1 ≈ 2π/r1) of strain-free MGs
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seems to be determined by the nearest-neighbor atomic dis-
tance (short range).

The response of FDPs, corresponding to real-space struc-
ture information in different length scales, to a compressive
strain of 2% is shown in Fig. 2(b). The right shifts of
FDPs indicate the decrease of interatomic distance un-
der compressive strain. The blue triangle lines represent
the combinational S(q) based on the strained SRc,4 (q) and
the unstrained SRc,1 (q). In other words, if the integrating range
is set as Rc,4 ([4.0, 20.0 Å]) to exclude the contribution of the
real-space short-range structure information to S(q), we can
still get the same response as ST (q). The same peak position
indicates that the shift of FDP of ST (q) is dominated by the
structural evolution beyond the short-range length scale in real
space. The SPLs of related S(q) are presented in Fig. 2(c),
and the extracted Dq, Rc,1 is ∼ 2.80, which is different from
Dq,T ∼ 3.15 and Dq, Rc,4 ∼ 3.16. Note that the average value
of the local volumetric strain is independent of the cutoff dis-
tance (shown in Fig. S3 [31]), so we can use the macroscopic
volumetric strain to fit SPLs on different length scales, as
shown in Fig. 2(c).

Figure 2(d) exhibits the Dq, rc of different Src (q) obtained
by integrating g(r) with different rc. The Dq, rc values are
increased from ∼ 2.83 to ∼ 3.93 as the rc increased from
4.0 Å (first shell) to 6.6 Å (first two shells). Therefore, the
first and second shells of g(r) exhibit different mechanical
responses under macroscopic deformation. It is consistent
with the previous x-ray diffraction experiment by Poulsen
et al. [35], which observed the difference of mechanical re-
sponse between short- and medium-range structures in MGs
by measuring the shift of peak positions of g(r) and FDP under
external loading. The Dq, rc rapidly converges to the value of
∼ Dq with the increase of rc, indicating that the evolution
of medium-range structure in real space dominates the shift
of FDP in reciprocal space. The results show that though
the position of FDP (q1) of stress-free samples is related to
the nearest-neighbor atomic distance (r1), the shift of FDP
completely reflects the response of structure in medium-range
scale to the external macroscopic strain field. It provides di-
rect evidence that the shift of FDP of total S(q) is mainly
contributed by the medium-range structure in real space and
implies an intrinsic link between the Dq in reciprocal space
and the Dr in real space.

C. Correlation between Dq and Dr

Figure 3(a) shows the evolution of total S(q) of large-scale
Ta glassy samples under various isotropic compressive strains.
The shifting of FDPs of other systems can be observed in Figs
S1(d)–S1(f), and the related peak position can be collected
to calculate the Dq. The SPLs for various MG samples are
exhibited in Fig. 3(b), and distinct Dq can be extracted, which
is consistent with the previous simulation works [11]. A quan-
titative relation between Dr in real space and Dq in reciprocal
space for all systems listed in Fig. 1(c) can be established in
Fig. 3(c). Here, the Dr is equal to Dq approximately, indepen-
dent of the systems and their Euclidean dimensions. Previous
theoretical simulations [11,14] show that the SPL exponent
(Dri ) in real space from short range to medium range gradually
converges to a constant exponent. Here, we provide the direct

FIG. 3. The correlation of structural power laws in both real
space and reciprocal space. (a) Evolution of structure factor S(q) of
Ta glass at representative strain states. The inset shows the shift of
FDP under compression, where the blue and red lines represent the
0% and −2.0% strain states, respectively. (b) Scaling relationship
between ln( q

q0
) and ln( ρ

ρ0
) for Ta, Cu, Cu50Zr50, and Zr50Cu40Al10

systems, the SPLs in reciprocal space, where ρ and q denote the
density of the sample and the FDP. (c) SPL (Dq) of reciprocal space
equals the medium-range SPL of real space (Dr) for various systems.

evidence that the SPL in reciprocal space quantitively corre-
lates with the SPL in real space at the medium-range length
scales and conclude that the constant exponent in real space
is the SPL exponent (Dq) in reciprocal space. It gives us some
hints that we may understand the SPL in reciprocal space by
systematically investigating the mechanical heterogeneity of
amorphous solids in real space.

D. Local SPLs versus local bulk modulus

The inhomogeneous local elastic properties have been
studied in experiments [36,37] and atomistic simulations
[30,38–40] for amorphous systems. During external loading,
the regions with different local elastic properties, such as local
bulk modulus and local shear modulus, could have different
mechanical responses. Therefore, we proposed that the local
SPL [ρ ∝ (q, Rj )

Dq,R j ] from the FDP of the local structure
factor [S(q)Rj ] could correlate with the ABM. The q, Rj is the
peak position of FDP of local structure factor [S(q)Rj ] of the
Rj region that is selected based on atomic properties, such as
the ABM (see the derivation of the local structure factor in the
Appendix).

Figure 4(a) shows the spatial map of the ABM of the
Ta glass. It is inhomogeneous in real space. The red region
exhibits a larger ABM, while the blue region exhibits a smaller
ABM. We use black contour lines to circle the largest ABM
region, named the R1 region, and the smallest ABM region,
named the R2 region. Each region contains 10% of the atoms
in the system. Figure 4(b) shows the probability distribution
function of the ABM and the R1 and R2 regions in Ta glass.
It is distinct that the two regions are separated and represent
the hard region and soft region. The local structure factor
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FIG. 4. The spatial maps of the ABM and the local structure
factor. (a) Spatial map of ABM of Ta metallic glass. The solid black
curves represent the contour line that circles the R1 region with
the largest ABM (red color) and the R2 region with the smallest
ABM (blue color); each region contains 10% atoms. (b) Probability
distribution function of ABM in Ta glass and the representative R1

and R2 regions. (c) Local structure factor of the R1 and R2 regions.
The inset shows the enlargement of FDP. (d) Scaling relation between
ln(ρ/ρ0) and ln(q/q0), where ρ is the density and q denotes the FDP
of the local structure factor for a region, such as the R1 or R2 region.
The subscript “0” indicates the initial state.

[S(q)Rj ] is calculated by Fourier transformation of the local
pair correlation function [g(r)Rj ]. As shown in Fig. 4(c), the
local structure factor of the two representative regions exhibits
different FDP, and the FDP shifts to smaller q from the R1

to the R2 region, which indicates the two regions possess the
densely atomic packing and loosely atomic packing, respec-
tively. As shown in Fig. 4(d), the exponent of the local SPL of
the R1 and R2 regions are equal to 3.42 and 2.97, respectively.
This phenomenon shows they possess different mechanical
responses at medium-range scales under hydrostatic compres-
sive deformation.

Figure 5(a) systematically shows the relation between the
local SPLs (Dq,Rj ) and the average value of ABM of Rj

regions (KRj ) for Ta, Cu, Cu50Zr50, and Zr50Cu40Al10 MGs.
The Dq,Rj decrease with the KRj , nearly linear relation, which
implies that the exponents of local SPLs (Dq,Rj ) could be dom-
inated by the KRj of the Rj region. At the same time, the total
SPL (Dq) could come from the superposition of local SPLs
of regions with different KRj . To uncover the relation between
the local SPL and the total SPL of reciprocal space, we scaled
the Dq,Rj values and KRj by the Dq value and the weighted
average value of the ABM, K̄ , of samples, respectively, where
K̄ = 1/

∑n
i=1

vi,0

V0·Ki
derived from the previous work about SPLs

[40], and vi,0 and V are the atomic volume of the ith atom and
the total volume of sample at free strain state, respectively.
As shown in Fig. 5(b), the scattered points of Ta and Cu
glass were collapsed to a master line passed (1.0, 1.0). A
similar result also was observed in Cu50Zr50 and Zr50Cu40Al10

MGs. In other words, Dq,Rj /Dq ∝ KRj /K̄ , it indicates that the

FIG. 5. The correlation between the local SPLs and atomic bulk
modulus (ABM). (a) ABM of selected regions and the corresponding
local SPLs in Ta, Cu, Cu50Zr50, and Zr50Cu40Al10 MGs. The hori-
zontal and vertical error bars come from the standard derivation of
ABM of Rj region and the fitting error of local SPLs, respectively.
(b) Linear relation between the reduced local SPL (Dq,R j /Dq) and
the reduced ABM (KR j /K̄). The dashed lines show approximately
the slopes.

difference in the ABM between the local region and the
weighted average value of the ABM of the sample induces
the diverse Dq,Rj values that are deviated from the Dq value of
the sample. For instance, the R1, R2 regions with the largest
and smallest ABM exhibit the local SPLs of 3.42 and 2.97,
respectively, which deviated from 3.15, the SPL of Ta glass. If
the ABM equals the K̄ , the local SPL is equal to the sample’s
SPL for various systems.

Moreover, we noted that the monatomic metallic glass ex-
hibits a larger slope than multicomponent MGs in Fig. 5(b),
indicating the clearly different medium-range mechanical
responses. For instance, the 30% deviation of the ABM
between the regions and the sample results in about 8%
and 2% differences in mechanical response for monatomic
and multicomponent MGs, respectively. This phenomenon
implies monatomic MGs exhibit a stronger correlation at
medium-range length scales than multicomponent MGs. If
the correlation disappears, the medium-range mechanical re-
sponse will be homogeneous in space, and the local SPL will
decorrelate with the ABM of regions; hence the slope will be
zero.

FIG. 6. The spatial distribution of ABM and the local SPLs.
The figure shows the spatial distribution of ABM and the local
SPLs (Dq,R j ) of atoms in the five representative regions in a slice
of Cu50Zr50 MGs. The large and small atoms indicate the Zr and Cu
atoms, respectively. The color background represents the distribution
of ABM, while the color of atoms represents the local SPLs.
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Figure 6 shows the spatial distribution of ABM in Cu50Zr50

MGs. The MG exhibits heterogeneous elasticity and contains
the hard (red color) region, soft (blue color) region, and
relatively moderate region (green color). This phenomenon
relates to structural heterogeneity, such as densely and loosely
packed regions. The larger (smaller) circles represent the Zr
(Cu) atoms. The color of atoms shows the local SPLs of the
representative five regions, where the pattern is very similar to
the spatial distribution of the ABM. The hard and soft regions
exhibit larger and smaller local SPLs, respectively. Mean-
while, the local SPL of the moderate region is equal to the SPL
of the sample. Therefore, we propose that the local SPLs can
be used to identify MGs’ hard and soft regions as an indicator
of mechanical heterogeneity. The traditional methods to mea-
sure mechanical heterogeneity are atomic force microscopy
[41] or static force spectroscopy [42]. Here, we proposed
that diffraction methods by measuring the shift of FDP of
local structure factor under macroscopic deformation can be
used to characterize the nanoscale mechanical heterogeneity
of MGs.

IV. DISCUSSION

In this work, by extensive MD simulations, we found that
the SPL of real space exhibits larger fluctuation at short range
and shows a plateau region at medium range for various MGs.
Moreover, the SPL of reciprocal space equals the SPL of real
space at medium-range length scales. It means the evolution
of medium-range structure dominates the shift of the FDP of
structure factor in MGs, even though the FDP contains both
short- and medium-range structure information [Fig. 2(b)].
This finding is consistent with the general knowledge that
the FDP reflects the medium-range atomic correlation in an
amorphous system [9,19,43]. The critical difference is that
with MGs as an atomic packing system the peak position of
FDP does not represent the medium-range structure directly
but the short-range periodicity for both short- and medium-
range structures, whereas the shift of the FDP is dominated
by the evolution of medium-range structure, as shown in
Figs. 2(b) and 2(c). Consequently, the peak position of the
FDP approximately follows Ehrenfest’s relation (q ∼= 2πk/r),
k is a coefficient, and the shift of FDP represents medium-
range structure information. Therefore, the SPL of reciprocal
space represents the mechanical responses of the medium-
range structure under macroscopic deformation and should
not be interpreted as a fractal dimension.

The correlation between the local SPL of reciprocal space
and the ABM has been studied in this work. We found that the
region with a larger (smaller) ABM presents larger (smaller)
values in Ta, Cu, Cu50Zr50, and Zr50Cu40Al10 MGs. Further-
more, we found Dq,Rj /Dq ∝ KRj /K̄ , which indicates that the
local mechanical heterogeneity found in experiments [41,42],
and computer simulations [39] play an essential role in the

local SPLs of MGs. If the ABM of a given region is larger
(smaller) than the average bulk modulus, the corresponding
local SPL is larger (smaller) than the SPL of a sample. If the
ABM equals the average bulk modulus, the local SPL equals
the SPL of a sample. In other words, the local SPL (Dq,Rj )
will be a parameter to represent the mechanical heterogeneity

FIG. 7. The correlation between local SPLs and total SPLs in
both real and reciprocal spaces. (a) Local SPL in reciprocal space
(Dq,R j ) is equal to the corresponding local SPL in real space at a
medium-range length scale (Dr,R j ) approximately. The five points
with the same shape represent the same system. (b) Weighted sum of
local SPLs is equal to the total SPL in both real space and reciprocal

space, Dq
∗ ≈ ∑n

j=1

NR j

N Dq,R j and Dr
∗ ≈ ∑n

j=1

NR j

N Dr,R j , where NR j

denotes the number of atoms in the Rj region, N is the total number
of atoms, and n indicates the total number of regions. To distinguish
the measured SPLs Dq and Dr , the calculated SPLs are denoted using
the Dq

∗ and Dr
∗.

by measuring the shift of the FDP of a local region under
macroscopic deformation.

State-of-art experiments will verify the above findings.
For example, previous studies have found the local mechan-
ical heterogeneity [42] and structural heterogeneity [44] in
MGs by static force spectroscopy and angstrom-beam electron
diffraction, respectively. Combining the two methods, one
may observe the mechanical responses of nanoscale regions
with structural and mechanical heterogeneity in MGs and
answer how these local regions respond to external loadings,
such as hydrostatic compression. The exponents of the local
SPL could be a parameter to link the structural heterogeneity
and mechanical heterogeneity at the local level in MGs.

The local SPL of real space (ρ ∝ (ri, Rj )
−Dri ,R j ) was inves-

tigated systematically for Ta, Cu, Cu50Zr50, and Zr50Cu40Al10

MGs. The ratio of Dri,Rj /Dq,Rj converges to 1 at the medium-
range length scale for regions with different ABM (shown in
Fig. S4 [31]). It indicates that the local SPL of real space
at a medium-range length scale is equal to the local SPL
of reciprocal space, like the total SPL in Fig. 3(c), and this
phenomenon is independent of the ABM. If we name the
local SPL (Dri,Rj ) of a peak at maximum r is Dr,Rj as a
representation of medium-range local SPL, the Dr,Rj will
be approximately equal to Dq,Rj of the corresponding re-
gion, as shown in Fig. 7(a). The Dq,Rj is equivalent to the
Dr,Rj and represents the mechanical response of medium-
range structures at the local level. Moreover, we demonstrate
that the weighted sum of local SPLs is equal to the to-
tal SPL in both real space and reciprocal space, Dq

∗ ≈∑n
j=1

NR j

N Dq,Rj , and Dr
∗ ≈ ∑n

j=1
NR j

N Dr,Rj , where n is the
number of regions, N denotes the total number of atoms and
NRj indicates the number of atoms in the Rj region (see details
of the derivation in the Appendix). Note that the superscript *
of Dr and Dq indicates that it is a calculated value. Figure 7(b)
verified this demonstration between local SPLs and the total
SPLs. In other words, we reproduced the total SPL from the
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local SPLs. Thus, we propose that the SPL of both real and
reciprocal space originate from the superposition of regions
with different ABM. These regions exhibit inhomogeneous
mechanical responses under macroscopic deformation and
present various local SPLs. The above correlation between
the total SPL, local SPL, and ABM suggests a potential re-
lationship between the bulk modulus and the SPL via particle
interaction, which may be further studied at particle level in
systems with analytic interaction potentials (e.g., Lennard-
Jones potential functions).

Furthermore, the experimental measurement of the elastic
constants in MGs by diffraction methods presents a system-
atic difference compared with traditional methods, while the
reason remains unclear [3]. According to our findings, we
propose that the well-known relation ε = d1−d0

d0
= q0−q1

q1
to

measure strain (ε) in crystals is not followed strictly in MGs
due to the mechanical heterogeneity, where d the average
interatomic distance, and q the peak position of FDP. The de-
formed state and initial state are marked by subscripts “1” and
“0,” respectively. Thus, MGs exhibit nontrivial SPLs under
compression deformation. The local and macroscopic strain
under external loading may be underestimated or overesti-
mated by measuring the shift of FDP and using the above
well-known relation, producing inaccurate elastic constants.
Fortunately, this kind of error can be modified according to
the exponent of the SPL for a specific system, which is worth
studying in the future. The research on the SPL could enhance
the experimental technique to measure the elastic constants of
MGs by diffraction methods.

V. CONCLUSIONS

In summary, the SPL of both reciprocal and real space in
MGs has been systematically studied using MD simulations.
The five questions about SPL posed in the Introduction section
can be answered directly.

How does the SPL in real space change from short range
to medium range in different glassy systems? By analyzing
the large data, including MGs and hard/soft sphere model,
we found that from the short-range to medium-range length
scales, the SPL of the real space exhibits fluctuating character
and eventually exhibits a plateau value at the medium range. It
means the mechanical response of MGs depends on the length
scales such as short range or medium range. Moreover, unlike
intuition, the SPL at medium-range scales is not necessarily
equal to the Euclidean dimension of the system.

Does the SPL in real space quantitively correlate with the
SPL in reciprocal space? The answer is yes. The SPL of
medium-range scales is equal to the SPL of reciprocal space,
as shown in Fig. 3(c). This phenomenon stems from the fact
that even though the peak position of the FDP of MGs or
disordered packing systems corresponds to short range in real
space (q ≈ 2π/r), the shift of the FDP is determined by the
evolution of the medium-range structure. Therefore, the SPL
of reciprocal space represents the mechanical response of the
medium-range structure. It is further verified by investigating
structure evolution at different length scales.

Does the SPL generally hold in local scales? We measured
the shifting of peak positions of the local structure factor and
local pair correlation function of regions and obtained the

corresponding local SPLs. The ratio of local SPLs over the
SPL of the sample is proportional to the ratio of the ABM
over average bulk modulus among Ta, Cu, Cu50Zr50, and
Zr50Cu40Al10 MGs.

Which physical properties of static configuration affect
the local SPLs? The above proportional relation suggests that
the local SPL is dominated by the ABM that depends on the
specific chemical elements of atoms and their local packing
density, such as densely or loosely packed regions. Thus, we
propose that the local SPL can be an indicator of the mechan-
ical heterogeneity of MGs.

Can we represent the global SPL by the local SPLs? We
have demonstrated that the total SPL of the sample comes
from the weighted sum of the local SPLs, as shown in
Fig. 7(b).

Our study uncovered the microscopic mechanism of the
SPL from both real and reciprocal space, the local and global
levels, and revealed the linear relation between local SPLs and
the ABM. The local SPLs can be an indicator of the local
mechanical heterogeneity of MGs. This work will deepen the
understanding of the amorphous structure of the MG and its
mechanical response under compressive deformation and give
hints to the structure-properties relationship of MGs.
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APPENDIX

1. Derivations of the local pair correlation function and local
structure factor

It is well known that for amorphous systems, the pair corre-
lation function g(r) has the following form [45], representing
the conditional probability of finding an atom at a position far
away from a given atom r distance:

g(r) = 1

4πr2

1

Nρ

∑
i

∑
k �=i

〈δ(r − |�rk − �ri|)〉, (A1)

where ρ is the number density of atoms, N is the total number
of atoms, and �ri and �rk denotes the position of the ith atom and
kth atom, respectively. δ(. . .) is the delta function and 〈. . .〉
indicates the ensemble average. If the atoms are classified into
n regions according to the atomic-level properties, the g(r) can
be rewritten as

g(r) = 1

4πr2

1

Nρ

n∑
j=1

∑
i∈Rj

∑
k �=i

〈δ(r − |�rk − �ri|)〉, (A2)

g(r) =
n∑

j=1

NRj

N

(
1

4πr2

1

NRj ρ

∑
i∈Rj

∑
k �=i

〈δ(r − |�rk − �ri|)〉
)

,

(A3)

where NRj is the number of atoms in the Rj region and
N = ∑n

j=1 NRj . The local pair correlation function of the
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Rj region can be named g(r)Rj :

g(r)Rj = 1

4πr2

1

NRj ρ

∑
i∈Rj

∑
k �=i

〈δ(r − |�rk − �ri|)〉, (A4)

thus the pair correlation function is the superposition of many
local pair correlation functions,

g(r) =
n∑

j=1

NRj

N
g(r)Rj . (A5)

For an isotropic system, the structure factor S(q) can be
obtained by the Fourier transform of pair correlation function
g(r),

S(q) = 1 + ρ

∫
sin(qr)

qr
[g(r) − 1]4πr2dr. (A6)

Bring Eq. (A5) into Eq. (A6) and change the order of
summation

∑
. . . and integration ∫ . . ..:

S(q) = 1+
n∑

j=1

NRj

N
ρ

∫
sin(qr)

qr
[g(r)Rj −1]4πr2dr, (A7)

S(q) = 1 +
n∑

j=1

NRj

N

(
1+ρ

∫
sin(qr)

qr
[g(r)Rj − 1]4πr2dr−1

)
,

(A8)

S(q) = 1 +
n∑

j=1

NRj

N

(
1 + ρ

∫
sin(qr)

qr
[g(r)Rj − 1]4πr2dr

)

−
n∑

j=1

NRj

N
, (A9)

S(q) =
n∑

j=1

NRj

N

(
1 + ρ

∫
sin(qr)

qr
[g(r)Rj − 1]4πr2dr

)
,

(A10)

S(q) =
n∑

j=1

NRj

N
S(q)Rj . (A11)

Thus the structure factor S(q) can be rewritten as a
weighted superposition of local structure factor S(q)Rj accord-
ing to the proportion of atoms of the Rj region in the sample
NRj /N .

2. Relationship between local
SPLs (Dq,R j ) and total SPL (Dq) of metallic glasses

In the main text, we found that the reduced local SPL is
proportional to the reduced ABM,

Dq,Rj /Dq ∝ KRj /K̄, (A12)

where the K̄ denotes the average bulk modulus. Furthermore,
the above linear relation exhibits a crossover at point (1.0,1.0)
in Fig. 5(b). Hence, we can describe Eq. (A12) by a linear
function as Eq. (A13),

y = k(x − 1) + 1, (A13)

where y = Dq,Rj /Dq and x = KRj /K̄ . Bring y into Eq. (A13),
then

Dq,Rj = k(x − 1)Dq + Dq. (A14)

Similar to Eq. (A11), we calculate the weighted sum of
local SPLs:

n∑
j=1

NRj

N
Dq,Rj = kDq

n∑
j=1

NRj

N
(x − 1) +

n∑
j=1

NRj

N
Dq

= kDq

⎡
⎣ n∑

j=1

NRj

N
x −

n∑
j=1

NRj

N

⎤
⎦ + Dq

n∑
j=1

NRj

N
.

Since
∑n

j=1
NR j

N = 1, x = KR j

K̄ (KRj indicates the numerical
average of the ABM in the Rj region),

n∑
j=1

NRj

N
Dq,Rj = kDq

⎡
⎣ n∑

j=1

NRj

N

KRj

K̄
− 1

⎤
⎦ + Dq

= kDq

⎡
⎣ 1

K̄

n∑
j=1

NRj

N
KRj − 1

⎤
⎦ + Dq

= kDq

[
K̃

K̄
− 1

]
+ Dq, (A15)

where K̃ = ∑n
j=1

NR j

N KRj represents the numerical average of
the ABM that is equal to the average bulk modulus, approxi-
mately K̃ ≈ K̄,

n∑
j=1

NRj

N
Dq,Rj ≈ Dq. (A16)

Moreover, we have obtained the equivalence of SPLs in
both real space and reciprocal space, i.e., Dr,Rj = Dq,Rj and
Dr = Dq,

n∑
j=1

NRj

N
Dr,Rj ≈ Dr . (A17)

Finally, we found that the weighted sum of local SPLs
equals the SPL of samples in both real and reciprocal spaces.

[1] W. H. Wang, Prog. Mater. Sci. 57, 487 (2012).
[2] Y. Q. Cheng and E. Ma, Prog. Mater. Sci. 56, 379 (2011).
[3] T. C. Hufnagel, C. A. Schuh, and M. L. Falk, Acta Mater. 109,

375 (2016).
[4] H. W. Sheng, W. K. Luo, F. M. Alamgir, J. M. Bai, and E. Ma,

Nature (London) 439, 419 (2006).

[5] D. B. Miracle, Nat. Mater. 3, 697 (2004).
[6] A. Hirata, P. F. Guan, T. Fujita, Y. Hirotsu, A. Inoue, A.

R. Yavari, T. Sakurai, and M. W. Chen, Nat. Mater. 10, 28
(2011).

[7] J. D. Bernal and J. L. Finney, Discuss. Faraday Soc. 43, 62
(1967).

174207-8

https://doi.org/10.1016/j.pmatsci.2011.07.001
https://doi.org/10.1016/j.pmatsci.2010.12.002
https://doi.org/10.1016/j.actamat.2016.01.049
https://doi.org/10.1038/nature04421
https://doi.org/10.1038/nmat1219
https://doi.org/10.1038/nmat2897
https://doi.org/10.1039/df9674300062


LOCAL STRUCTURAL POWER EXPONENT AS AN … PHYSICAL REVIEW B 107, 174207 (2023)

[8] D. Z. Chen, C. Y. Shi, Q. An, Q. Zeng, W. L. Mao, W. A.
Goddard, and J. R. Greer, Science 349, 1306 (2015).

[9] D. Ma, A. D. Stoica, and X. L. Wang, Nat. Mater. 8, 30 (2009).
[10] Q. Zeng, Y. Lin, Y. Liu, Z. Zeng, C. Y. Shi, B. Zhang, H. Lou,

S. V. Sinogeikin, Y. Kono, and C. Kenney-Benson, Proc. Natl.
Acad. Sci. USA 113, 1714 (2016).

[11] J. Ding, M. Asta, and R. O. Ritchie, Proc. Natl. Acad. Sci. USA
114, 8458 (2017).

[12] A. K. Gangopadhyay, M. E. Blodgett, M. L. Johnson, A. J.
Vogt, N. A. Mauro, and K. F. Kelton, Appl. Phys. Lett. 104,
191907 (2014).

[13] R. Li, L. Wang, L. Li, T. Yu, H. Zhao, K. W. Chapman, M. L.
Rivers, P. J. Chupas, H.-k. Mao, and H. Liu, Phys. Rev. B 95,
224204 (2017).

[14] H. Zhang, K. Qiao, and Y. Han, Nat. Commun. 11, 2005 (2020).
[15] C. Xia, J. Li, B. Kou, Y. Cao, Z. Li, X. Xiao, Y. Fu, T. Xiao, L.

Hong, J. Zhang et al., Phys. Rev. Lett. 118, 238002 (2017).
[16] M. Wu, J. Cheng, J. S. Tse, Y. Pan, and L. Zhang, Acta Mater.

141, 75 (2017).
[17] J. Feng, P. Chen, and M. Li, Phys. Rev. B 98, 024201 (2018).
[18] A. C. Wright, J. Non-Cryst. Solids 179, 84 (1994).
[19] P. H. Gaskell and D. J. Wallis, Phys. Rev. Lett. 76, 66 (1996).
[20] S. R. Elliott, Phys. Rev. Lett. 67, 711 (1991).
[21] R. Shi and H. Tanaka, Sci. Adv. 5, eaav3194 (2019).
[22] A. Zeidler and P. S. Salmon, Phys. Rev. B 93, 214204 (2016).
[23] L. Li, L. Wang, R. Li, H. Zhao, D. Qu, K. W. Chapman, P. J.

Chupas, and H. Liu, Phys. Rev. B 94, 184201 (2016).
[24] S. Plimpton, J. Comput. Phys. 117, 1 (1995).
[25] L. Zhong, J. Wang, H. Sheng, Z. Zhang, and S. X. Mao, Nature

(London) 512, 177 (2014).
[26] M. I. Mendelev, M. J. Kramer, R. T. Ott, D. J. Sordelet, D.

Yagodin, and P. Popel, Philos. Mag. 89, 967 (2009).
[27] Y. Q. Cheng, E. Ma, and H. W. Sheng, Phys. Rev. Lett. 102,

245501 (2009).
[28] W. G. Hoover, Phys. Rev. A 31, 1695 (1985).
[29] M. Parrinello and A. Rahman, J. Appl. Phys. 52, 7182 (1981).

[30] H. Mizuno, S. Mossa, and J. L. Barrat, Phys. Rev. E 87, 042306
(2013).

[31] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.107.174207 for supplemental figures that
describe the detailed evolution of pair correlation functions and
structure factors (Fig. S1), the fitting of SPLs for Cu, Cu50Zr50,
and Zr50Cu40Al10 MGs (Fig. S2), average local strain under
different cutoff distances (Fig. S3), and the ratio of local SPLs
of real space to local SPLs of reciprocal space (Fig. S4).

[32] G. S. Cargill, Solid State Phys. 30, 227 (1975).
[33] Y. Suzuki, J. Haimovich, and T. Egami, Phys. Rev. B 35, 2162

(1987).
[34] D. Ma, A. D. Stoica, X. L. Wang, Z. P. Lu, B. Clausen, and

D. W. Brown, Phys. Rev. Lett. 108, 085501 (2012).
[35] H. F. Poulsen, J. A. Wert, J. Neuefeind, V. Honkimäki, and M.

Daymond, Nat. Mater. 4, 33 (2004).
[36] H. Wagner, D. Bedorf, S. Kuchemann, M. Schwabe, B. Zhang,

W. Arnold, and K. Samwer, Nat. Mater. 10, 439 (2011).
[37] B. A. Sun, Y. C. Hu, D. P. Wang, Z. G. Zhu, P. Wen, W. H.

Wang, C. T. Liu, and Y. Yang, Acta Mater. 121, 266 (2016).
[38] H. Mizuno, L. E. Silbert, and M. Sperl, Phys. Rev. Lett. 116,

068302 (2016).
[39] Y. C. Hu, P. F. Guan, M. Z. Li, C. T. Liu, Y. Yang, H. Y. Bai,

and W. H. Wang, Phys. Rev. B 93, 214202 (2016).
[40] X. Wei, B. Xu, and P. Guan, J. Non-Cryst. Solids 578, 121345

(2022).
[41] Y. H. Liu, D. Wang, K. Nakajima, W. Zhang, A. Hirata, T. Nishi,

A. Inoue, and M. W. Chen, Phys. Rev. Lett. 106, 125504 (2011).
[42] M. Gao and J. H. Perepezko, Nano Lett. 20, 7558 (2020).
[43] S. S. Sørensen, C. A. Biscio, M. Bauchy, L. Fajstrup, and

M. M. Smedskjaer, Sci. Adv. 6, eabc2320 (2020).
[44] F. Zhu, A. Hirata, P. Liu, S. Song, Y. Tian, J. Han, T. Fujita, and

M. Chen, Phys. Rev. Lett. 119, 215501 (2017).
[45] K. Binder and W. Kob, Glassy Materials and Disordered Solids:

An Introduction to their Statistical Mechanics (World Scientific,
Singapore, 2011).

174207-9

https://doi.org/10.1126/science.aab1233
https://doi.org/10.1038/nmat2340
https://doi.org/10.1073/pnas.1525390113
https://doi.org/10.1073/pnas.1705723114
https://doi.org/10.1063/1.4876125
https://doi.org/10.1103/PhysRevB.95.224204
https://doi.org/10.1038/s41467-020-15583-4
https://doi.org/10.1103/PhysRevLett.118.238002
https://doi.org/10.1016/j.actamat.2017.09.014
https://doi.org/10.1103/PhysRevB.98.024201
https://doi.org/10.1016/0022-3093(94)90687-4
https://doi.org/10.1103/PhysRevLett.76.66
https://doi.org/10.1103/PhysRevLett.67.711
https://doi.org/10.1126/sciadv.aav3194
https://doi.org/10.1103/PhysRevB.93.214204
https://doi.org/10.1103/PhysRevB.94.184201
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1038/nature13617
https://doi.org/10.1080/14786430902832773
https://doi.org/10.1103/PhysRevLett.102.245501
https://doi.org/10.1103/PhysRevA.31.1695
https://doi.org/10.1063/1.328693
https://doi.org/10.1103/PhysRevE.87.042306
http://link.aps.org/supplemental/10.1103/PhysRevB.107.174207
https://doi.org/10.1016/S0081-1947(08)60337-9
https://doi.org/10.1103/PhysRevB.35.2162
https://doi.org/10.1103/PhysRevLett.108.085501
https://doi.org/10.1038/nmat1266
https://doi.org/10.1038/nmat3024
https://doi.org/10.1016/j.actamat.2016.09.014
https://doi.org/10.1103/PhysRevLett.116.068302
https://doi.org/10.1103/PhysRevB.93.214202
https://doi.org/10.1016/j.jnoncrysol.2021.121345
https://doi.org/10.1103/PhysRevLett.106.125504
https://doi.org/10.1021/acs.nanolett.0c03026
https://doi.org/10.1126/sciadv.abc2320
https://doi.org/10.1103/PhysRevLett.119.215501

